Annex A to TOX/2025/30

References

Annex A to TOX/2025/30

Last updated: 28 August 2025

This is a paper for discussion. This does not represent the views of the Committee and should not be cited.

Agency for Toxic Substances and Disease Registry (ATSDR). 2024. Toxicological Profile for Mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Mercury | Toxicological Profile | ATSDR

Akagi, H., Grandjean, P., Takizawa, Y., & Weihe, P. (1998). Methylmercury Dose Estimation from Umbilical Cord Concentrations in Patients with Minamata Disease. Environmental Research, 77(2), 98–103. https://doi.org/10.1006/enrs.1997.3822

Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P., & Lark, R. M. (2013). Methodology for the determination of normal background concentrations of contaminants in English soil. Science of The Total Environment, 454–455, 604–618. https://doi.org/10.1016/j.scitotenv.2013.03.005

Aschner, M., Eberle, N. B., Goderie, S., & Kimelberg, H. K. (1990). Methylmercury uptake in rat primary astrocyte cultures: The role of the neutral amino acid transport system. Brain Research, 521(1), 221–228. https://doi.org/10.1016/0006-8993(90)91546-S

Atkinson A, Thompson SJ, Khan AT, et al. 2001. Assessment of a two-generation reproductive and fertility study of mercuric chloride in rats. Food Chem Toxicol 39(1):73-84. https://doi.org/10.1016/S0278-6915(00)00096-X

Bakir, F., Damluji, S. F., Amin-Zaki, L., Murtadha, M., Khalidi, A., Al-Rawi, N. Y., Tikriti, S., Dhahir, H. I., Clarkson, T. W., Smith, J. C., & Doherty, R. A. (1973). Methylmercury Poisoning in Iraq. Science, 181(4096), 230–241. https://doi.org/10.1126/science.181.4096.230

Bates, B., Collins, D., Jones, K., Page, P., Roberts, C., Steer, T., Swan, G. (2020). National Diet and Nutrition Survey Rolling programme Years 9 to 11 (2016/2017 to 2018/2019). National Diet and Nutrition Survey

Bates, B.; Cox, L.; Nicholson, S.; Page, P.; Prentice, A.; Steer, T.; Swan, G. (2016) National Diet and Nutrition Survey Results from Years 5 and 6 (combined) of the Rolling Programme (2012/2013 – 2013/2014) National Diet and Nutrition Survey

Bates, B.; Lennox, A.; Prentice, A.; Bates, C.; Page, P.; Nicholson, S.; Swan, G. (2014) National Diet and Nutrition Survey Results from Years 1, 2, 3 and 4 (combined) of the Rolling Programme (2008/2009 – 2011/2012.  National Diet and Nutrition Survey

Björnberg, K. A., Vahter, M., Berglund, B., Niklasson, B., Blennow, M., & Sandborgh-Englund, G. (2005). Transport of Methylmercury and Inorganic Mercury to the Fetus and Breast-Fed Infant. Environmental Health Perspectives, 113(10), 1381–1385. https://doi.org/10.1289/ehp.7856

Bocca, B., Ruggieri, F., Pino, A., Rovira, J., Calamandrei, G., Martínez, M. Á., Domingo, J. L., Alimonti, A., & Schuhmacher, M. (2019). Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood. Environmental Research, 177, 108599. https://doi.org/10.1016/j.envres.2019.108599 

Bridges C. C., & Zalups R. K. (2017). Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol 91(1):63-81. http://doi.org/10.1007/s00204-016-1803-y

Bridges, C. C., & Zalups, R. K. (2010). Transport of inorganic mercury and methylmercury in target tissues and organs. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 13(5), 385–410. https://doi.org/10.1080/10937401003673750

Budtz-Jørgensen, E., Grandjean, P., Keiding, N., White, R. F., & Weihe, P. (2000). Benchmark dose calculations of methylmercury-associated neurobehavioural deficits. Toxicology Letters, 112–113, 193–199. https://doi.org/10.1016/S0378-4274(99)00283-0

Budtz-Jørgensen, E., Keiding, N., & Grandjean, P. (1999). Benchmark Modeling of the Faroese Methylmercury Data. Final Report to USEPA, 1999; 1–13. Benchmark Modeling of the Faroese Methylmercury Data

Budtz-Jørgensen, E., Keiding, N., & Grandjean, P. (2001). Benchmark dose calculation from epidemiological data. Biometrics, 57, 698–706. Available at: Benchmark Dose Calculation from Epidemiological Data on JSTOR

