COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER PRODUCTS AND THE ENVIRONMENT

DRAFT STATEMENT ON A SYSTEMATIC REVIEW OF THE EPIDEMIOLOGICAL LITERATURE ON PARA-OCCUPATIONAL EXPOSURE TO PESTICIDES AND HEALTH OUTCOMES OTHER THAN CANCER

 At the meeting in September 2010 members were asked to consider data on para-occupational exposure to pesticides. Attached is a draft COT statement on this review for members' consideration. The COC published a statement in July 2011, which can be found at: <u>http://www.iacoc.org.uk/statements/documents/ParaoccupationalpesticideCOCfin</u> <u>alstatement2011Editedwlogo.pdf</u>

Questions asked of the Committee

i) Members are invited to comment on the draft statement on a systematic review of the epidemiological literature on para-occupational exposure to pesticides and health outcomes other than cancer.

HPA Secretariat September 2011

TOX/2011/23

COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER PRODUCTS AND THE ENVIRONMENT

DRAFT STATEMENT ON A SYSTEMATIC REVIEW OF THE EPIDEMIOLOGICAL LITERATURE ON PARA-OCCUPATIONAL EXPOSURE TO PESTICIDES AND HEALTH OUTCOMES OTHER THAN CANCER

INTRODUCTION

1. In 2005, the Royal Commission on Environmental Pollution (RCEP) published a report following a request from Alun Michael, then Minister for Rural Affairs and Local Environmental Quality, on the assessment of human health risks associated with the use of agricultural pesticides.¹ The report set out concerns of the RCEP regarding the exposure of residents and bystanders to pesticides.

2. In this context, bystanders are persons located within or directly adjacent to an area where a plant protection is being or has recently been applied, and whose presence is incidental and unrelated to work involving pesticides, but whose position may put them at risk of exposure. Residents are persons who live, work or attend school or any other institution adjacent to an area that is being or has been treated with a plant protection product, and whose presence is incidental and unrelated to work involving pesticides but whose position may put them at risk of exposure.

3. In paragraph 6.21 of the report, the RCEP recommended 'systematic review of the literature on pesticide spraying and human health that takes account of the shortcomings of the Ontario Report'.

4. The Committees on Toxicity (COT) and Carcinogenicity (COC) of Chemicals in Food, Consumer Products and the Environment were asked by Department for Environment Food and Rural Affairs (Defra) and the Advisory Committee on Pesticides (ACP) to comment on the RCEP report. In 2006, the COT and COC published a joint statement.² In this statement, the COT noted that RCEP did not come to any conclusion as to whether pesticide exposure was causing ill-health, and it was suggested that one possible way forward would be to consider paraoccupational exposure e.g. in spouses and children of farmers, who might have exposures above those of bystanders. A review of the available published scientific literature on para-occupational exposure to pesticides and health outcomes might then provide useful information on the priority for epidemiological or biomonitoring studies of bystander and resident exposure to pesticides. As part of their response to the above-mentioned RCEP recommendation, the COT therefore agreed that an epidemiological review of para-occupational exposure to pesticides should be undertaken.²

5. In framing its response to the RCEP report, the Government considered the evidence set out in the report and advice published by the ACP, COT and COC on scientific issues raised by the report.³ The Government noted that the RCEP '...*did*

not undertake its own comprehensive critical review of the health based literature for either occupational or non-occupational exposure...' and that the RCEP considered such a study '...would take a large amount of resources.' The Government noted that its independent advisory committees indicated doubts regarding the value of a comprehensive systematic review and favoured smaller and more directed reviews.³

Approach to review

6. Following on from their earlier advice, the COT and COC have now carried out a comprehensive review, based on a detailed consideration of the epidemiological literature on para-occupational exposure to pesticides and health outcomes which had been undertaken jointly by HPA Toxicology Unit, Imperial College London and the HPA COT secretariat. An earlier COT discussion paper (TOX/2009/27⁴) provides a summary of the initial approach taken in the review, including search terms, references included and exclusions. An overview of the review process is given below.

7. Para-occupational exposure for the purposes of this COT statement is regarded as exposure of close family members who live with an occupationally exposed worker, but who are not themselves occupationally exposed. This is a strict definition of para-occupational exposure and differs from the approach taken by COC which also included *pesticide exposures at school or home related to pesticide application by professional exterminators.*⁵ These are bystander or residential exposures and would not normally be classed as para-occupational.

8. A systematic search of the epidemiological literature pertaining to paraoccupational exposure to pesticides, fungicides, herbicides and insecticides was undertaken using the databases PubMed, EMBASE, Toxline, CAB Abstracts and Web of Science for the period January 1996 – January 2009 inclusive. In addition, the websites of two US studies, the Agricultural Health Study and the Farm Family Exposure Study were screened for references. Most of the retrieved papers were written in English, but a small number were written in French. The papers written in French were evaluated from their published abstracts in English.

9. All the retrieved papers were screened individually against inclusion/exclusion criteria applied first to title, then abstract. Any duplicate papers were omitted.⁴

10. In total, 419 papers reporting para-occupational exposure with or without data on health effects were identified, and those reporting health effects (187 papers) were separated from those reporting only information about exposure (232 papers). A list of the exposure references was supplied to the Health and Safety Executive Chemicals Regulatory Directorate (HSE CRD) for assessment. An overview of the key exposure data comparing occupational to para-occupational exposure for a number of agricultural pesticide applications in the U.S.A. is included as Annex 1. These data are discussed further in paragraph 14.

