References
In this guide
In this guideAbbott, L. C., & Nigussie, F. (2021). Mercury Toxicity and Neurogenesis in the Mammalian Brain. International Journal of Molecular Sciences, 22(14), 7520. https://doi.org/10.3390/ijms22147520.
Agency for Toxic Substances and Disease Registry (ATSDR). 2004. Interaction profile for: Persistent chemicals found in fish (chlorinated dibenzo- pdioxins, hexachlorobenzene, p,p’-DDE, methylmercury, and polychlorinated biphenyls). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Available at: Persistent Chemicals Found in Fish | Interaction Profiles for Toxic Substances | ATSDR.
Agency for Toxic Substances and Disease Registry (ATSDR). 2022. Toxicological Profile for Mercury (Draft for Public Comment). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Available at: Toxicological profile for mercury : draft for public comment : April 2022.
Agency for Toxic Substances and Disease Registry (ATSDR). 2024. Toxicological Profile for Mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Available at: Mercury | Toxicological Profile | ATSDR.
Al-Saleh, I., Shinwari, N., Mashhour, A., & Rabah, A. (2014). Birth outcome measures and maternal exposure to heavy metals (lead, cadmium and mercury) in Saudi Arabian population. International Journal of Hygiene and Environmental Health, 217(2), 205–218. https://doi.org/10.1016/j.ijheh.2013.04.009.
al-Shahristani H and Shihab KM, 1974. Variation of biological half-life of methylmercury in man. Archives of Environmental Health, 28, 342-344.
Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P., & Lark, R. M. (2013). Methodology for the determination of normal background concentrations of contaminants in English soil. Science of The Total Environment, 454–455, 604–618. https://doi.org/10.1016/j.scitotenv.2013.03.005.
Atkinson A, Thompson SJ, Khan AT, et al. 2001. Assessment of a two- generation reproductive and fertility study of mercuric chloride in rats. Food Chem Toxicol 39(1):73-84. https://doi.org/10.1016/S0278-6915(00)00096-X.
Aung, M. T., M. Bakulski, K., Feinberg, J. I., F. Dou, J., D. Meeker, J., Mukherjee, B., Loch-Caruso, R., Ladd-Acosta, C., Volk, H. E., Croen, L. A., Hertz-Picciotto, I., Newschaffer, C. J., & Fallin, M. D. (2022). Maternal blood metal concentrations and whole blood DNA methylation during pregnancy in the Early Autism Risk Longitudinal Investigation (EARLI). Epigenetics, 17(3), 253–268. https://doi.org/10.1080/15592294.2021.1897059.
Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology, 12, 643972. https://doi.org/10.3389/fphar.2021.643972.
Ballatori N, Clarkson TW. 1985. Biliary secretion of glutathione and of glutathione-metal complexes. Fundam Appl Toxicol 5(5):816-831.
Basu, N., Horvat, M., Evers, D. C., Zastenskaya, I., Weihe, P., & Tempowski, J. (2018). A State-of-the-Science Review of Mercury Biomarkers in Human Populations Worldwide between 2000 and 2018. Environmental Health Perspectives, 126(10), 106001. https://doi.org/10.1289/EHP3904.
Bates, B.; Lennox, A.; Prentice, A.; Bates, C.; Page, P.; Nicholson, S.; Swan, G. (2014) National Diet and Nutrition Survey Results from Years 1, 2, 3 and 4 (combined) of the Rolling Programme (2008/2009 – 2011/2012): National Diet and Nutrition Survey.
Bates, B.; Cox, L.; Nicholson, S.; Page, P.; Prentice, A.; Steer, T.; Swan, G. (2016) National Diet and Nutrition Survey Results from Years 5 and 6 (combined) of the Rolling Programme (2012/2013 – 2013/2014) Available at: National Diet and Nutrition Survey.
Bates, B., Collins, D., Jones, K., Page, P., Roberts, C., Steer, T., Swan, G. (2020). National Diet and Nutrition Survey Rolling programme Years 9 to 11 (2016/2017 to 2018/2019). Available at: National Diet and Nutrition Survey.
Barbone, F., Rosolen, V., Mariuz, M., Parpinel, M., Casetta, A., Sammartano, F., Ronfani, L., Vecchi Brumatti, L., Bin, M., Castriotta, L., Valent, F., Little, D. L., Mazej, D., Snoj Tratnik, J., Miklavčič Višnjevec, A., Sofianou, K., Špirić, Z., Krsnik, M., Osredkar, J., Neubauer, D., Horvat, M. (2019). Prenatal mercury exposure and child neurodevelopment outcomes at 18 months: Results from the Mediterranean PHIME cohort. International Journal of Hygiene and Environmental Health, 222(1), 9–21. https://doi.org/10.1016/j.ijheh.2018.07.011.
Berglund, M., Lind, B., Björnberg, K. A., Palm, B., Einarsson, O., & Vahter, M. (2005). Inter-individual variations of human mercury exposure biomarkers: A cross-sectional assessment. Environmental Health: A Global Access Science Source, 4, 20. https://doi.org/10.1186/1476-069X-4-20.
Bocca, B., Ruggieri, F., Pino, A., Rovira, J., Calamandrei, G., Martínez, M. Á., Domingo, J. L., Alimonti, A., & Schuhmacher, M. (2019). Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood. Environmental Research, 177, 108599. https://doi.org/10.1016/j.envres.2019.108599.
Bolan, S., Seshadri, B., Keely, S., Kunhikrishnan, A., Bruce, J., Grainge, I., Talley, N. J., & Naidu, R. (2021). Bioavailability of arsenic, cadmium, lead and mercury as measured by intestinal permeability. Scientific reports, 11(1), 14675. https://doi.org/10.1038/s41598-021-94174-9.
Bollati, V., & Baccarelli, A. (2010). Environmental epigenetics. Heredity, 105(1), 105–112. https://doi.org/10.1038/hdy.2010.2.
Boscolo P, Carmignani M, Giuliano G, et al. 1989. Peripheral catecholaminergic mechanisms and baroreflex pathways are involved in vascular and cardiac effects of long-term exposure to inorganic mercury in rats. In: Strano A, Novo S, eds. Advances in vascular pathology. Amsterdam: Elsevier Science Publisher, 1061-1066.
Bradley, M. A., Barst, B. D., & Basu, N. (2017). A Review of Mercury Bioavailability in Humans and Fish. International journal of environmental research and public health, 14(2), 169. https://doi.org/10.3390/ijerph14020169.