Cediel Ulloa, A., Gliga, A., Love, T. M., Pineda, D., Mruzek, D. W., Watson, G. E., Davidson, P. W., Shamlaye, C. F., Strain, J. J., Myers, G. J., van Wijngaarden, E., Ruegg, J., & Broberg, K. (2021). Prenatal methylmercury exposure and DNA methylation in seven-year-old children in the Seychelles Child Development Study. Environment International, 147, 106321. https://doi.org/10.1016/j.envint.2020.106321

COT Meeting 4th February 2025. Discussion paper on the effects of mercury on maternal health (TOX/2025/03). Available at The effects of mercury on maternal health - Introduction and Background | Committee on Toxicity

COT, (2004): Annex 3. Updated COT Statement on a survey of methylmercury in fish and shellfish: fishreport200406.pdf

COT, (2018). Statement on potential risks from methylmercury in the diet of infants aged 0 to 12 months and children aged 1 to 5 years: cotstatementonmethylmercury.pdf (food.gov.uk) 

Dack, K., Wootton, R. E., Taylor, C. M., & Lewis, S. J. (2023). Prenatal Mercury Exposure and Infant Weight Trajectories in a UK Observational Birth Cohort. Toxics, 11(1), 10. https://doi.org/10.3390/toxics11010010

Davidson, P., Myers, G., Cox, C., Axtell, C., Shamlaye, C., Sloane-Reeves, J., Cernichiari, E., Needham, L., Choi, A., Wang, Y., Berlin, C., & Clarkson, T. (1998). Effects of Prenatal and Postnatal Methylmercury Exposure From Fish Consumption on Neurodevelopment Outcomes at 66 Months of Age in the Seychelles Child Development Study. JAMA, 280, 701–707. https://doi.org/10.1001/jama.280.8.701

De Paula, H. K., Love, T. M., Pineda, D., Watson, G. E., Thurston, S. W., Yeates, A. J., Mulhern, M. S., McSorley, E. M., Strain, J. J., Shamlaye, C. F., Myers, G. J., Rand, M. D., van Wijngaarden, E., & Broberg, K. (2023). KEAP1 polymorphisms and neurodevelopmental outcomes in children with exposure to prenatal MeHg from the Seychelles Child Development Study Nutrition Cohort 2. NeuroToxicology, 99, 177–183. https://doi.org/10.1016/j.neuro.2023.10.008

Dean, J. R., Deary, M. E., Gbefa, B. K., & Scott, W. C. (2004). Characterisation and analysis of persistent organic pollutants and major, minor and trace elements in Calabash chalk. Chemosphere, 57(1), 21–25. https://doi.org/10.1016/j.chemosphere.2004.05.023

Dyrssen, D., & Wedborg, M. (1991). The sulphur-mercury(II) system in natural waters. Water Air & Soil Pollution, 56(1), 507–519. https://doi.org/10.1007/BF00342295

EFSA Panel on Contaminants in the Food Chain (CONTAM), (2008). Mercury as undesirable substance in animal feed—Scientific opinion of the Panel on Contaminants in the Food Chain. EFSA Journal, 6(4), 654. https://doi.org/10.2903/j.efsa.2008.654 

EFSA Panel on Contaminants in the Food Chain (CONTAM). (2004). Opinion of the Scientific Panel on contaminants in the food chain related to mercury and methylmercury in food.EFSA Journal 2004; 2(3):34, 14 pp. doi:10.2903/j.efsa.2004.34 

EFSA Panel on Contaminants in the Food Chain (CONTAM). (2012). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Journal 2012; 10(12):2985, 241 pp. doi:10.2903/j.efsa.2012.2985

Environment Agency. (2009). Microsoft Word - 0901115 CLEA Report for publication.doc (publishing.service.gov.uk). Accessed 20.04.22

Environment Agency. (2021). Mercury: challenges for the water environment. Mercury: challenges for the water environment - GOV.UK Accessed 2nd July 2025.

FAO/WHO. (1966). Specifications for the identity and purity of food additives and their toxicological evaluation: some emulsifiers and stabilizers and certain other substances: tenth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 373. 

FAO/WHO. (1970). Evaluation of food additives: specifications for the identity and purity of food additives and their toxicological evaluation, some extraction solvents and certain other substances: fourteenth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 462. 

FAO/WHO. (1972). Evaluation of certain food additives and the contaminants mercury, lead, and cadmium: Sixteenth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 505. 

FAO/WHO. (1978). Evaluation of certain food additives : twenty-second report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 631. 

FAO/WHO. (1988). Evaluation of certain food additives and contaminants : thirty-third report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 776. 

FAO/WHO. (2004). Evaluation of certain food additives and contaminants: Sixty-first report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 922. 

FAO/WHO. (2007). Evaluation of certain food additives and contaminants: sixty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 940. 

