Per- and polyfluoroalkyl substances: evaluation of thyroid effects using in vitro data - PFAS/2023/05

References - PFAS/2023/05

PFAS/2023/05

Last updated: 24 September 2025

This is a paper for discussion. This does not represent the views of the Committee and should not be cited.

Conti, A., Strazzeri, C., & Rhoden, K. J. (2020). Perfluorooctane sulfonic acid, a persistent organic pollutant, inhibits iodide accumulation by thyroid follicular cells in vitro [Article]. Molecular and Cellular Endocrinology, 515, Article 110922. https://doi.org/10.1016/j.mce.2020.110922

Coperchini, F., Croce, L., Pignatti, P., Ricci, G., Gangemi, D., Magri, F., Imbriani, M., Rotondi, M., & Chiovato, L. (2021). The new generation PFAS C6O4 does not produce adverse effects on thyroid cells in vitro [Article]. Journal of Endocrinological Investigation, 44(8), 1625-1635. https://doi.org/10.1007/s40618-020-01466-4

Coperchini, F., Pignatti, P., Lacerenza, S., Negri, S., Sideri, R., Testoni, C., de Martinis, L., Cottica, D., Magri, F., Imbriani, M., Rotondi, M., & Chiovato, L. (2015). Exposure to perfluorinated compounds: in vitro study on thyroid cells [Article]. Environmental Science and Pollution Research, 22(3), 2287-2294. https://doi.org/10.1007/s11356-014-3480-9

Croce, L., Coperchini, F., Tonacchera, M., Imbriani, M., Rotondi, M., & Chiovato, L. (2019). Effect of long- and short-chain perfluorinated compounds on cultured thyroid cells viability and response to TSH [Article]. Journal of Endocrinological Investigation, 42(11), 1329-1335. https://doi.org/10.1007/s40618-019-01062-1

De Toni, L., Di Nisio, A., Rocca, M. S., Pedrucci, F., Garolla, A., Dall'Acqua, S., Guidolin, D., Ferlin, A., & Foresta, C. (2022). Comparative Evaluation of the Effects of Legacy and New Generation Perfluoralkyl Substances (PFAS) on Thyroid Cells In Vitro. Front Endocrinol (Lausanne), 13, 915096. https://doi.org/10.3389/fendo.2022.915096

Deng, M., Wu, Y., Xu, C., Jin, Y., He, X., Wan, J., Yu, X., Rao, H., & Tu, W. (2018). Multiple approaches to assess the effects of F-53B, a Chinese PFOS alternative, on thyroid endocrine disruption at environmentally relevant concentrations [Article]. Science of the Total Environment, 624, 215-224. https://doi.org/10.1016/j.scitotenv.2017.12.101

EFSA. (2018). Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA Journal, 16(12), 5194. https://doi.org/https://doi.org/10.2903/j.efsa.2018.5194

EFSA. (2020). Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA Journal, 18(9), 6223. https://doi.org/https://doi.org/10.2903/j.efsa.2020.6223

Klimisch, H. J., Andreae, M., & Tillmann, U. (1997). A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol, 25(1), 1-5. https://doi.org/10.1006/rtph.1996.1076

Long, M., Ghisari, M., & Bonefeld-Jørgensen, E. C. (2013). Effects of perfluoroalkyl acids on the function of the thyroid hormone and the aryl hydrocarbon receptor [Article]. Environmental Science and Pollution Research, 20(11), 8045-8056. https://doi.org/10.1007/s11356-013-1628-7

Ren, X. M., Qin, W. P., Cao, L. Y., Zhang, J., Yang, Y., Wan, B., & Guo, L. H. (2016). Binding interactions of perfluoroalkyl substances with thyroid hormone transport proteins and potential toxicological implications [Article]. Toxicology, 366-367, 32-42. https://doi.org/10.1016/j.tox.2016.08.011

Weiss, J. M., Andersson, P. L., Lamoree, M. H., Leonards, P. E., van Leeuwen, S. P., & Hamers, T. (2009). Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin. Toxicol Sci, 109(2), 206-216. https://doi.org/10.1093/toxsci/kfp055