Bridges C. C., & Zalups R. K. (2018). Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol 91(1):63-81. http://doi.org/10.1007/s00204-016-1803-y.
Bridges, C. C., & Zalups, R. K. (2010). Transport of inorganic mercury and methylmercury in target tissues and organs. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 13(5), 385–410. https://doi.org/10.1080/10937401003673750.
Carazza-Kessler, F. G., Campos, M. S., Bittencourt, R. R., Rosa-Silva, H. T. da, Brum, P. O., Silveira, A. K., Teixeira, A. A., Ribeiro, C. T., Peixoto, D. O., Santos, L., Andrade, G., Panzenhagen, A. C., Scheibel, I. M., Gelain, D. P., & Fonseca Moreira, J. C. (2024). Transgenerational inheritance of methylmercury and vitamin A-induced toxicological effects in a Wistar rats environmental-based model. Chemosphere, 351, 141239. https://doi.org/10.1016/j.chemosphere.2024.141239.
Carmignani, M., Boscolo, P., Artese, L., Del Rosso, G., Porcelli, G., Felaco, M., Volpe, A. R., & Giuliano, G. (1992). Renal mechanisms in the cardiovascular effects of chronic exposure to inorganic mercury in rats. British Journal of Industrial Medicine, 49(4), 226–232. https://doi.org/10.1136/oem.49.4.226.
Carmignani, M., Boscolo, P., & Preziosi, P. (1989). Renal ultrastructural alterations and cardiovascular functional changes in rats exposed to mercuric chloride. Archives of Toxicology, 13, 353–356. https://doi.org/10.1007/978-3- 642-74117-3_68.
Carmignani, M., & Boscolo, P. (1984). Cardiovascular homeostasis in rats chronically exposed to mercuric chloride. Archives of Toxicology, 7, 383–388. https://doi.org/10.1007/978-3-642-69132-4_66.
Carty AJ, Malone SF. 1979. The chemistry of mercury in biological systems. In: Nriagu JO, ed. The biogeochemistry of mercury in the environment. New York, NY: Elsevier/North Holland Biomedical Press, 433-480.
Cediel Ulloa, A., Gliga, A., Love, T. M., Pineda, D., Mruzek, D. W., Watson, G. E., Davidson, P. W., Shamlaye, C. F., Strain, J. J., Myers, G. J., van Wijngaarden, E., Ruegg, J., & Broberg, K. (2021). Prenatal methylmercury exposure and DNA methylation in seven-year-old children in the Seychelles Child Development Study. Environment International, 147, 106321. https://doi.org/10.1016/j.envint.2020.106321.
Chan, P. H. Y., Kwok, K. M., Chan, M. H. M., Li, A. M., Chan, I. H. S., Fok, T. F., & Lam, H. S. (2021). Prenatal methylmercury exposure is associated with decrease heart rate variability in children. Environmental Research, 200, 111744. https://doi.org/10.1016/j.envres.2021.111744.
Chapman, L., & Chan, H. M. (2000). The influence of nutrition on methyl mercury intoxication. Environmental Health Perspectives, 108 Suppl 1(Suppl 1), 29–56. https://doi.org/10.1289/ehp.00108s129.
Charbonneau, S. M., Munro, I. C., Nera, E. A., Armstrong, F. A., Willes, R. F., Bryce, F., & Nelson, R. F. (1976). Chronic toxicity of methylmercury in the adult cat. Interim report. Toxicology, 5(3), 337–349. https://doi.org/10.1016/0300-483x(76)90052-4.
Chemelo, V. S., Nascimento, P. C., Bittencourt, L. O., Souza-Monteiro, D., Balbinot, G. S., Albuquerque, A. R. L., Silva, M. C. F., da Paz, S. P. A., Angélica, R. S., Prado, A. F., Martins, M. D., Collares, F. M., Crespo-Lopez, M. E., & Lima, R. R. (2022). In utero and lactational exposure to methylmercury elicits physical-chemical and morphological damages in the alveolar bone of offspring rats: The first toxicological findings. Chemosphere, 308(Pt 3), 136453. https://doi.org/10.1016/j.chemosphere.2022.136453.
Clarkson, T. W. (2002). The three modern faces of mercury. Environmental Health Perspectives, 110, 11–23. https://doi.org/10.1289/ehp.02110s111.
Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36(8), 609–662. https://doi.org/10.1080/10408440600845619.
COT, (2004): Annex 3. Updated COT Statement on a survey of methylmercury in fish and shellfish: fishreport200406.pdf.
COT, (2018). Statement on potential risks from methylmercury in the diet of infants aged 0 to 12 months and children aged 1 to 5 years. cotstatementonmethylmercury.pdf (food.gov.uk).
Dack, K., Wootton, R. E., Taylor, C. M., & Lewis, S. J. (2023). Prenatal Mercury Exposure and Infant Weight Trajectories in a UK Observational Birth Cohort. Toxics, 11(1), 10. https://doi.org/10.3390/toxics11010010.
Davidson, P. W., Myers, G. J., Cox, C., Axtell, C., Shamlaye, C., Sloane- Reeves, J., Cernichiari, E., Needham, L., Choi, A., Wang, Y., Berlin, M., & Clarkson, T. W. (1998). Effects of Prenatal and Postnatal Methylmercury Exposure From Fish Consumption on NeurodevelopmentOutcomes at 66 Months of Age in the Seychelles Child Development Study. JAMA, 280(8), 701–707. https://doi.org/10.1001/jama.280.8.701.
Dean, J. R., Deary, M. E., Gbefa, B. K., & Scott, W. C. (2004). Characterisation and analysis of persistent organic pollutants and major, minor and trace elements in Calabash chalk. Chemosphere, 57(1), 21–25. https://doi.org/10.1016/j.chemosphere.2004.05.023.
de Paula, H. K., Love, T. M., Pineda, D., Watson, G. E., Thurston, S. W., Yeates, A. J., Mulhern, M. S., McSorley, E. M., Strain, J. J., Shamlaye, C. F., Myers, G. J., Rand, M. D., van Wijngaarden, E., & Broberg, K. (2023). KEAP1 polymorphisms and neurodevelopmental outcomes in children with exposure to prenatal MeHg from the Seychelles Child Development Study Nutrition Cohort 2. NeuroToxicology, 99, 177–183. https://doi.org/10.1016/j.neuro.2023.10.008.