FAO/WHO. (2011). Safety evaluation of certain contaminants in food: Prepared by the seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 959. 

Farris F.F., Kaushal A., Strom J. G. (2008). Inorganic mercury pharmacokinetics in man: A two-compartment model. Toxicol Environ Chem 90(3):519-533. http://doi.org/10.1080/02772240701602736

Fawcett, E. J., Fawcett, J. M., & Mazmanian, D. (2016). A meta-analysis of the worldwide prevalence of pica during pregnancy and the postpartum period. International Journal of Gynaecology and Obstetrics: The Official Organ of the International Federation of Gynaecology and Obstetrics, 133(3), 277–283. https://doi.org/10.1016/j.ijgo.2015.10.012

Food & Environment Research Agency (FERA), (2015). Total Diet Study of metals and other elements in food. Report for the UK Food Standards Agency (FS102081). Total diet study: metals and other elements | Food Standards Agency.

García-Esquinas, E., Pérez-Gómez, B., Fernández, M. A., Pérez-Meixeira, A. M., Gil, E., Paz, C. de, Iriso, A., Sanz, J. C., Astray, J., Cisneros, M., Santos, A. de, Asensio, A., García-Sagredo, J. M., García, J. F., Vioque, J., Pollán, M., López-Abente, G., González, M. J., Martínez, M., Bohigas P. A., Aragonés, N. (2011). Mercury, lead and cadmium in human milk in relation to diet, lifestyle habits and sociodemographic variables in Madrid (Spain). Chemosphere, 85(2), 268–276. https://doi.org/10.1016/j.chemosphere.2011.05.029

Golding, J., Taylor, C., Iles-Caven, Y., & Gregory, S. (2022). The benefits of fish intake: Results concerning prenatal mercury exposure and child outcomes from the ALSPAC prebirth cohort. NeuroToxicology, 91, 22–30. https://doi.org/10.1016/j.neuro.2022.04.012

Grandjean, P., Weihe, P., White, R. F., Debes, F., Araki, S., Yokoyama, K., Murata, K., Sørensen, N., Dahl, R., & Jørgensen, P. J. (1997). Cognitive Deficit in 7-Year-Old Children with Prenatal Exposure to Methylmercury. Neurotoxicology and Teratology, 19(6), 417–428. https://doi.org/10.1016/S0892-0362(97)00097-4

Haynes, W. M., Lide, D. R., & Bruno, T. J. (2016). CRC Handbook Of Chemistry And Physics: a ready-reference book of chemical and physical data. 2016-2017, 97th Edition / Boca Raton, Florida, CRC Press. https://doi.org/10.1201/9781315380476

Heath, J. C., Abdelmageed, Y., Braden, T. D., Nichols, A. C., & Steffy, D. A. (2009). The effects of chronic mercuric chloride ingestion in female Sprague–Dawley rats on fertility and reproduction. Food and Chemical Toxicology, 47(7), 1600–1605. https://doi.org/10.1016/j.fct.2009.04.007

Heath, J. C., Abdelmageed, Y., Braden, T. D., & Goyal, H. O. (2012). The Effects of Chronic Ingestion of Mercuric Chloride on Fertility and Testosterone Levels in Male Sprague Dawley Rats. BioMed Research International, 2012(1), 815186. https://doi.org/10.1155/2012/815186

Hibbeln, J. R., Davis, J. M., Steer, C., Emmett, P., Rogers, I., Williams, C., & Golding, J. (2007). Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): An observational cohort study. The Lancet, 369(9561), 578–585. https://doi.org/10.1016/S0140-6736(07)60277-3

Huang, C. F., Liu, S. H., Hsu, C. J., & Lin-Shiau, S. Y. (2011). Neurotoxicological effects of low-dose methylmercury and mercuric chloride in developing offspring mice. Toxicology Letters, 201(3), 196–204. https://doi.org/10.1016/j.toxlet.2010.12.016

IARC. 1993. Mercury and mercury compounds. IARC monographs on the evaluation of carcinogenic risks to humans. Volume 58. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. Lyon, France: International Agency for Research on Cancer. 239-345. https://publications.iarc.fr/76. November 11, 2020. 