11. Full papers relating to health effects were obtained and evaluated. Of the original 187 papers, a total of 54 papers were considered to be relevant to para-occupational exposure.^{6-10,12-59} One paper¹¹ that had been identified earlier as potentially relevant was excluded from consideration as exposures could not be

identified clearly as para-occupational). The 54 papers were summarised and then grouped into the following categories of health outcome (in line with those considered in the RCEP report): cancer, neurological and mental health, reproduction, respiratory health, acute health effects, ocular effects, and other health outcomes. References of these papers were checked to identify further papers not retrieved through the initial searches, but were found not to present information on health effects relevant to para-occupational exposure. One further paper was subsequently identified as relevant by a COT member and was added to those already retrieved. ⁶⁰

12. Toxicological data on specific pesticides considered in the papers reviewed were extracted from the EU regulatory Draft Assessment Reports by HSE CRD and provided for COT Members' information.

13. The information from 22 studies relating to para-occupational exposure to pesticides and cancer was forwarded to the COC for their consideration, and a separate COC statement relating to cancer risks is available on the COC internet site.⁵

Para-Occupational Exposure to Pesticides

14. An overview of published biomonitoring studies, which provide comparative information on occupational and para-occupational exposures (measurements in the farmer or applicator and corresponding measurements in spouses and children) is provided in Table 1 of Annex 1. The data presented suggest para-occupational exposure to pesticides, particularly if it is expressed as a percentage of the exposure of pesticide applicators, varies considerably depending on the particular situation. It is evident, however, that doses of pesticides received by children were consistently higher than of spouses. Moreover, the highest para-occupational exposures were all lower than the highest occupational exposures recorded in the same studies. It is uncertain how far these data, which are all from US studies, can be extrapolated to the UK because of differences in agricultural practices and conditions.

Overview of Literature Reviewed

15. The COT agreed there were limitations to the studies reviewed. No UK epidemiological studies were identified, and therefore there are uncertainties in extrapolating the reported para-occupational exposures to UK circumstances. The accuracy of exposure assessment is important to consider when assessing epidemiological studies of para-occupational exposure to pesticides. However, in most studies reviewed, the data were not adequate to assess exposure to specific pesticides. Furthermore, the reported exposures were predominantly qualitative rather than guantitative, and the extent to which individuals were exposed to coformulants as well as the named active ingredient was unknown. Recall bias is likely to have been a factor in many of the case-control and cross-sectional studies reviewed where exposures were ascertained through self-report by means of questionnaires, although in some instances, additional information from family members and farm operators was used to corroborate exposure data. Studies were too heterogeneous and information on exposures was insufficient to permit any meta-analysis of quantitative relationships between exposures and health outcomes.

MAIN HEALTH OUTCOMES

NEUROLOGICAL AND MENTAL HEALTH EFFECTS

16. The literature search identified one study investigating the potential association of para-occupational exposure to pesticides with the occurrence of Parkinson's Disease (PD)³⁰, and a number of studies concerning abnormalities of neurobehavioural development and cognitive functioning in children^{25,31,32,39,46,48}. In addition, a case-series report was retrieved on neurophysiological and neuropsychological effects in adults associated with para-occupational exposure to pesticides.³⁶

Parkinson's Disease (PD)

17. One case-control study³⁰ of para-occupational exposure to pesticides and PD was retrieved for review.

Case-Control Study

18. A US case-control study (319 cases, 296 family-based controls of whom 252 controls were relatives of cases) found a significant association between PD and direct pesticide application (OR 1.61, 95% CI 1.13-2.29 for those who reported ever using pesticides).³⁰ However, no significant association was seen with para-occupational exposure inferred indirectly from residence on a farm (OR 1.25, 95% CI 0.80-1.96 for residence on a farm >26 years compared with never). Case ascertainment was good (all individuals were assessed for PD using the full Unified PD Rating Scale), but some bias may have been introduced as cases were identified via self-referral as well as through clinics. The farm residence analyses did not separate out individuals who were not themselves farmers, so some of the subjects may also have been occupationally exposed – if pesticides caused PD, the effect of this would be to bias risk estimates for para-occupational exposure upwards.

Conclusion for Parkinson's Disease

19. The COT agreed that no definite conclusions could be reached from the available information on the relation of PD to para-occupational exposure to pesticides in general or to specific pesticide active ingredients. The COT was aware that the ACP had commented⁶¹ on a review of pesticides and PD by the Institute for Environment and Health (IEH) (2004).⁶² The ACP considered that '…further epidemiology could be useful where exposure to specific pesticides could be ascertained with reasonable confidence (e.g. cohort studies of pesticide production workers or long-term prospective studies of pesticides users). The review indicated a correlation between recalled pesticide exposure and Parkinson's disease, but did not point to a particular toxic mechanism or a hazard from a specific compound or group of compounds.'

Neurobehavioural Development and Cognitive Functioning in Children

20. One cohort²⁵ and five cross-sectional studies were retrieved on paraoccupational exposure to pesticides and neurobehavioural development and cognitive functioning in children.^{31,32,39,46,48}

Cohort Study

21. In the USA, Eskenazi et al, 2007²⁵ undertook a study of approximately 400 children born to pregnant women receiving prenatal care between October 1999 and 2000 at community clinics in California, which predominantly served farmworker families. Neurodevelopmental and behavioural outcomes were assessed using two validated instruments: the Bayley Scales of Infant Development, Mental Development and Psychomotor Development Indices and three Child Behavior Checklist (CBCL) scales – the Attention Problems scale, Attention Deficit/Hyperactivity Disorder (ADHS) scale and the Pervasive Development Disorder scale. Exposure estimation incorporated urinary biomarker measurements for exposure to organophosphate pesticides (six non-specific diakyl phosphate (DAP) metabolites of organophosphates and two specific metabolites of malathion and chlorpyrifos) during pregnancy and at ages 6, 12 and 24 months in children. A rise in DAP levels with age was noted in the children.