Du, G., Zhou, F., Ouyang, L., Wang, K., Rao, S., Su, R., Zhu, Y., Guo, K., Xiao, J., Xie, J., Li, Q., Feng, C., & Fan, G. (2023). Pregnancy and lactation mixed exposure to lead, cadmium, and mercury alters maternal-offspring single heavy metal load: A factorial design. International Journal of Hygiene and Environmental Health, 248, 114113. https://doi.org/10.1016/j.ijheh.2023.114113.
EFSA Panel on Contaminants in the Food Chain (CONTAM), (2008). Mercury as undesirable substance in animal feed—Scientific opinion of the Panel on Contaminants in the Food Chain. EFSA Journal, 6(4), 654. https://doi.org/10.2903/j.efsa.2008.654.
EFSA Panel on Contaminants in the Food Chain (CONTAM). (2004). Opinion of the Scientific Panel on contaminants in the food chain related to mercury and methylmercury in food. EFSA Journal 2004; 2(3):34, 14 pp. https://doi.org/10.2903/j.efsa.2004.34.
EFSA Panel on Contaminants in the Food Chain (CONTAM).
(2012). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Journal 2012; 10(12):2985, 241 pp. https://doi.org/10.2903/j.efsa.2012.2985.
Endo T, Nakaya S, Kimura R. 1990. Mechanisms of absorption of inorganic mercury from rat small intestine. III. Comparative absorption studies of inorganic mercuric compounds in vitro. Pharmacol Toxicol 66(5):347-353. https://doi.org/10.1111/j.1600-0773.1990.tb00761.x.
Environment Agency, 2009, Microsoft Word - 0901115 CLEA Report for publication.doc (publishing.service.gov.uk). Accessed 20.04.22.
FAO/WHO. (1966). Specifications for the identity and purity of food additives and their toxicological evaluation: some emulsifiers and stabilizers and certain other substances: tenth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 373.
FAO/WHO. (1970). Evaluation of food additives: specifications for the identity and purity of food additives and their toxicological evaluation, some extraction solvents and certain other substances: fourteenth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 462.
FAO/WHO. (1972). Evaluation of certain food additives and the contaminants mercury, lead, and cadmium: Sixteenth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 505.
FAO/WHO. (1978). Evaluation of certain food additives: twenty-second report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 631.
FAO/WHO. (1988). Evaluation of certain food additives and contaminants: thirty-third report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 776.
FAO/WHO. (2004). Evaluation of certain food additives and contaminants: Sixty-first report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 922.
FAO/WHO. (2007). Evaluation of certain food additives and contaminants: sixty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 940.
FAO/WHO. (2011). Safety evaluation of certain contaminants in food: Prepared by the seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 959.
Farris, F. F., Dedrick, R. L., Allen, P. V., & Smith, J. C. (1993). Physiological model for the pharmacokinetics of methyl mercury in the growing rat. Toxicology and Applied Pharmacology, 119(1), 74–90. https://doi.org/10.1006/taap.1993.1046.
Farris FF, Kaushal A, Strom JG. 2008. Inorganic mercury pharmacokinetics in man: A twocompartment model. Toxicol Environ Chem 90(3):519-533. http://doi.org/10.1080/02772240701602736.
Fawcett, E. J., Fawcett, J. M., & Mazmanian, D. (2016). A meta-analysis of the worldwide prevalence of pica during pregnancy and the postpartum period. International Journal of Gynaecology and Obstetrics: The Official Organ of the International Federation of Gynaecology and Obstetrics, 133(3), 277–283. https://doi.org/10.1016/j.ijgo.2015.10.012.
Golding, J., Taylor, C., Iles-Caven, Y., & Gregory, S. (2022). The benefits of fish intake: Results concerning prenatal mercury exposure and child outcomes from the ALSPAC prebirth cohort. NeuroToxicology, 91, 22–30. https://doi.org/10.1016/j.neuro.2022.04.012.
Grandjean, P., Murata, K., Budtz-Jørgensen, E., & Weihe, P. (2004). Cardiac autonomic activity in methylmercury neurotoxicity: 14-year follow-up of a Faroese birth cohort. The Journal of Pediatrics, 144(2), 169–176. https://doi.org/10.1016/j.jpeds.2003.10.058.
Grandjean, P., Henriksen, J. E., Choi, A. L., Petersen, M. S., Dalgård, C., Nielsen, F., & Weihe, P. (2011). Marine Food Pollutants as a Risk Factor for Hypoinsulinemia and Type 2 Diabetes. Epidemiology (Cambridge, Mass.), 22(3), 410–417. https://doi.org/10.1097/EDE.0b013e318212fab9.
Grotto D, Barcelos GR, Valentini J, et al. 2009. Low levels of methylmercury induce DNA damage in rats: protective effects of selenium. Arch Toxicol 83(3):249-254. https://doi.org/10.1007/s00204-008-0353-3.
Guo, B.-Q., Cai, S.-Z., Guo, J.-L., Xu, J., Wu, W., Li, H., Zhou, X., Kim, D.-S., Yan, C.-H., & Lü, H.-D. (2013). Levels of prenatal mercury exposure and their relationships to neonatal anthropometry in Wujiang City, China. Environmental Pollution, 182, 184–189. https://doi.org/10.1016/j.envpol.2013.07.023.
Hall LL, Allen PV, Fisher HL, et al. 1995. The kinetics of intravenously administered inorganic mercury in humans. In: Subramanian KN, Wastney ME, eds. Kinetic models of trace element and mineral metabolism. Boca Raton, FL: CRC Press, 265-280.
Hanna, C. W., Bloom, M. S., Robinson, W. P., Kim, D., Parsons, P. J., vom Saal, F. S., Taylor, J. A., Steuerwald, A. J., & Fujimoto, V. Y. (2012). DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Human Reproduction, 27(5), 1401–1410. https://doi.org/10.1093/humrep/des038.
Haynes, W. M., Lide, D. R., & Bruno, T. J. (2016). CRC Handbook Of Chemistry And Physics: a ready-reference book of chemical and physical data. 2016-2017, 97th Edition / Boca Raton, Florida, CRC Press. https://doi.org/10.1201/9781315380476.
Heath JC, Abdelmageed Y, Braden TD, et al. 2009. The effects of chronic mercuric chloride ingestion in female Sprague-Dawley rats on fertility and reproduction. Food Chem Toxicol 47(7):1600-1605. http://doi.org/10.1016/j.fct.2009.04.007.