Ikegaya K, Nokihara K, Yasuhara T. 2010. Characterization of sulfhydryl heterogeneity in human serum albumin and recombinant human serum albumin for clinical use. Biosci Biotechnol Biochem 74(11):2232-2236. http://doi.org/10.1271/bbb.100423

Iwai-Shimada, M., Satoh, H., Nakai, K., Tatsuta, N., Murata, K., & Akagi, H. (2015). Methylmercury in the breast milk of Japanese mothers and lactational exposure of their infants. Chemosphere, 126, 67–72. https://doi.org/10.1016/j.chemosphere.2014.12.086

Julshamn, K., Andersen, A., Ringdal, O., & Mørkøre, J. (1987). Trace elements intake in the Faroe Islands I. Element levels in edible parts of pilot whales (Globicephalus meleanus). Science of The Total Environment, 65, 53–62. https://doi.org/10.1016/0048-9697(87)90160-4

Kaneko, J., & Ralston, N. (2007). Selenium and Mercury in Pelagic Fish in the Central North Pacific Near Hawaii. Biological Trace Element Research, 119, 242–254. https://doi.org/10.1007/s12011-007-8004-8

Kerper, L. E., Ballatori, N., & Clarkson, T. W. (1992). Methylmercury transport across the blood-brain barrier by an amino acid carrier. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 262(5), R761–R765. https://doi.org/10.1152/ajpregu.1992.262.5.R761

Kershaw, T. G., Clarkson, T. W., & Dhahir, P. H. (1980). The relationship between blood levels and dose of methylmercury in man. Archives of Environmental Health, 35(1), 28–36. https://doi.org/10.1080/00039896.1980.10667458

Khan, A. T., Atkinson, A., Graham, T. C., Thompson, S. J., Ali, S., & Shireen, K. F. (2004). Effects of inorganic mercury on reproductive performance of mice. Food and Chemical Toxicology, 42(4), 571–577. https://doi.org/10.1016/j.fct.2003.10.018

Laaroussi, M., Boukholda, K., Essaidi, O., Berroug, L., Malqui, H., Anarghou, H., Fetoui, H., & Chigr, F. (2025). Multigenerational impact of chronic exposure to mercury chloride on maternal care, puberty, fertility, and hypothalamic function in female mice. Environmental Research, 264, 120396. https://doi.org/10.1016/j.envres.2024.120396

Lederman, S. A., Jones, R. L., Caldwell, K. L., Rauh, V., Sheets, S. E., Tang, D., Viswanathan, S., Becker, M., Stein, J. L., Wang, R. Y., & Perera, F. P. (2008). Relation between Cord Blood Mercury Levels and Early Child Development in a World Trade Center Cohort. Environmental Health Perspectives, 116(8), 1085–1091. https://doi.org/10.1289/ehp.10831

Lee, B.-E., Hong, Y.-C., Park, H., Ha, M., Koo, B. S., Chang, N., Roh, Y.-M., Kim, B.-N., Kim, Y.-J., Kim, B.-M., Jo, S.-J., & Ha, E.-H. (2010). Interaction between GSTM1/GSTT1 Polymorphism and Blood Mercury on Birth Weight. Environmental Health Perspectives, 118(3), 437–443. https://doi.org/10.1289/ehp.0900731 

Li, H., Lin, X., Zhao, J., Cui, L., Wang, L., Gao, Y., Li, B., Chen, C., Li, Y. (2019). Intestinal methylation and demethylation of mercury. 102(5):597-604. http://doi.org/10.1007/s00128-018-2512-4

Love, T. M., Wahlberg, K., Pineda, D., Watson, G. E., Zareba, G., Thurston, S. W., Davidson, P. W., Shamlaye, C. F., Myers, G. J., Rand, M., van Wijngaarden, E., & Broberg, K. (2022). Contribution of child ABC-transporter genetics to prenatal MeHg exposure and neurodevelopment. NeuroToxicology, 91, 228–233. https://doi.org/10.1016/j.neuro.2022.05.019

Lukačínová, A., Rácz, O., Lovásová, E., & Ništiar, F. (2011). Effect of lifetime low dose exposure to heavy metals on selected serum proteins of Wistar rats during three subsequent generations. Ecotoxicology and Environmental Safety, 74(6), 1747–1755. https://doi.org/10.1016/j.ecoenv.2011.04.017

Lynch, M. L., Huang, L.-S., Cox, C., Strain, J. J., Myers, G. J., Bonham, M. P., Shamlaye, C. F., Stokes-Riner, A., Wallace, J. M. W., Duffy, E. M., Clarkson, T. W., & Davidson, P. W. (2011). Varying coefficient function models to explore interactions between maternal nutritional status and prenatal methylmercury toxicity in the Seychelles Child Development Nutrition Study. Environmental Research, 111(1), 75–80. https://doi.org/10.1016/j.envres.2010.09.005

Major-Smith, D., Heron, J., Fraser, A., Lawlor, D. A., Golding, J., & Northstone, K. (2023). The Avon Longitudinal Study of Parents and Children (ALSPAC): A 2022 update on the enrolled sample of mothers and the associated baseline data. Wellcome Open Research, 7, 283. https://doi.org/10.12688/wellcomeopenres.18564.2