A negative association was seen between DAP metabolite levels during 22. pregnancy and Mental Development Index (MDI) at 24 months of age: for every 10fold increase in metabolite levels a 3.5 (95%CI 0.5 to 6.6) point decrease in the MDI was observed. However, a statistically significant positive association was seen between these metabolites measured in the child and MDI (2.37 (95%CI 0.5 to 4.2) point increase per 10-fold increase in metabolites), which the authors were not able to explain. With regard to the Child Behaviour Checklist, 14.4% children scored in the Pervasive Developmental Disorder scale (which includes items consistent with Aspergers' and autistic disorder), as compared to ≤3% in the national reference sample (binomial test p<0.0001). Children with higher prenatal and postnatal total DAP metabolites were at higher risk of Pervasive Developmental Disorder, with an approximately 2-fold increase in risk for each 10-fold increase in metabolites: OR 2.3, 95% CI 1.0-5.2 (p=0.05) for prenatal DAP metabolites; OR 1.7, 95% CI 1.0-2.9 (p=0.04) for 24-month dialkyl phosphate metabolite levels. No associations were seen with metabolites specific to malathion or chlorpyrifos.

23. The Committee noted that about half of the mothers exposed during pregnancy were occupationally rather than para-occupationally exposed (43% worked in agriculture) and that spot urine samples which were taken for dialkyl phosphate metabolite analyses reflected exposures during the previous 48hr and may not have represented long-term average exposures.

Cross Sectional Studies

24. Two cross-sectional studies in a flower-growing region in Ecuador investigated neurobehavioral development in children aged 24-61 months³¹ and children aged 3-61 months.³² Neurobehavioural development was assessed using the Ages and Stages Questionnaire (ASQ). Exposure was assessed from the

mother's report of her own and her spouse's exposure, and from the distance of the child's residence from the flower plantation. Three subgroups were identified: two high exposure communities and a low exposure community. Neither of the studies identified specific pesticide exposures.

25. In the study of children aged 24-61 months mothers' current employment in the flower industry was associated with better scores for all five ASQ domains (communication, gross motor skills, fine motor skills, problem-solving and personal social skills). ³¹ This study additionally assessed visual motor integration (VMI) in a subset of children aged 48-61 months, using a standardised test (the Beery-Buktenica VMI developmental test). For the subgroup of children tested, mothers' current employment in the flower industry was associated, but non-statistically significantly, with poorer visual motor skills (% difference -2.2, 95% CI -11.4 to 4.4). Children who played with irrigation water scored lower on fine motor skills (% difference -7.3, 95% CI -9.31 to -0.53) and on problem solving skills (% difference -7.3, 95% CI -8.40 to -0.39) in the ASQ – associations with other domains of the ASQ and with VMI were negative but not statistically significant.

26. In the study of children aged 3-61 months children aged 3-23 months from the high-exposure communities scored significantly lower on gross motor skills, on average by 8.8 points, p=0.002.³² Furthermore, they scored 5.0 points lower on fine motor skills, (p=0.06), and 5.8 points lower in socio-individual skills (p=0.02). Children aged 3-23 months from the high-exposure communities and also suffering from chronic malnutrition (stunting) scored 17 points lower on gross motor skills than children residing in the low-exposure community (p<0.001). Children aged 24-61 months in the high-exposure communities scored 3.8 points lower on gross motor skills than children of the same age living in the low-exposure community (p=0.06).

27. The relevance of the findings from these two studies is difficult to assess. Conditions of pesticide use in Ecuador are different from the UK. The ASQ has been validated in the U.S.A., but may be less culturally appropriate for a rural Andean population. Furthermore, the high prevalence of anaemia and stunting among the children included in these studies may have affected assessments of development.

28. A cross-sectional study of neurobehavioural performance was undertaken in 78 Latino children from agricultural regions of Oregon and North Carolina.⁴⁶ Neurobehavioral performance was assessed using five tests from the Behavioural Assessment and Research System (BARS) and three non-computerised tests (Object Memory, Purdue Pegboard and Visual Motor Integration). Exposure was defined as residence in an agricultural community (with at least one parent working in agriculture) while children who lived in a non-agricultural community (with neither parent working in agriculture in the previous year) were chosen as non-exposed controls. Eleven out of thirteen measures showed no deficit in agricultural (AG) children compared to non-AG children. However, there was interaction with sex and location (Oregon or North Carolina) for measures of response speed (Finger Tapping) and latency (Match-to-Sample): male AG children from Oregon performed significantly worse than male non-AG children on right hand Finger Tapping (t(60)= -2.08, one-sided p-value 0.02). Male AG children from North Carolina had significantly longer latencies on the Match-to-Sample test than male non-AG children

(*t*(51)=2.47, one-sided *p*-value 0.01). The results were suggestive of better performance in object memory and Purdue Pegboard for children from AG communities but this was not formally assessed statistically (in statistical analyses, a one-tailed t-test was used that assumed children from AG communities would perform worse than non-AG children and did not allow statistical assessment of whether they performed better).

