Gut Reactions: Xenobiotics and the Microbiome Workshop Report London, UK 2024

References

Last updated: 22 May 2025

References

Committee on Toxicity Statement on interactions between xenobiotics and the human microbiota and their potential toxicological implications: Statement on interactions between xenobiotics and the human microbiota and their potential toxicological implications.pdf

BBSRC Microbiome Capability Workshop Report (2020): BBSRC microbiome capability workshop 2020 report – UKRI

Government Office for Science: Rapid_Project_-_Microbiome_manipulation.pdf

Branchu, P., Bawn, M. and Kingsley, R.A., 2018. Genome variation and molecular epidemiology of Salmonella enterica serovar Typhimurium pathovariants. Infection and immunity86(8), pp.10-1128.

EFSA Roadmap for the integration of gastrointestinal (GI) tract microbiomes (human and domestic animal) in risk assessments under EFSA's remit: Roadmap for the integration of gastrointestinal (GI) tract microbiomes (human and domestic animal) in risk assessments under EFSA's remit | EFSA

FDA Guidance Document- CVM GFI #159 (VICH GL36) Studies to Evaluate the Safety of Residues of Veterinary Drugs in Human Food: General Approach to Establish a Microbiological ADI: CVM GFI #159 (VICH GL36) Studies to Evaluate the Safety of Residues of Veterinary Drugs in Human Food: General Approach to Establish a Microbiological ADI | FDA

UKRI KTN Innovate Microbiome Strategic Roadmap: Microbiome_Strategic_Roadmap_FINAL.pdf

KTN Microbiome Special Interest Group (part of Innovate UK): Microbiome - Innovate UK Business Connect

UKRI Innovate Human Intestinal Microbiome Therapies and Diagnostics – The Science, Opportunities and Challenges Report: 0489_KTN_HIMDD_Final2_AW_Updated-230228.pdf

UK Food Safety Research Network: Home - Food Safety Research Network

Garrido-Romero, M., Pazos, F., Sánchez-Martínez, E., Benito, C., Gómez-Ruiz, J.Á., Borrego-Yaniz, G., Bowes, C., Broll, H., Caminero, A., Caro, E. and Chagoyen, M., 2024. Relevance of gut microbiome research in food safety assessment. Gut microbes16(1), p.2410476.

James, D., Poveda, C., Walton, G.E., Elmore, J.S., Linden, B., Gibson, J., Griffin, B.A., Robertson, M.D. and Lewis, M.C., 2024. Do high-protein diets have the potential to reduce gut barrier function in a sex-dependent manner?. European Journal of Nutrition, pp.1-20.

Leeming, E.R., Johnson, A.J., Spector, T.D. and Le Roy, C.I., 2019. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients, 11(12), p.2862.

Maier, L., Pruteanu, M., Kuhn, M., Zeller, G., Telzerow, A., Anderson, E.E., Brochado, A.R., Fernandez, K.C., Dose, H., Mori, H. and Patil, K.R., 2018. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature, 555(7698), pp.623-628.

Métris, A., Barrett, P., Price, L., Klamert, S. and Fernandez-Piquer, J., 2022. A tiered approach to risk assess microbiome perturbations induced by application of beauty and personal care products. Microbial Risk Analysis20, p.100188.

Mesnage, R., Calatayud, M., Duysburgh, C., Marzorati, M. and Antoniou, M.N., 2022. Alterations in infant gut microbiome composition and metabolism after exposure to glyphosate and Roundup and/or a spore-based formulation using the SHIME technology. Gut Microbiome3, p.e6.

Mesnage, R. and Antoniou, M.N., 2020. Computational modelling provides insight into the effects of glyphosate on the shikimate pathway in the human gut microbiome. Current research in toxicology1, pp.25-33.

Mesnage, R., Teixeira, M., Mandrioli, D., Falcioni, L., Ibragim, M., Ducarmon, Q.R., Zitting, R.D., Amiel, C., Panoff, J.M., Bourne, E. and Savage, E., 2021. Multi-omics phenotyping of the gut-liver axis reveals metabolic perturbations from a low-dose pesticide mixture in rats. Communications Biology4(1), p.471.

National Vision for Engineering Biology: National vision for engineering biology - GOV.UK

Nagata, N., Nishijima, S., Miyoshi-Akiyama, T., Kojima, Y., Kimura, M., Aoki, R., Ohsugi, M., Ueki, K., Miki, K., Iwata, E. and Hayakawa, K., 2022. Population-level metagenomics uncovers distinct effects of multiple medications on the human gut microbiome. Gastroenterology, 163(4), pp.1038-1052.

Oliveira, P.G.D., Sousa, J.M.D., Assunção, D.G.F., Araujo, E.K.S.D., Bezerra, D.S., Dametto, J.F.D.S. and Ribeiro, K.D.D.S., 2022. Impacts of consumption of ultra-processed foods on the maternal-child health: a systematic review. Frontiers in nutrition, 9, p.821657.

Piñeiro, S.A. and Cerniglia, C.E., 2021. Antimicrobial drug residues in animalderived foods: Potential impact on the human intestinal microbiome. Journal of Veterinary Pharmacology and Therapeutics, 44(2), pp.215-222.

Rivera-Chávez, F., Lopez, C.A. and Bäumler, A.J., 2017. Oxygen as a driver of gut dysbiosis. Free Radical Biology and Medicine105, pp.93-101.

Rogers, A.W., Tsolis, R.M. and Bäumler, A.J., 2021. Salmonella versus the Microbiome. Microbiology and Molecular Biology Reviews85(1), pp.10-1128.

Sender, R., Fuchs, S. and Milo, R., 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS biology14(8), p.e1002533.

Securing the future of microbiome research and innovation: the need for biobanking infrastructure in the UK Report: cabidigitallibrary.org/doi/full/10.5555/20240382445

Shivakoti, R., Biggs, M.L., Djoussé, L., Durda, P.J., Kizer, J.R., Psaty, B., Reiner, A.P., Tracy, R.P., Siscovick, D. and Mukamal, K.J., 2022. Intake and sources of dietary fiber, inflammation, and cardiovascular disease in older US adults. JAMA network open5(3), pp.e225012-e225012.

The UK Science and Technology Framework: The UK Science and Technology Framework: taking a systems approach to UK science and technology

Valdes, A.M., Walter, J., Segal, E. and Spector, T.D., 2018. Role of the gut microbiota in nutrition and health. BMJ361.