McSorley, E. M., van Wijngaarden, E., Yeates, A. J., Spence, T., Mulhern, M. S., Harrington, D., Thurston, S. W., Love, T., Jusko, T. A., Allsopp, P. J., Conway, M. C., Davidson, P. W., Myers, G. J., Watson, G. E., Shamlaye, C. F., & Strain, J. J. (2020). Methylmercury and long chain polyunsaturated fatty acids are associated with immune dysregulation in young adults from the Seychelles child development study. Environmental Research, 183, 109072. https://doi.org/10.1016/j.envres.2019.109072

McSorley, E. M., van Wijngaarden, E., Yeates, A. J., Spence, T., Mulhern, M. S., Harrington, D., Thurston, S. W., Love, T., Jusko, T. A., Allsopp, P. J., Conway, M. C., Davidson, P. W., Myers, G. J., Watson, G. E., Shamlaye, C. F., & Strain, J. J. (2020). Methylmercury and long chain polyunsaturated fatty acids are associated with immune dysregulation in young adults from the Seychelles child development study. Environmental Research, 183, 109072. https://doi.org/10.1016/j.envres.2019.109072

Miao, D., Young, S. L., & Golden, C. D. (2015). A meta-analysis of pica and micronutrient status. American Journal of Human Biology, 27(1), 84–93. https://doi.org/10.1002/ajhb.22598

Miklavčič, A., Casetta, A., Snoj Tratnik, J., Mazej, D., Krsnik, M., Mariuz, M., Sofianou, K., Špirić, Z., Barbone, F., & Horvat, M. (2013). Mercury, arsenic and selenium exposure levels in relation to fish consumption in the Mediterranean area. Environmental Research, 120, 7–17. https://doi.org/10.1016/j.envres.2012.08.010

Miklavčič, A., Cuderman, P., Mazej, D., Snoj Tratnik, J., Krsnik, M., Planinšek, P., Osredkar, J., & Horvat, M. (2011). Biomarkers of low-level mercury exposure through fish consumption in pregnant and lactating Slovenian women. Environmental Research, 111(8), 1201–1207. https://doi.org/10.1016/j.envres.2011.07.006

Mokrzan, E. M., Kerper, L. E., Ballatori, N., & Clarkson, T. W. (1995). Methylmercury-thiol uptake into cultured brain capillary endothelial cells on amino acid system L. The Journal of Pharmacology and Experimental Therapeutics, 272(3), 1277–1284.

Myers, G. J., & Davidson, P. W. (1998). Prenatal methylmercury exposure and children: Neurologic, developmental, and behavioral research. Environmental Health Perspectives, 106(Suppl 3), 841–847. https://doi.org/10.1289/ehp.98106841

National Research Council (US) Committee on the Toxicological Effects of Methylmercury. (2000). Toxicological Effects of Methylmercury. National Academies Press (US). http://www.ncbi.nlm.nih.gov/books/NBK225778/

Newland, M. C., Reed, M. N., LeBlanc, A., & Donlin, W. D. (2006). Brain and blood mercury and selenium after chronic and developmental exposure to methylmercury. NeuroToxicology, 27(5), 710–720. https://doi.org/10.1016/j.neuro.2006.05.007

NTP (National Toxicology Program). (1993). Toxicology and Carcinogenesis Studies of Mercuric Chloride (CAS No. 7487-94-7) in F344 Rats and B6C3F1 Mice (Gavage Studies). National Toxicology Program Technical Report Series, 408, 1–260: Abstract for TR-408

NTP. 2016. Mercury. 14th Report on carcinogens. National Toxicology Program: 2016 Annual Report (PDF)

Oken, E., Østerdal, M. L., Gillman, M. W., Knudsen, V. K., Halldorsson, T. I., Strøm, M., Bellinger, D. C., Hadders-Algra, M., Michaelsen, K. F., & Olsen, S. F. (2008). Associations of maternal fish intake during pregnancy and breastfeeding duration with attainment of developmental milestones in early childhood: A study from the Danish National Birth Cohort. The American Journal of Clinical Nutrition, 88(3), 789–796. https://doi.org/10.1093/ajcn/88.3.789

Oskarsson, A., Schütz ,Andrejs, Skerfving ,Staffan, Hallén ,Ira Palminger, Ohlin ,Birgit, & and Lagerkvist, B. J. (1996). Total and Inorganic Mercury in Breast Milk and Blood in Relation to Fish Consumption and Amalgam Fillings in Lactating Women. Archives of Environmental Health: An International Journal, 51(3), 234–241. https://doi.org/10.1080/00039896.1996.9936021

Otte P., Lijzen J., Otte J., Swartjes F., Versluijs C., (2001). Evaluation and revision of the CSOIL parameter set. RIVM Report 711701021. Bilthoven: National Institute of Public Health and Environment.