Lizardi et al³⁹ incorporated urinary biomarker measurements for exposure to 29. organophosphate pesticides (six non-specific dialkylphosphate metabolites and specific metabolites of malathion and chlorpyrifos) in a study of cognitive function in children of school age exposed para-occupationally to organophosphate pesticides. Forty-eight children (aged 10 years and under – median 7 years) were assessed by the Wechsler Intelligence Scale (WISC-IIISF), the Children's Memory Scale (CMS), the Wisconsin Card Sorting Test (WCST) and the trail Making Test A&B (TMTA&B). All urine samples contained measurable levels of organophosphate metabolites and the results suggested detrimental effects on the WCST, which involves sorting cards of differing shapes and colours under changing rules to provide measures of cognitive skills - specifically speed of attention, sequencing, mental flexibility, visual search, motor functioning, concept formation and conceptual flexibility. A significant positive correlation was found between urinary organophosphate metabolite concentration and the following WCST measures: the number of errors (r=0.31. p=0.03), number of preservative responses (r=0.34, p=0.01), number of preservative errors (r=0.35, p=0.01), conceptual level of responses (r=0.38, p=0.01) and "failure to maintain set" (r=0.38, p=0.02). There were no significant positive correlations between urinary levels of organophosphate metabolites and findings on the four other tests used (WISC-IIISF, CMS, and TMTA&B). These data suggest that shortterm OP exposure had deleterious effects on children's speed of attention, sequencing, mental flexibility, visual search, concept formation and conceptual flexibility. However, when two outlying urine samples with particularly high biomarker concentrations were excluded from the analysis, no significant correlations were seen, making it difficult to draw any firm conclusions about relationships between exposure and neurobehavioural function.

30. The children included in the above study by Lizardi et al³⁹ were selected from those participating in a previous survey⁶³ In measurements conducted 2-4 years earlier, 25 of the children included in the study above had a detectable level of an OP pesticide metabolite in the urine ('exposed' group) and 23 did not. After exclusion of the two outliers with very high current concentrations, there was a significant association with performance on the 'Trail Making Test B' – children classified as exposed 2-4 years earlier took more time to complete this measure (283s vs. 204s, p=0.01). However, there were no associations with any other measures.

Conclusions on Neurobehavioural Development and Cognitive Functioning in Children

31. The COT agreed that the available information did not allow any useful conclusions with regard to para-occupational exposure to pesticides in general or to specific pesticide active ingredients and neurobehavioural development and cognitive functioning in children. Reported positive associations with adverse effects

tended to be with only one or two of multiple outcome measures that were examined in a study, and in the absence of a strong *a priori* expectation of effects on these outcomes specifically, may have arisen by chance.

REPRODUCTION

32. The literature search identified one case-control²⁹ and one cross-sectional¹⁹ analysis of para- occupational exposure to pesticides that had addressed female fertility (in the latter study¹⁹ assessed by time to pregnancy), and four cross-sectional analyses^{9,10 28 45} (two using data from the time to pregnancy study^{9,10}) of para-occupational exposure to pesticides and spontaneous abortion (i.e. miscarriage) or pregnancy loss. One cohort study had explored effects on conception¹⁹. Additionally, one study²⁸ considered the sex ratio of children born to pesticide applicators.

Female Fertility

Cross-sectional analysis

33. Curtis et al 1999 investigated time to pregnancy (the number of months required for a couple to conceive) in 1048 farm couples from the Ontario Farm Family Health Study.¹⁹ Exposure to pesticides was assessed by self-report, using questionnaires sent to farm operators and farm couples. Pesticide information was pooled from farm operator, husband and wife to construct a monthly pesticide use history for each farm, including chemical names and date of use. For analysis, pesticides were divided into four classes (herbicides, insecticides, fungicides, and miscellaneous) and nine specific active ingredients were documented. In the paraoccupational exposure (of the woman) category ('pesticide used on the farm, but only the man engaged in pesticide activities'), no statistically significant associations were found for twenty pesticide types in 17 categories, except for a statistically significant *increase* in fecundability with gylcophosphate use (adjusted conditional fecundity ratio CRF of 1.30, 95% CI 1.07-1.56), which may have been a chance finding given the multiple testing undertaken. No pattern was observed across other pesticide categories. Furthermore, no associations were seen when neither husband nor wife engaged in pesticide use themselves, but pesticides were used on the farm.

Case-Control Study

34. Greenlee et al 2003²⁹ undertook an exploratory case-control study of 322 women attending for treatment at a medical clinic in Wisconsin, between June 1997 and February 2001, with infertility (defined as '12 months of unprotected intercourse without conceiving a pregnancy ending in live birth'). A similar number of women (aged 18-35 years) attending the same prenatal clinic during the first trimester, and who conceived after less than 12 months of trying, were used as a control group. Information on para-occupational exposure to pesticides overall and to classes of pesticide (e.g. herbicides) and location of residence prior to trying to conceive (e.g. 'ever lived on farm aged >19yr') was obtained via telephone interview, and medical history was obtained from records. There was no evidence of an association

between para-occupational exposure and reduced female fertility in this study, but the methods, particularly for estimation of exposure, were very limited.

Conclusions on fertility

35. The COT agreed that the available information did not allow any useful conclusions with regard to para-occupational exposure to pesticides in general or to specific pesticide active ingredients and effects on fertility.