Heath JC, Abdelmageed Y, Braden TD, et al. 2012. The effects of chronic ingestion of mercuric chloride on fertility and testosterone levels in male Sprague Dawley rats. J Biomed Biotechnol 2012:1-9. http://doi.org/10.1155/2012/815186.
Huang CF, Liu SH, Hsu CJ, et al. 2011. Neurotoxicological effects of low-dose methylmercury and mercuric chloride in developing offspring mice. Toxicol Lett 201(3):196-204. http://doi.org/10.1016/j.toxlet.2010.12.016.
Al-Saleh, I., Shinwari, N., Mashhour, A., & Rabah, A. (2014). Birth outcome measures and maternal exposure to heavy metals (lead, cadmium and mercury) in Saudi Arabian population. International Journal of Hygiene and Environmental Health, 217(2), 205–218. https://doi.org/10.1016/j.ijheh.2013.04.009.
IARC. 1993. Mercury and mercury compounds. IARC monographs on the evaluation of carcinogenic risks to humans. Volume 58. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. Lyon, France: International Agency for Research on Cancer. 239-345. IARC Publications Website - Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry November 11, 2020.
Ikegaya K, Nokihara K, Yasuhara T. 2010. Characterization of sulfhydryl heterogeneity in human serum albumin and recombinant human serum albumin for clinical use. Biosci Biotechnol Biochem 74(11):2232-2236. http://doi.org/10.1271/bbb.100423.
Jarlhelt, I., Hansen, C. B., Pérez-Alós, L., Weihe, P., Petersen, M. S., & Garred, P. (2024). SARS-CoV-2 anti-RBD and anti-N protein responses are differentially regulated between mother-child pairs: Insight from a national study cohort at the Faroe Islands. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1418678.
Jindal M, Garg GR, Mediratta PK, et al. 2011. Protective role of melatonin in myocardial oxidative damage induced by mercury in murine model. Hum Exp Toxicol 30(10):1489-1500. http://doi.org/10.1177/0960327110391685.
Kershaw T.G., Clarkson T.W., and Dhahir P.H., 1980. The relationship between blood levels and dose of methylmercury in man. Archives of Environment Health, 35, 28-36. https://doi.org/10.1080/00039896.1980.10667458.
Khan AT, Atkinson A, Graham TC, et al. 2004. Effects of inorganic mercury on reproductive performance of mice. Food Chem Toxicol 42(4):571-577. http://doi.org/10.1016/j.fct.2003.10.018.
Kim BM, Lee BE, Hong YC, et al. 2011. Mercury levels in maternal and cord blood and attained weight through the 24 months of life. Sci Total Environ 410-411:26-33. http://doi.org/10.1016/j.scitotenv.2011.08.060.
Kim, Y., Ha, E.-H., Park, H., Ha, M., Kim, Y., Hong, Y.-C., Lee, E. J., Kim, H., Chang, N., & Kim, B.-N. (2018). Prenatal mercury exposure, fish intake and neurocognitive development during first three years of life: Prospective cohort mothers and Children’s environmental health (MOCEH) study. Science of The Total Environment, 615, 1192–1198. https://doi.org/10.1016/j.scitotenv.2017.10.014.
Kupsco, A., Lee, J. J., Prada, D., Valvi, D., Hu, L., Petersen, M. S., Coull, B. A., Weihe, P., Grandjean, P., & Baccarelli, A. A. (2022). Marine pollutant exposures and human milk extracellular vesicle-microRNAs in a mother-infant cohort from the Faroe Islands. Environment International, 158, 106986. https://doi.org/10.1016/j.envint.2021.106986.
Laeter, J. R. de, Böhlke, J. K., Bièvre, P. D., Hidaka, H., Peiser, H. S., Rosman, K. J. R., & Taylor, P. D. P. (2003). Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure and Applied Chemistry, 75(6), 683–800. https://doi.org/10.1351/pac200375060683.
Lash LH, Jones DP. 1985. Uptake of the glutathione conjugate S-(1,2- dichlorovinyl)glutathione by renal basal-lateral membrane vesicles and isolated kidney cells. Mol Pharmacol 28(3):278-282.
Lecavalier PR, Chu I, Villeneuve D, et al. 1994. Combined effects of mercury and hexachlorobenzene in the rat. J Environ Sci Health B 29(5):951-961. http://doi.org/10.1080/03601239409372911.
Lee, B.-E., Hong, Y.-C., Park, H., Ha, M., Koo, B. S., Chang, N., Roh, Y.-M., Kim, B.-N., Kim, Y.-J., Kim, B.-M., Jo, S.-J., & Ha, E.-H. (2010). Interaction between GSTM1/GSTT1 Polymorphism and Blood Mercury on Birth Weight. Environmental Health Perspectives, 118(3), 437–443. https://doi.org/10.1289/ehp.0900731.
Li H, Lin X, Zhao J, et al. 2019. Intestinal methylation and demethylation of mercury. 102(5):597-604. http://doi.org/10.1007/s00128-018-2512-4.
Longo, V., Drago, G., Longo, A., Ruggieri, S., Sprovieri, M., Cibella, F., & Colombo, P. (2022). A multipollutant low-grade exposure regulates the expression of miR-30b, Let-7a and miR-223 in maternal sera: Evidence from the NEHO cohort. Science of The Total Environment, 844, 157051. https://doi.org/10.1016/j.scitotenv.2022.157051.
Loscalzo, J., & Handy, D. E. (2014). Epigenetic Modifications: Basic Mechanisms and Role in Cardiovascular Disease (2013 Grover Conference Series). Pulmonary Circulation, 4(2), 169–174. https://doi.org/10.1086/675979.
Love, T. M., Wahlberg, K., Pineda, D., Watson, G. E., Zareba, G., Thurston, S. W., Davidson, P. W., Shamlaye, C. F., Myers, G. J., Rand, M., van Wijngaarden, E., & Broberg, K. (2022). Contribution of child ABC-transporter genetics to prenatal MeHg exposure and neurodevelopment. NeuroToxicology, 91, 228–233. https://doi.org/10.1016/j.neuro.2022.05.019.