Oulhote, Y., Coull, B., Bind, M.-A., Debes, F., Nielsen, F., Tamayo, I., Weihe, P., & Grandjean, P. (2019). Joint and independent neurotoxic effects of early life exposures to a chemical mixture: A multi-pollutant approach combining ensemble learning and G-computation. Environmental Epidemiology, 3(5), e063. https://doi.org/10.1097/EE9.0000000000000063

Rahola T, Aaran RK, Miettinen JK. 1972. Half-time studies of mercury and cadmium by whole-body counting. Assess Radioactiv Contam March:553-562.  

Rahola T, Hattula T, Korolainen A, Miettinen JK. 1973. Elimination of free and protein-bound ionic mercury 203Hg2+ in man. Ann Clin Res 5(4):214-219.

Ralston, N. (2008). Selenium Health Benefit Values as Seafood Safety Criteria. EcoHealth, 5, 442–455. https://doi.org/10.1007/s10393-008-0202-0

Ralston, N. V. C., & Raymond, L. J. (2010). Dietary selenium’s protective effects against methylmercury toxicity. Toxicology, 278(1), 112–123. https://doi.org/10.1016/j.tox.2010.06.004

Ralston, N., Blackwell, J., & Raymond, L. (2007). Importance of Molar Ratios in Selenium-Dependent Protection Against Methylmercury Toxicity. Biological Trace Element Research, 119, 255–268. https://doi.org/10.1007/s12011-007-8005-7

Reed, M. N., Banna, K. M., Donlin, W. D., & Newland, M. C. (2008). Effects of Gestational Exposure to Methylmercury and Dietary Selenium on Reinforcement Efficacy in Adulthood. Neurotoxicology and Teratology, 30(1), 29–37. https://doi.org/10.1016/j.ntt.2007.10.003

 

Reed, M. N., Paletz, E. M., & Newland, M. C. (2006). Gestational exposure to methylmercury and selenium: Effects on a spatial discrimination reversal in adulthood. NeuroToxicology, 27(5), 721–732. https://doi.org/10.1016/j.neuro.2006.03.022

Rice, D. C., Schoeny, R., & Mahaffey, K. (2003). Methods and Rationale for Derivation of a Reference Dose for Methylmercury by the U.S. EPA. Risk Analysis, 23(1), 107–115. https://doi.org/10.1111/1539-6924.00294

Roberts, C.; Steer, T.; Maplethorpe, N.; Cox, L.; Meadows, S.; Page, P.; Nicholson, S.; Swan, G. (2018) National Diet and Nutrition Survey Results from Years 7 and 8 (combined) of the Rolling Programme (2014/2015 – 2015/2016) National Diet and Nutrition Survey

SACN (2011), The influence of maternal, fetal and child nutrition on the development of chronic disease in later life. SACN Early Life Nutrition Report.pdf

SACN (2018), Feeding in the First Year of Life. SACN report on Feeding in the First Year of Life.pdf

Sakamoto, M., Chan, H. M., Domingo, J. L., Koriyama, C., & Murata, K. (2018). Placental transfer and levels of mercury, selenium, vitamin E, and docosahexaenoic acid in maternal and umbilical cord blood. Environment International, 111, 309–315. https://doi.org/10.1016/j.envint.2017.11.001 

Sakamoto, M., Kubota, M., Matsumoto, S., Nakano, A., & Akagi, H. (2002). Declining risk of methylmercury exposure to infants during lactation. Environmental Research, 90(3), 185–189. https://doi.org/10.1016/S0013-9351(02)00011-7

Shamlaye, C., Davidson, P. W., & Myers, G. J. (2020). The Seychelles Child Development Study: Two decades of collaboration. NeuroToxicology, 81, 315–322. https://doi.org/10.1016/j.neuro.2020.09.023

Simmons-Willis, T. A., Koh, A. S., Clarkson, T. W., & Ballatori, N. (2002). Transport of a neurotoxicant by molecular mimicry: The methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochemical Journal, 367(Pt 1), 239–246. https://doi.org/10.1042/BJ20020841

Smith J.C., Allen P.V., Turner M.D., Most B., Fisher H. L., Hall L. L. (1995). The kinetics of intravenously administered inorganic mercury in humans. In: Subramanian KN, Wastney ME, eds. Kinetic models of trace element and mineral metabolism. Boca Raton, FL: CRC Press, 265-280. https://doi.org/10.1006/taap.1994.1204