Spontaneous Abortion (miscarriage)

36. Arbuckle et al⁹ investigated phenoxy herbicide exposure and spontaneous abortion in spouses of farm operators in the Ontario Farm Family Health Study (n=2,110 women, 3,936 pregnancies for analysis, 395 spontaneous abortions at <20 weeks' gestation) using a self-administered questionnaire for approximately two thirds of respondents, and telephone interview for the remainder). Exposure to any phenoxy herbicide and to three specific active ingredients: 2,4-D, 4-(2,4-dichlorophenoxy) butyric acid, and (4-chloro-2-methylphenoxy) acetic acid (MCPA) was assessed by questionnaire. A distinction was made according to timing of exposure (pre- and post-conception), but not between occupational and para-occupational exposure. However, it was stated that 85% of men and 20% of women reported handling pesticides on the farm.

37. Associations with any spontaneous abortions at <20 weeks were nonsignificant (adjusted OR for all phenoxy herbicides 1.1, 95% CI 0.6-1.9). However, statistically significant associations were found for early abortions (<12 weeks): in particular, pre-conception exposure to any phenoxy herbicide gave an adjusted OR 2.5, 95% CI 1.0-6.4. Analysis restricted to reported exposures of >1 month gave a similar risk estimate for all phenoxy herbicides (OR 2.7, 95% CI 1.0-7.6), but a previously positive but non-significant association with MCPA exposure (OR 2.3) increased and became statistically significant with OR 5.4, 95% CI 1.7-17.3. Raised but non- statistically significant ORs for spontaneous abortion at <12 weeks were reported in each pesticide category when the male pesticide applicator did not use protective equipment in either the preconception or post-conception periods. Post-conception exposure to herbicides was not associated with spontaneous abortion.

38. Arbuckle et al¹⁰ undertook a further analysis of early (<12 weeks) and late (12-19 weeks) spontaneous abortions using the same Ontario Farm Family Health data, looking at a wider selection of pesticide groupings giving 17 pesticide unit variables: chemical families e.g. phenoxy acetic acids, organosphosphates; classes of use: herbicides, insecticides, fungicides, miscellaneous.; and nine specific pesticide active ingredients. A statistically significant association between preconception exposure to pesticides and early abortion was reported for phenoxy acetic acid herbicides (OR 1.5, 95% CI 1.1–2.1), triazines (OR 1.4, 95% CI 1.0–2.0), and any herbicide (OR 1.4 95% CI 1.1–1.9). An increased risk of late spontaneous abortion was reported for preconception exposure to glyphosate (OR 1.7, 95% CI 1.0–2.9), thiocarbamates (OR 1.8, 95% CI 1.1–3.0) and a miscellaneous class of pesticides (OR 1.5, 95% CI 1.0–2.4). Further, a statistically significant association was noted for preconception fungicide exposure with early and late abortions

combined (OR 1.4, 95% CI 1.1–1.8) – associations were positive but not significant for early and late abortions separately.

39. The study also used a Classification and Regression Tree (CART) analysis to assess interaction among risk factors for all spontaneous abortions combined and for early and late abortions separately. This found that associations with preconception exposure to pesticides were seen only in pregnant women aged 35 years and older. Effects in this group of women were seen with all of the pesticides mentioned in the previous paragraph except two (gylphosphate and miscellaneous), and ORs were generally higher than in analyses of all ages where ORs were all <2. In pregnant women aged 35 years or older, the OR for preconception exposure was 2.7 (95% CI 1.1-6.9) for triazines, 2.3 (95% CI 0.6-8.6) for phenoxy acetic acid herbicides, and 7.5 (95% CI 1.1-51.5) for thiocarbamates. Additionally, interaction effects were seen with two further pesticides: combined carbaryl and 2,4-D preconception exposures in women aged 35 years or older carried a 27-fold increase in risk, albeit with wide confidence intervals (OR 27.0, 95% CI 2.0 – 368.3).

40. Arbuckle et al¹⁰ also investigated post-conception exposures in the same study. Statistically significant elevated ORs were observed only for late spontaneous abortions (12-19 weeks) – for exposure to 2,4-D (OR 1.6, 95% CI 0.9-2.7), dicamba (OR 1.6, 95% CI 0.8-3.2), glyphosate (OR 1.4, 95% CI 0.8-2.5) and phenoxy acetic acid herbicides (OR 1.3, 95% CI 0.8-2.0). A similar CART analysis to that for pre-conception exposures again found that maternal age of 35 years and over was a strong predictor of spontaneous abortion. In these older women, ORs were higher than ORs for all ages combined – OR 3.2 (95% CI 0.8-23.0) for post-conception exposure to glyphosate and OR 2.4 (95% CI 0.5-10.5) for post-conception exposure to thiocarbamates. However, these did not reach statistical significance.

41. The COT agreed that the studies based on the Ontario Farm Family Health Study, which had found evidence for associations of spontaneous abortion with paraoccupational exposure to a number of pesticide active ingredients, had been well conducted. However, 20% of wives reported handling pesticides on the farm, and were not treated separately in the analysis, so the exposure was not purely paraoccupational. Recall bias might have affected the studies (spuriously inflating risk estimates), although the authors did attempt to minimise this by pooling information from husband and wife on the farm as well as person responsible for day-to-day operations of the farm (if a different person - approximately 50% of the husbands and 6% of the wives indicated that they were the farm operator).⁶⁰ The numbers of individuals with spontaneous abortion and preconception exposure were small when subdivided by exposure group. Furthermore, the studies entailed multiple comparisons, which may have resulted in some false positive results.