Lukačínová, A., Benacka, R., Sedlakova, E., Lovásová, E., & Ništiar, F. (2012). Multigenerational lifetime low-dose exposure to heavy metals on selected reproductive parameters in rats. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 47(9), 1280–1287. https://doi.org/10.1080/10934529.2012.672132.
Lukačínová, A., Rácz, O., Lovásová, E., & Ništiar, F. (2011). Effect of lifetime low dose exposure to heavy metals on selected serum proteins of Wistar rats during three subsequent generations. Ecotoxicology and Environmental Safety, 74(6), 1747–1755. https://doi.org/10.1016/j.ecoenv.2011.04.017.
Vigeh, M., Nishioka, E., Ohtani, K., Omori, Y., Matsukawa, T., Koda, S., & Yokoyama, K. (2018). Prenatal mercury exposure and birth weight. Reproductive Toxicology, 76, 78–83. https://doi.org/10.1016/j.reprotox.2018.01.002.
Maccani, J. Z. J., Koestler, D. C., Lester, B., Houseman, E. A., Armstrong, D. A., Kelsey, K. T., & Marsit, C. J. (2015). Placental DNA Methylation Related to Both Infant Toenail Mercury and Adverse Neurobehavioral Outcomes. Environmental Health Perspectives, 123(7), 723–729. https://doi.org/10.1289/ehp.1408561.
Mackenzie, D. (2008). Faroe islanders told to stop eating ‘toxic’ whales. New Scientist. Retrieved 16th August 2024, from Faroe islanders told to stop eating 'toxic' whales | New Scientist.
Major-Smith, D., Heron, J., Fraser, A., Lawlor, D. A., Golding, J., & Northstone, K. (2023). The Avon Longitudinal Study of Parents and Children (ALSPAC): A 2022 update on the enrolled sample of mothers and the associated baseline data. Wellcome Open Research, 7, 283. https://doi.org/10.12688/wellcomeopenres.18564.2.
McClam, M., Liu, J., Fan, Y., Zhan, T., Zhang, Q., Porter, D. E., Scott, G. I., & Xiao, S. (2023). Associations between exposure to cadmium, lead, mercury and mixtures and women’s infertility and long-term amenorrhea. Archives of Public Health = Archives Belges De Sante Publique, 81(1), 161. https://doi.org/10.1186/s13690-023-01172-6.
McSorley, E. M., van Wijngaarden, E., Yeates, A. J., Spence, T., Mulhern, M. S., Harrington, D., Thurston, S. W., Love, T., Jusko, T. A., Allsopp, P. J., Conway, M. C., Davidson, P. W., Myers, G. J., Watson, G. E., Shamlaye, C. F., & Strain, J. J. (2020). Methylmercury and long chain polyunsaturated fatty acids are associated with immune dysregulation in young adults from the Seychelles child development study. Environmental Research, 183, 109072. https://doi.org/10.1016/j.envres.2019.109072.
Miklavčič, A., Cuderman, P., Mazej, D., Snoj Tratnik, J., Krsnik, M., Planinšek, P., Osredkar, J., & Horvat, M. (2011). Biomarkers of low-level mercury exposure through fish consumption in pregnant and lactating Slovenian women. Environmental Research, 111(8), 1201–1207. https://doi.org/10.1016/j.envres.2011.07.006.
Molina-Mesa, S., Martínez-Cendán, J. P., Moyano-Rubiales, D., Cubillas- Rodríguez, I., Molina-García, J., & González-Mesa, E. (2022). Detection of Relevant Heavy Metal Concentrations in Human Placental Tissue: Relationship between the Concentrations of Hg, As, Pb and Cd and the Diet of the Pregnant Woman. International Journal of Environmental Research and Public Health, 19(22), 14731. https://doi.org/10.3390/ijerph192214731.
Mozaffarian, D., Shi, P., Morris, J. S., Spiegelman, D., Grandjean, P., Siscovick, D. S., Willett, W. C., & Rimm, E. B. (2011). Mercury exposure and risk of cardiovascular disease in two U.S. cohorts. The New England Journal of Medicine, 364(12), 1116–1125. https://doi.org/10.1056/NEJMoa1006876.
Myers, G. J., Davidson, P. W., Cox, C., Shamlaye, C. F., Palumbo, D., Cernichiari, E., Sloane-Reeves, J., Wilding, G. E., Kost, J., Huang, L.-S., & Clarkson, T. W. (2003). Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study. The Lancet, 361(9370), 1686–1692. https://doi.org/10.1016/S0140-6736(03)13371-5.
NRC (National Research Council), 2000. Toxicological effects of methylmercury. Committee on the Toxicological Effects of Methylmercury, Board on Environmental Studies and Toxicology, Commission on Life Sciences, National Research Council. Washington, DC: National Academy Press. https://doi.org/10.17226/9899.
NTP. 1993. Toxicology and carcinogenesis studies of mercuric chloride (CAS no. 7487-94-7) in F344/N rats and B6C3F1 mice (gavage studies). Research Triangle Park, NC: National Toxicology Program. NTP TR 408. NIH publication no. 91-3139.
NTP (National Toxicology Program). (1993). Toxicology and Carcinogenesis Studies of Mercuric Chloride (CAS No. 7487-94-7) in F344 Rats and B6C3F1 Mice (Gavage Studies). National Toxicology Program Technical Report Series, 408, 1–260. Abstract for TR-408.
NTP. 2016. Mercury. 14th Report on carcinogens. National Toxicology Program. 2016 Annual Report (PDF).
Onishchenko, N., Karpova, N., Sabri, F., Castrén, E., & Ceccatelli, S. (2008). Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. Journal of Neurochemistry, 106(3), 1378–1387. https://doi.org/10.1111/j.1471- 4159.2008.05484.x
Orlando, M. S., Dziorny, A. C., Love, T., Harrington, D., Shamlaye, C. F., Watson, G., Van Wijngaarden, E., Zareba, G., Davidson, P. W., Mulhern, M. S., McSorley, E. M., Yeates, A. J., Strain, J. J., & Myers, G. J. (2020).
Association of Audiometric Measures with plasma long chain polyunsaturated fatty acids in a high-fish eating population: The Seychelles Child Development Study. NeuroToxicology, 77, 137–144. https://doi.org/10.1016/j.neuro.2020.01.005.
Otte P., Lijzen J., Otte J., Swartjes F., Versluijs C., (2001). Evaluation and revision of the CSOIL parameter set. RIVM Report 711701021. Bilthoven: National Institute of Public Health and Environment.