Stokes-Riner, A., Thurston, S. W., J.Myers, G., Duffy, E. M., Wallace, J., Bonham, M., Robson, P., Shamlaye, C. F., Strain, J. J., Watson, G., & Davidson, P. W. (2011). A Longitudinal Analysis of Prenatal Exposure to Methylmercury and Fatty Acids in the Seychelles. Neurotoxicology and Teratology, 33(2), 325–328. https://doi.org/10.1016/j.ntt.2010.11.003

Strain, J. J., Davidson, P. W., Thurston, S. W., Harrington, D., Mulhern, M. S., McAfee, A. J., van Wijngaarden, E., Shamlaye, C. F., Henderson, J., Watson, G. E., Zareba, G., Cory-Slechta, D. A., Lynch, M., Wallace, J. M. W., McSorley, E. M., Bonham, M. P., Stokes-Riner, A., Sloane-Reeves, J., Janciuras, J., Wong, R., Clarkson, T. W., Myers, G. J. (2012). Maternal PUFA Status but Not Prenatal Methylmercury Exposure Is Associated with Children’s Language Functions at Age Five Years in the Seychelles12. The Journal of Nutrition, 142(11), 1943–1949. https://doi.org/10.3945/jn.112.163493

Strain, J., Love, T. M., Yeates, A. J., Weller, D., Mulhern, M. S., McSorley, E. M., Thurston, S. W., Watson, G. E., Mruzek, D., Broberg, K., Rand, M. D., Henderson, J., Shamlaye, C. F., Myers, G. J., Davidson, P. W., & van Wijngaarden, E. (2021). Associations of prenatal methylmercury exposure and maternal polyunsaturated fatty acid status with neurodevelopmental outcomes at 7 years of age: Results from the Seychelles Child Development Study Nutrition Cohort 2. The American Journal of Clinical Nutrition, 113(2), 304–313. https://doi.org/10.1093/ajcn/nqaa338

Straka, E., Ellinger, I., Balthasar, C., Scheinast, M., Schatz, J., Szattler, T., Bleichert, S., Saleh, L., Knöfler, M., Zeisler, H., Hengstschläger, M., Rosner, M., Salzer, H., & Gundacker, C. (2016). Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters. Toxicology, 340, 34–42. https://doi.org/10.1016/j.tox.2015.12.005

Szász, A., Barna, B., Gajda, Z., Galbács, G., Kirsch-Volders, M., & Szente, M. (2002). Effects of continuous low-dose exposure to organic and inorganic mercury during development on epileptogenicity in rats. Neurotoxicology, 23(2), 197–206. https://doi.org/10.1016/s0161-813x(02)00022-0

Suda, I., Totoki, S., Uchida, T., & Takahashi, H. (1992). Degradation of methyl and ethyl mercury into inorganic mercury by various phagocytic cells. Archives of Toxicology, 66(1), 40–44. https://doi.org/10.1007/BF02307268

Sundberg, J., Ersson, B., Lönnerdal, B., & Oskarsson, A. (1999). Protein binding of mercury in milk and plasma from mice and man—A comparison between methylmercury and inorganic mercury. Toxicology, 137(3), 169–184. https://doi.org/10.1016/S0300-483X(99)00076-1

Tanaka, T., Naganuma, A., & Imura, N. (1992). Routes for renal transport of methylmercury in mice. European Journal of Pharmacology: Environmental Toxicology and Pharmacology, 228(1), 9–14. https://doi.org/10.1016/0926-6917(92)90005-W

Tanaka-Kagawa, T., Naganuma, A., & Imura, N. (1993). Tubular secretion and reabsorption of mercury compounds in mouse kidney. The Journal of Pharmacology and Experimental Therapeutics, 264(2), 776–782.

U.S. EPA. Exposure Factors Handbook (1997, Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/P-95/002F a-c, 1997. Exposure Factors Handbook (1997, Final Report) | IRIS | US EPA

Ursinyova, M., & and Masanova, V. (2005). Cadmium, lead and mercury in human milk from Slovakia. Food Additives & Contaminants, 22(6), 579–589. https://doi.org/10.1080/02652030500135201

Vahter, M., Åkesson, A., Lind, B., Björs, U., Schütz, A., & Berglund, M. (2000). Longitudinal Study of Methylmercury and Inorganic Mercury in Blood and Urine of Pregnant and Lactating Women, as Well as in Umbilical Cord Blood. Environmental Research, 84(2), 186–194. https://doi.org/10.1006/enrs.2000.4098

Valent, F., Mariuz, M., Bin, M., Little, D., Mazej, D., Tognin, V., Tratnik, J., McAfee, A. J., Mulhern, M. S., Parpinel, M., Carrozzi, M., Horvat, M., Tamburlini, G., & Barbone, F. (2013). Associations of Prenatal Mercury Exposure From Maternal Fish Consumption and Polyunsaturated Fatty Acids With Child Neurodevelopment: A Prospective Cohort Study in Italy. Journal of Epidemiology, 23(5), 360–370. https://doi.org/10.2188/jea.JE20120168