42. Petrelli et al 2003⁴⁵ investigated para-occupational exposure of spouses of greenhouse workers to a list of ten chemicals which included the pesticides benomyl, carbendazim, carbaryl, atrazine and DDT. Spontaneous abortion was documented in 184 spouses of greenhouse workers in southern Italy aged 20-55 years of whom 48 were considered exposed to pesticides via a para-occupational route and 136 non-exposed. In the exposed 48 spouses, there were 7 spontaneous abortions (14.6%) as compared with 6 (4.4%) in the non-exposed, a statistically significant difference (*p*=0.02, using a X² test). Those exposed via their spouses had an

unadjusted OR for spontaneous abortion at first pregnancy of 3.7 (95% Cl 1.2-11.7) and this increased to 11.8 (95% Cl 2.3-59.6) after adjustment for age, smoking habits, education of both partners, spouse's type of work, and time between the pregnancy outcome and the interview. Among a group of 30 workers reporting exposure to benomyl and 6 to carbendazim, there were 5 spontaneous abortions (13.9%), and among 31 workers exposed to carbaryl, there were 4 spontaneous abortions (12.9%) (of these chemicals, only carbendazim is approved for use in the UK). However, odds ratios were not reported for exposure to single products, nor was there any detailed analysis of the timing of exposure (e.g. distinguishing the preand post-conception periods). The authors stated that the small size of the study did not allow more detailed analysis.

43. Garry et al 2002²⁸ investigated reproductive outcomes in a survey of families of applicators licensed to apply pesticides in the Red River Valley area of Minnesota in the period 1991-1996. A phone interview about general health and pesticide use, and a self-administered questionnaire about pesticide use and reproductive health were completed by both applicators and their spouses. Self-reported exposure of applicators and spouses to four pesticide classes (herbicides, insecticides, fungicides, fumigants) and to five specific fungicides and six specific herbicides was ascertained.

44. In analyses of pregnancies fathered by 522 applicators²⁸, the spouses of applicators who used all of herbicides, insecticides and fungicides had more pregnancy losses than any other pesticide application group: OR in comparison with a referent group of herbicides only 1.64 (95% CI 1.01-2.67). Further analyses were conducted for exposure to specific fungicides. The spouses of applicators who used ethylene bisdithiocarbamate (EBDC)-containing fungicides such as maneb or macozeb were found to be at increased risk for miscarriage compared to a referent group who did not use fungicides (OR 1.77, 95% CI 1.11-2.83). Those using organotin fungicides were also reported to be at higher risk of miscarriage (OR 1.55, 95% CI 1.01-2.37).

45. Garry et al 2002²⁸ also investigated maternal use and exposure to pesticides from the responses of 379 female spouses who had been pregnant or had children. For maternal exposure to pesticides, 269 of the 379 women noted aerial application on their own or a neighbouring farm, 126 women carried food to pesticide-treated fields within 48 hours of application, and 315 women washed pesticide-treated clothing. It was reported that these exposures, some of which were para-occupational, were not significantly associated with frequency of fetal loss. Only 36 of the 379 women applied or mixed pesticides themselves. However, personal use of pesticides, including, mixing, loading and pesticide application by the female spouse, was a significant risk factor for fetal loss (% fetal loss 15% vs. 8.9%, OR for fetal loss per pregnancy 1.81; 95%CI 1.04–3.12).

46. F urther analyses of the responses from female spouses²⁸ showed that the frequency of all first-trimester miscarriages regardless of pesticide use was significantly elevated in the spring as compared with all other seasons, p=0.034. However, the highest frequency of first-trimester miscarriages occurring in the spring was observed among spouses of applicators who had applied herbicides but not fungicides (p=0.007). Further analyses suggested that the risk of spring miscarriage

was significantly higher among spouses of applicators who used herbicide products containing sulfonylureas (OR 2.11, 95% CI 1.09-4.09), imidizolinone (OR 2.56, 95% CI 1.11 – 5.87) or mixture 9100 (a mixture of chorophenoxy herbicides and bromophenol; OR 2.94, 95% CI 1.40 – 6.16), compared to use of all other pesticides. These findings were supported by comparative analyses using information from applicators about their wives' pregnancies, although in this case, the associations did not achieve statistical significance.

47. Finally, Garry et al²⁸ investigated sex ratio in relation to exposure to pesticide classes (herbicides, insecticides, fungicides, fumigants). They found that the sex ratio of children born to applicators applying all of fungicides, insecticides and herbicides was altered (p=0.02) in comparison with a referent group who used herbicides only, and that 21% fewer boys were born in this group (282 girls vs. 226 boys).

48. Overall, the authors suggested that use of fungicides, and of some specific compounds, by applicators may increase the risk of miscarriage in their spouses.

Conclusion for Spontaneous Abortion / Pregnancy Loss

49. The COT agreed that strong conclusions could not be drawn from the limited evidence currently available on para-occupational exposure to pesticides and spontaneous abortion. However, there is a suspicion of a possible hazard from some fungicides and phenoxy herbicides, and this would merit further study.