Oulhote, Y., Coull, B., Bind, M.-A., Debes, F., Nielsen, F., Tamayo, I., Weihe, P., & Grandjean, P. (2019). Joint and independent neurotoxic effects of early life exposures to a chemical mixture: A multi-pollutant approach combining ensemble learning and G-computation. Environmental Epidemiology, 3(5), e063. https://doi.org/10.1097/EE9.0000000000000063.
Park, J. D., Zheng, J. D. W. (2012). Human Exposure and Health Effects of Inorganic and Elemental Mercury. Journal of Preventive Medicine and Public Health, 45(6), 344–352. DOI: https://doi.org/10.3961/jpmph.2012.45.6.344.
Miao, D., Young, S. L., & Golden, C. D. (2015). A meta-analysis of pica and micronutrient status. American Journal of Human Biology, 27(1), 84–93. https://doi.org/10.1002/ajhb.22598.
Perry HM, Erlanger MW. 1974. Metal-induced hypertension following chronic feeding of low doses of cadmium and mercury. J Lab Clin Med 83(4):541- 547.
Rahola T, Aaran RK, Miettinen JK. 1972. Half-time studies of mercury and cadmium by whole-body counting. Assess Radioactiv Contam March:553- 562.
Rahola T, Hattula T, Korolainen A, et al. 1973. Elimination of free and protein- bound ionic mercury 203Hg2+ in man. Ann Clin Res 5(4):214-219.
Roberts, C.; Steer, T.; Maplethorpe, N.; Cox, L.; Meadows, S.; Page, P.; Nicholson, S.; Swan, G. (2018) National Diet and Nutrition Survey Results from Years 7 and 8 (combined) of the Rolling Programme (2014/2015 – 2015/2016) National Diet and Nutrition Survey.
Thomas, S., Arbuckle, T. E., Fisher, M., Fraser, W. D., Ettinger, A., & King, W. (2015). Metals exposure and risk of small-for-gestational age birth in a Canadian birth cohort: The MIREC study. Environmental Research, 140, 430–439. https://doi.org/10.1016/j.envres.2015.04.018.
Sakamoto, M., Chan, H. M., Domingo, J. L., Kawakami, S., & Murata, K. (2012). Mercury and docosahexaenoic acid levels in maternal and cord blood in relation to segmental maternal hair mercury concentrations at parturition. Environment International, 44, 112–117. https://doi.org/10.1016/j.envint.2012.02.007.
Sakamoto, M., Kaneoka, T., Murata, K., Nakai, K., Satoh, H., & Akagi, H. (2007). Correlations between mercury concentrations in umbilical cord tissue and other biomarkers of fetal exposure to methylmercury in the Japanese population. Environmental Research, 103(1), 106–111. https://doi.org/10.1016/j.envres.2006.03.004.
Sakamoto, M., Chan, H. M., Domingo, J. L., Koriyama, C., & Murata, K. (2018). Placental transfer and levels of mercury, selenium, vitamin E, and docosahexaenoic acid in maternal and umbilical cord blood. Environment International, 111, 309–315. https://doi.org/10.1016/j.envint.2017.11.001.
Sanders, A. P., Burris, H. H., Just, A. C., Motta, V., Amarasiriwardena, C., Svensson, K., Oken, E., Solano-Gonzalez, M., Mercado-Garcia, A., Pantic, I., Schwartz, J., Tellez-Rojo, M. M., Baccarelli, A. A., & Wright, R. O. (2015). Altered miRNA Expression in the Cervix During Pregnancy Associated with Lead and Mercury Exposure. Epigenomics, 7(6), 885–896. https://doi.org/10.2217/epi.15.54.
Shamlaye, C. F., Marsh, D. O., Myers, G. J., Cox, C., Davidson, P. W., Choisy, O., Cernichiari, E., Choi, A., Tanner, M. A., & Clarkson, T. W. (1995). The Seychelles child development study on neurodevelopmental outcomes in children following in utero exposure to methylmercury from a maternal fish diet: Background and demographics. Neurotoxicology, 16(4), 597–612.
Sheehan, M. C., Burke, T. A., Navas-Acien, A., Breysse, P. N., McGready, J., & Fox, M. A. (2014). Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: A systematic review. Bulletin of the World Health Organization, 92(4), 254-269F. https://doi.org/10.2471/BLT.12.116152.
Sherman LS, Blum JD, Franzblau A, et al. (2013). New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes. Environ Sci Technol 47(7):3403-3409. http://doi.org/10.1021/es305250z.
Sloane-Reeves, J., Davidson, P. W., Myers, G. J., Shamlaye, C., Leste, A., Huang, L. S., & Thurston, S. (2020). Scholastic achievement among children enrolled in the Seychelles Child Development Study. NeuroToxicology, 81, 347–352. https://doi.org/10.1016/j.neuro.2020.09.027.
Sørensen, N., Murata, K., Budtz-Jørgensen, E., Weihe, P., & Grandjean, P. (1999). Prenatal methylmercury exposure as a cardiovascular risk factor at seven years of age. Epidemiology (Cambridge, Mass.), 10(4), 370–375.
Strain, J., Love, T. M., Yeates, A. J., Weller, D., Mulhern, M. S., McSorley, E. M., Thurston, S. W., Watson, G. E., Mruzek, D., Broberg, K., Rand, M. D., Henderson, J., Shamlaye, C. F., Myers, G. J., Davidson, P. W., & van Wijngaarden, E. (2021). Associations of prenatal methylmercury exposure and maternal polyunsaturated fatty acid status with neurodevelopmental outcomes at 7 years of age: Results from the Seychelles Child Development Study Nutrition Cohort 2. The American Journal of Clinical Nutrition, 113(2), 304–313. https://doi.org/10.1093/ajcn/nqaa338.
Strain, J., Yeates, A. J., van Wijngaarden, E., Thurston, S. W., Mulhern, M. S., McSorley, E. M., Watson, G. E., Love, T. M., Smith, T. H., Yost, K., Harrington, D., Shamlaye, C. F., Henderson, J., Myers, G. J., & Davidson, P. W. (2015). Prenatal exposure to methyl mercury from fish consumption and polyunsaturated fatty acids: Associations with child development at 20 mo of age in an observational study in the Republic of Seychelles1234. The American Journal of Clinical Nutrition, 101(3), 530–537. https://doi.org/10.3945/ajcn.114.100503.