Vigeh, M., Nishioka, E., Ohtani, K., Omori, Y., Matsukawa, T., Koda, S., & Yokoyama, K. (2018). Prenatal mercury exposure and birth weight. Reproductive Toxicology, 76, 78–83. https://doi.org/10.1016/j.reprotox.2018.01.002 

Wahlberg, K., Love, T. M., Pineda, D., Engström, K., Watson, G. E., Thurston, S. W., Yeates, A. J., Mulhern, M. S., McSorley, E. M., Strain, J., Smith, T. H., Davidson, P. W., Shamlaye, C. F., Myers, G., Rand, M. D., van Wijngaarden, E., & Broberg, K. (2018). Maternal polymorphisms in glutathione-related genes are associated with maternal mercury concentrations and early child neurodevelopment in a population with a fish-rich diet. Environment International, 115, 142–149. https://doi.org/10.1016/j.envint.2018.03.015

Watanabe, C., Yin, K., Kasanuma, Y., & Satoh, H. (1999b). In Utero Exposure to Methylmercury and Se Deficiency Converge on the Neurobehavioral Outcome in Mice. Neurotoxicology and Teratology, 21(1), 83–88. https://doi.org/10.1016/S0892-0362(98)00036-1

Watanabe, C., Yoshida, K., Kasanuma, Y., Kun, Y., & Satoh, H. (1999a). In UteroMethylmercury Exposure Differentially Affects the Activities of Selenoenzymes in the Fetal Mouse Brain. Environmental Research, 80(3), 208–214. https://doi.org/10.1006/enrs.1998.3889

Weihe, P., & Grandjean, P. (2012). Cohort studies of Faroese children concerning potential adverse health effects after the mothers’ exposure to marine contaminants during pregnancy. Acta Veterinaria Scandinavica, 54(1), S7. https://doi.org/10.1186/1751-0147-54-S1-S7

Wesolowska, M., Yeates, A. J., McSorley, E. M., Watson, G. E., van Wijngaarden, E., Bodin, N., Govinden, R., Jean-Baptiste, J., Desnousse, S., Shamlaye, C. F., Myers, G. J., Strain, J. J., & Mulhern, M. S. (2024). Dietary selenium and mercury intakes from fish consumption during pregnancy: Seychelles Child Development Study Nutrition Cohort 2. NeuroToxicology, 101, 1–5. https://doi.org/10.1016/j.neuro.2023.12.012

WHO & International Programme on Chemical Safety (IPCS). (‎1990)‎. Methylmercury / published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. World Health Organization.  Methylmercury / published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization

WHO, (2017). Mercury and health Fact Sheet. Available online: Mercury, accessed July 2024. 

Xu, Y., Wahlberg, K., Love, T. M., Watson, G. E., Yeates, A. J., Mulhern, M. S., McSorley, E. M., Strain, J. J., Davidson, P. W., Shamlaye, C. F., Rand, M. D., Myers, G. J., van Wijngaarden, E., & Broberg, K. (2019). Associations of blood mercury and fatty acid concentrations with blood mitochondrial DNA copy number in the Seychelles Child Development Nutrition Study. Environment International, 124, 278–283. https://doi.org/10.1016/j.envint.2019.01.019

Yeates, A. J., Zavez, A., Thurston, S. W., McSorley, E. M., Mulhern, M. S., Alhamdow, A., Engström, K., Wahlberg, K., Strain, J. J., Watson, G. E., Myers, G. J., Davidson, P. W., Shamlaye, C. F., Broberg, K., & van Wijngaarden, E. (2020). Maternal Long-Chain Polyunsaturated Fatty Acid Status, Methylmercury Exposure, and Birth Outcomes in a High-Fish-Eating Mother–Child Cohort. The Journal of Nutrition, 150(7), 1749–1756. https://doi.org/10.1093/jn/nxaa131

Zareba, W., Thurston, S. W., Zareba, G., Couderc, J. P., Evans, K., Xia, J., Watson, G. E., Strain, J. J., McSorley, E., Yeates, A., Mulhern, M., Shamlaye, C. F., Bovet, P., Van Wijngaarden, E., Davidson, P. W., & Myers, G. J. (2019). Prenatal and recent methylmercury exposure and heart rate variability in young adults: The Seychelles Child Development Study. Neurotoxicology and Teratology, 74, 106810. https://doi.org/10.1016/j.ntt.2019.106810 

Secretariat

September 2025