RESPIRATORY EFFECTS

50. Seven studies were identified that provided information on para-occupational exposure to pesticides and aspects of respiratory disease and function. ^{23,51,52,53, 54, 55,60} A cohort study gave information on lung function in adults in rural Canada in relation to seasonal para-occupational exposure to pesticides.⁵⁵ Two cross-sectional analyses examined respiratory symptoms and asthma in children in Canada and in the Lebanon.^{53,60} Three studies published information specifically on asthma.^{23,51,52} Of these, one was a cohort study of predominantly Hispanic children in California evaluating Th1/Th2 cytokine profiles (that are associated with allergic asthma)²³ and two were case-control studies of asthma^{51,52} (one in children in California and one in adults in the Lebanon). The sixth study was a case-control investigation of chronic bronchitis in the Lebanon.⁵⁴

Lung Function

Cohort Study

51. Senthilselvan et al 2000⁵⁵ investigated 200 adult patients (106 men and 94 women) aged >17 years and resident in six administrative regions (three rural municipalities and three towns) in south-western Saskatchewan, where grain production was the main farming operation. Subjects were assessed twice (using spirometry and a self-administered questionnaire about respiratory conditions). The first assessment was undertaken in February and March 1996 for the winter season,

and the second in June and July 1996 for the summer season. There was little farming activity in the area in the winter season, but activities in the summer season included spraving of herbicides and insecticides. For the analysis, subjects were divided into four study groups: i) town non-farmers, ii) town farmers, iii) farm resident non-farmers (considered to be para-occupationally exposed to insecticides and herbicides, of whom 32 individuals had both summer and winter assessments); iv) farm resident farmers. There was no trend in lung function measurements of Forced Vital Capacity (FVC) or Forced Expiratory Volume in 1 second (FEV1) across these groups comparing summer with winter assessments. A decline in Maximal Midexpiratory Flow Rate (MMFR) was seen among farm residents in summer compared with winter that was non-significant for 'farm resident non-farmers' (-5.49%, p=0.20). A small but statistically significant decline (-2.12%, p=0.04) in summer compared with winter was also seen in FEV₁:FVC (the ratio of forced expiratory volume in 1 second to forced vital capacity, which is lowered in obstructive lung diseases such as asthma) in 'farm resident non-farmers'. The observed associations were not due to confounding by asthma (the study reported that a variable for asthma was not statistically significant in the analyses). The participation rate was low in this study (21.9% of eligible households), the number of individuals examined was low, and there was no direct measure of exposure. The authors noted there were many other possible causes of reduced lung function in farm residents in summer as compared with winter, including grain dust, grain dust mites, pollen, fungal spores, animal products, fertilizers, fumigants, and plant derived gases.

Childhood Respiratory Symptoms and Asthma

Cohort Study on Allergic Asthma in Children

Duramad et al 2006²³ analysed Th1/Th2 cytokine profiles in relation to para-52. occupational pesticide exposures in a cohort of children aged 24 months. The children's mothers had been identified during pregnancy through the Centre for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) project in California. This is a longitudinal birth cohort study of the effects of pesticides and other environmental exposures on the health of pregnant women and their children. Para-occupational exposure of children was assessed from mother's report on agricultural work by the mother, father and other household members. Clinician's diagnosis of respiratory complaints was taken from medical records from birth to 24 months of age. The diagnosis of asthma used in statistical analyses was defined as at least three separate diagnoses of reactive airway disease, all separated by at least one month in time. Maternal report of asthma symptoms, such as wheezing when the child did not have a cold, was gathered at interview at 6, 12 and 24 months. A blood sample analysis was undertaken for specific types of lymphocyte white blood cells (CD4⁺ T helper cells), which have been extensively studied in asthma: T-helper 1 (Th1) and T-helper 2 (Th2). The rationale for the study was that asthma is characterised by chronic inflammation and predominance of Th2 cells in the airways and these Th2 cells may be involved in imunogenesis of asthma, while Th1 cells are thought to protect against asthma development by regulating Th2 cytokine production. A clinical diagnosis of asthma was made for 32 children (23 with blood analysis for Th1/Th2).

53. Children who were diagnosed with asthma had higher percentage of Th2 CD4⁺ lymphocytes at 24 months (1% of all CD4⁺ lymphocytes, 95% CI 0.7-1.2%) than children without asthma (0.7%, 95% CI 0.6-0.7%), p<0.05; and children with maternal report of wheezing without a cold at 24 months had higher Th2 levels (1.2%, 95% CI 0.8-1.8%) than children without the condition (0.7%, 95% CI 0.6-0.8%), p<0.05. Further bivariate analyses showed that children who lived with agricultural workers had higher levels of Th2 (0.8%, 95% CI 0.7-0.9%) than children who did not (0.6%, 95% CI 0.5-0.7%), p=0.02 and children of women who worked in the fields had higher Th2 levels (0.9%, 95% CI 0.7-1.0%) than children of mothers who did not work in agriculture (0.6% in levels, 95% CI 0.6-0.7%), p=0.001. In the final regression model for Th2, 'mother working in the fields' was significantly associated with a 25.9% increase in children's Th2 levels, 95% CI 0.8-57.3%, p=0.04 and a positive but non-significant association was seen with 'agricultural workers living in the home' (17.5% increase in Th2 CD4⁺ lymphocytes, 95% CI -4.2 to 44.3) Results were independent of the level of CD4⁺ cells. Th1 levels were not significantly associated with 'mother worked in fields' or 'agricultural workers living in the home' in bivariate or final regression models. The immunologic biomarkers used were mechanistically relevant to development of asthma and the number of children with available data on Th2 levels was relatively large (n=239). However, the authors could not exclude the possibility that other exposures besides pesticides, such as dust. coarse particulate matter, endotoxin, or bacteria, were responsible for the increased Th2 levels reported in this study.23

Case-Control Study of Childhood Asthma

54. Salam et al 2004⁵¹ identified subjects for this case-control study from the Children's Health Study (CHS), a population-based study of respiratory health in 12 southern California communities. There were 279 asthma cases included who were aged between 8 and 18 when they enrolled in the CHS, and who had been diagnosed with asthma before 5 years of age. The 412 controls were asthma-free and matched by school grade (age), sex, community and maternal smoking in pregnancy. A structured telephone interview with the mother was used to obtain information on farm-related exposures (crops or dusts, farm animals, herbicides, and other pesticides). The interview also collected information on demographics, family history of asthma, feeding practices in infancy, day care attendance, tobacco smoke exposures and household environment (pets, cockroaches, and wood smoke, oil, or exhaust fumes). Mothers were also asked whether a doctor had ever diagnosed the child as having asthma, and if so, the age of onset. This information was used to distinguish early (<3 years) and late (>3 years) onset asthma.