Suda, I., Totoki, S., Uchida, T., & Takahashi, H. (1992). Degradation of methyl and ethyl mercury into inorganic mercury by various phagocytic cells. Archives of Toxicology, 66(1), 40–44. https://doi.org/10.1007/BF02307268.
Syversen, T., and Kaur, P. (2012). The toxicology of mercury and its compounds. Journal of Trace Elements in Medicine and Biology, 26(4), 215- 226. https://doi.org/10.1016/j.jtemb.2012.02.004.
Szász, A., Barna, B., Gajda, Z., Galbács, G., Kirsch-Volders, M., & Szente, M. (2002). Effects of continuous low-dose exposure to organic and inorganic mercury during development on epileptogenicity in rats. Neurotoxicology, 23(2), 197–206. https://doi.org/10.1016/s0161-813x(02)00022-0.
Takahashi, H., Nomiyama, H., & Nomiyama, K. (2000b). Mercury elevates systolic blood pressure in spontaneously hypertensive rats. The Journal of Trace Elements in Experimental Medicine, 13(2), 227–237. Mercury elevates systolic blood pressure in spontaneously hypertensive rats - Takahashi - 2000 - The Journal of Trace Elements in Experimental Medicine - Wiley Online Library.
Takahashi, H., Nomiyama, H., & Nomiyama, K. (2000a). Mercury exposure does not elevate systolic blood pressure in normotensive rats. The Journal of Trace Elements in Experimental Medicine, 13(2), 239–247. Mercury exposure does not elevate systolic blood pressure in normotensive rats.
Tanaka, T., Naganuma, A., & Imura, N. (1992). Routes for renal transport of methylmercury in mice. European Journal of Pharmacology: Environmental Toxicology and Pharmacology, 228(1), 9–14. https://doi.org/10.1016/0926- 6917(92)90005-W.
Tanaka-Kagawa, T., Naganuma, A., & Imura, N. (1993). Tubular secretion and reabsorption of mercury compounds in mouse kidney. The Journal of Pharmacology and Experimental Therapeutics, 264(2), 776–782.
Thomas, S., Arbuckle, T. E., Fisher, M., Fraser, W. D., Ettinger, A., & King, W. (2015). Metals exposure and risk of small-for-gestational age birth in a Canadian birth cohort: The MIREC study. Environmental Research, 140, 430–439. https://doi.org/10.1016/j.envres.2015.04.018.
Thurston, S. W., Bovet, P., Myers, G. J., Davidson, P. W., Georger, L. A., Shamlaye, C., & Clarkson, T. W. (2007). Does prenatal methylmercury exposure from fish consumption affect blood pressure in childhood?Neurotoxicology, 28(5), 924–930. https://doi.org/10.1016/j.neuro.2007.06.002.
Tincu, R. C., Cobilinschi, C., Florea, I., Cotae, A. M., Baetu, A., Isac, S., Ungureanu, R., Droc, G., Grintescu, I., & Mirea, L. (2022). Effects of Low- Level Organic Mercury Exposure on Oxidative Stress Profile. Processes, 10, 2388. https://doi.org/10.3390/pr10112388.
Tokar, E. J., Boyd, W. A., Freedman, J. H., & Waalkes, M. P. (2012). Toxic Effects of Metals. In Casarett and Doull’s Toxicology: The Basic Science of Poisons, 8e (1–Book, Section). McGraw-Hill Education. Toxic Effects of Metals | Casarett and Doull's Toxicology: The Basic Science of Poisons, 8e | AccessPharmacy | McGraw Hill Medical.
University of Rochester Medical Center. (2024). Seychelles Child Development Study – Scientific Approach. Retrieved 16 August 2024, from urmc.rochester.edu/labs/seychelles/scientific-approach.
Valera, B., Muckle, G., Poirier, P., Jacobson, S. W., Jacobson, J. L., & Dewailly, E. (2012). Cardiac autonomic activity and blood pressure among Inuit children exposed to mercury. Neurotoxicology, 33(5), 1067–1074. https://doi.org/10.1016/j.neuro.2012.05.005.
Van Wijngaarden, E., Thurston, S. W., Myers, G. J., Strain, J. J., Weiss, B., Zarcone, T., Watson, G. E., Zareba, G., McSorley, E. M., Mulhern, M. S., Yeates, A. J., Henderson, J., Gedeon, J., Shamlaye, C. F., & Davidson, P. W. (2013). Prenatal methyl mercury exposure in relation to neurodevelopment and behavior at 19 years of age in the Seychelles Child Development Study. Neurotoxicology and Teratology, 39, 19–25. https://doi.org/10.1016/j.ntt.2013.06.003.
Vigeh, M., Nishioka, E., Ohtani, K., Omori, Y., Matsukawa, T., Koda, S., & Yokoyama, K. (2018). Prenatal mercury exposure and birth weight. Reproductive Toxicology, 76, 78–83. https://doi.org/10.1016/j.reprotox.2018.01.002.
Wang, G., DiBari, J., Bind, E., Steffens, A. M., Mukherjee, J., Bartell, T. R., Bellinger, D. C., Hong, X., Ji, Y., Wang, M.-C., Wills-Karp, M., Cheng, T. L., & Wang, X. (2019). In utero exposure to mercury and childhood overweight or obesity: Counteracting effect of maternal folate status. BMC Medicine, 17(1), 216. https://doi.org/10.1186/s12916-019-1442-2.
Wang, X., Pu, Y., Ai, S., Liu, H., He, S., Li, Z., & Dang, Y. (2022). Associations of maternal blood mercury with preeclampsia and birth outcomes. Clinica Chimica Acta, 531, 361–367. https://doi.org/10.1016/j.cca.2022.04.991.
Weihe, P., & Grandjean, P. (2012). Cohort studies of Faroese children concerning potential adverse health effects after the mothers’ exposure to marine contaminants during pregnancy. Acta Veterinaria Scandinavica, 54(1), S7. https://doi.org/10.1186/1751-0147-54-S1-S7.
Wesolowska, M., Yeates, A. J., McSorley, E. M., Watson, G. E., van Wijngaarden, E., Bodin, N., Govinden, R., Jean-Baptiste, J., Desnousse, S., Shamlaye, C. F., Myers, G. J., Strain, J. J., & Mulhern, M. S. (2024). Dietary selenium and mercury intakes from fish consumption during pregnancy: Seychelles Child Development Study Nutrition Cohort 2. Neuro Toxicology, 101, 1–5. https://doi.org/10.1016/j.neuro.2023.12.012.
WHALING.FO (Whales and whaling in the Faroe Islands). (2024). 450 Years of Statistics. Retrieved 16 August 2024, from 450 Years of Statistics –.
WHO & International Programme on Chemical Safety (IPCS). (1990). Methylmercury / published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. World Health Organization. https://iris.who.int/handle/10665/38082.
WHO (World Health Organization), 2008. Guidance for Identifying Populations at Risk from Mercury Exposure. August 2008. Issued by UNEP DTIE Chemicals Branch and WHO Department of Food Safety, Zoonoses and Foodborne Diseases. 176 pp.
WHO, (2017). Mercury and health Fact Sheet. Available online Mercury accessed July 2024.
Wildemann, T. M., Mirhosseini, N., Siciliano, S. D., & Weber, L. P. (2015a). Cardiovascular responses to lead are biphasic, while methylmercury, but not inorganic mercury, monotonically increases blood pressure in rats.Toxicology, 328, 1–11. https://doi.org/10.1016/j.tox.2014.11.009.
Wildemann, T. M., Siciliano, S. D., & Weber, L. P. (2016). The mechanisms associated with the development of hypertension after exposure to lead, mercury species or their mixtures differs with the metal and the mixture ratio. Toxicology, 339, 1–8. https://doi.org/10.1016/j.tox.2015.11.004.
Wildemann, T. M., Weber, L. P., & Siciliano, S. D. (2015b). Combined exposure to lead, inorganic mercury and methylmercury shows deviation from additivity for cardiovascular toxicity in rats. Journal of Applied Toxicology: JAT, 35(8), 918–926. https://doi.org/10.1002/jat.3092.
Wu, Y.-S., Osman, A. I., Hosny, M., Elgarahy, A. M., Eltaweil, A. S., Rooney, D. W., Chen, Z., Rahim, N. S., Sekar, M., Gopinath, S. C. B., Mat Rani, N. N. I., Batumalaie, K., & Yap, P.-S. (2024). The Toxicity of Mercury and Its Chemical Compounds: Molecular Mechanisms and Environmental and Human Health Implications: A Comprehensive Review. ACS Omega, 9(5), 5100–5126. https://doi.org/10.1021/acsomega.3c07047.
Xu, Y., Wahlberg, K., Love, T. M., Watson, G. E., Yeates, A. J., Mulhern, M. S., McSorley, E. M., Strain, J. J., Davidson, P. W., Shamlaye, C. F., Rand, M. D., Myers, G. J., van Wijngaarden, E., & Broberg, K. (2019). Associations of blood mercury and fatty acid concentrations with blood mitochondrial DNA copy number in the Seychelles Child Development Nutrition Study. Environment International, 124, 278–283. https://doi.org/10.1016/j.envint.2019.01.019.
Yaginuma-Sakurai, K., Murata, K., Iwai-Shimada, M., Nakai, K., Kurokawa, N., Tatsuta, N., & Satoh, H. (2012). Hair-to-blood ratio and biological half-life of mercury: Experimental study of methylmercury exposure through fish consumption in humans. The Journal of Toxicological Sciences, 37(1), 123–130. https://doi.org/10.2131/jts.37.123.
Yeates, A. J., Zavez, A., Thurston, S. W., McSorley, E. M., Mulhern, M. S., Alhamdow, A., Engström, K., Wahlberg, K., Strain, J. J., Watson, G. E., Myers, G. J., Davidson, P. W., Shamlaye, C. F., Broberg, K., & van Wijngaarden, E. (2020). Maternal Long-Chain Polyunsaturated Fatty Acid Status, Methylmercury Exposure, and Birth Outcomes in a High-Fish-Eating Mother–Child Cohort. The Journal of Nutrition, 150(7), 1749–1756. https://doi.org/10.1093/jn/nxaa131.
Young, E. C., Davidson, P. W., Wilding, G., Myers, G. J., Shamlaye, C., Cox, C., de Broeck, J., Bennett, C. M., & Reeves, J. S. (2020). Association between prenatal dietary methyl mercury exposure and developmental outcomes on acquisition of articulatory-phonologic skills in children in the Republic of Seychelles. NeuroToxicology, 81, 353–357. https://doi.org/10.1016/j.neuro.2020.09.028.
Yu, Y., Gao, M., Wang, X., Guo, Y., Pang, Y., Yan, H., Hao, Y., Zhang, Y., Zhang, L., Ye, R., Wang, B., & Li, Z. (2019). Recommended acceptable levels of maternal serum typical toxic metals from the perspective of spontaneous preterm birth in Shanxi Province, China. Science of The Total Environment, 686, 599–605. https://doi.org/10.1016/j.scitotenv.2019.05.413.
Zareba, W., Thurston, S. W., Zareba, G., Couderc, J. P., Evans, K., Xia, J., Watson, G. E., Strain, J. J., McSorley, E., Yeates, A., Mulhern, M., Shamlaye, C. F., Bovet, P., Van Wijngaarden, E., Davidson, P. W., & Myers, G. J. (2019). Prenatal and recent methylmercury exposure and heart rate variability in young adults: The Seychelles Child Development Study. Neurotoxicology and Teratology, 74, 106810. https://doi.org/10.1016/j.ntt.2019.106810.
Zareba, W., Thurston, S. W., Zareba, G., Couderc, J. P., Evans, K., Xia, J., Watson, G. E., Strain, J. J., McSorley, E., Yeates, A., Mulhern, M., Shamlaye, C. F., Bovet, P., Van Wijngaarden, E., Davidson, P. W., & Myers, G. J. (2019). Prenatal and recent methylmercury exposure and heart rate variability in young adults: The Seychelles Child Development Study. Neurotoxicology and Teratology, 74, 106810. https://doi.org/10.1016/j.ntt.2019.106810.
Zhang, T., Wang, X., Luo, Z.-C., Liu, J., Chen, Y., Fan, P., Ma, R., Ma, J., Luo, K., Yan, C.-H., Zhang, J., Ouyang, F., & Shanghai Birth Cohort. (2023). Maternal blood concentrations of toxic metal(loid)s and trace elements from preconception to pregnancy and transplacental passage to fetuses. Ecotoxicology and Environmental Safety, 264, 115394. https://doi.org/10.1016/j.ecoenv.2023.115394.