55. Statistically significant associations were observed⁵¹ for exposure to herbicides in 'first year of life and later' with both risk of developing any asthma (early or late or early transient wheezing), OR 4.58, 95% CI 1.36-15.43 (n=11 exposed cases) and with the risk of early persistent asthma, OR 10.08, 95% CI 2.46-41.33 (n=10 exposed cases). Statistically significant increases in risk were also seen for exposure to pesticides in 'first year of life and later' with risk of developing any asthma OR 2.39, 95% CI 1.17-4.89 (n=23 exposed cases) and with risk of early persistent asthma OR 3.58, 95% CI 1.59-8.06 (n=17 exposed cases). For exposure to farm crops or dust 'in first year of life and later', the risk of early persistent asthma was OR 2.06, 95% CI 1.02-4.15 (n=22 exposed cases). Associations were not seen

between exposure to pesticides, farm crops or dust exposure after the first year of life and risk of developing early transient wheezing, later-onset asthma, or early persistent asthma.

56. This case-control study was nested in a large population-based cohort of children (4,244 children aged 8-18 years at the time of enrolment) and had a good participation rate: 82.5% in cases (279) and 72.3% in controls (412). However, relatively small numbers were exposed, multiple analyses were conducted, there was no direct measure of exposure, and exposures were not well characterised – in particular, the retrospective recall of exposure by mothers of cases may have been more complete than for mothers of controls, which would have tended to inflate risk estimates.⁵¹

Cross-sectional studies of childhood respiratory symptoms and asthma

57. A further cross-sectional analysis by Weselaka et al used data from the Ontario Farm Family Health Study on parental use of pesticides during the pregnancy period (the month of conception until month of delivery) in relation to chronic bronchitis or cough, asthma and hayfever or allergies in offspring.⁶⁰ This Study was considered in detail with respect to reproductive outcomes discussed in paragraphs 33 and 41 above^{19,60}. 17 pesticide unit variables were used in analyses as described in the analysis of spontaneous abortions in paragraphs 38-40¹⁰. Comparisons were made with pregnancies with no reported pesticide use during the pregnancy period. Information on respiratory outcomes was taken from the questionnaire completed by the wife, which included a complete reproductive history of her first five pregnancies as well as self report of whether "a doctor had ever told them" that their child had the following health problems: chronic bronchitis or cough, asthma, and hayfever or allergies.

58. Any parental pesticide use during pregnancy showed significant associations with the development of allergies or hayfever in offspring for all three major pesticide classes with odds ratios of 1.69 (95% CI 1.15 to 2.47) for fungicides, 1.56 (95% CI 1.15 to 2.11) for herbicides, and 1.48 (95% CI 1.07 to 2.03) for insecticides. Furthermore, the pesticide families phenoxy herbicides (OR 1.43, 95% CI 1.03–1.99) and organophosphates (OR 1.55, 95% CI 1.02–2.36), and the active ingredient 2,4-D (OR 1.66, 95% CI 1.11–2.49) also showed significant associations with allergies or hayfever. Stratification by sex suggested that these associations were limited to males (highest OR 2.12, 95% CI 1.20–3.76 for fungicides in males), and stratification by three year age band suggested increasing risks with increasing age, the highest risks being in children aged 12 years and older at the time the questionnaire was completed. However, no significant relationships were seen between parental use of pesticides and asthma or for 'persistent cough or bronchitis'. It was noted that 45% of children with asthma had allergies or hayfever.

59. This was a carefully conducted study and the most important limitations were all acknowledged in the paper – child's age at diagnosis was not provided; there was potential for exposure assessment bias (the recall period of pesticide use exceeded 10 years for approximately 30% of pregnancies); more than 10% of the exposures were imputed for some pesticide groupings; there was an inability to account for postnatal exposures; and some positive results may have arisen by chance in a

context of multiple testing. The authors also investigated relationships with farm characteristics to see if the expected⁶⁴ protective relationship noted for children growing up on farms with livestock was seen: farms with poultry (OR=0.72, 95% CI: 0.49, 1.06) and pigs (OR: 0.66, 95% CI: 0.46, 0.95) were less likely to have children with allergies. High crop acreage of grains, hay and fodder crops, oilseeds and other field crops or parental field or livestock work during the pregnancy interval did not show an association with childhood allergies or hayfever.

Salameh et al 2003⁵³ studied 3,291 children aged 5-16 years (71% response 60. rate) from 18 schools randomly chosen from a list of all Lebanese schools. A selfadministered questionnaire completed by their parents provided information on exposure and on their child's health. Para-occupational exposure was defined as reported occupational use of pesticides by a household member, or a parent in one of the following professions: pesticide applicator, agricultural worker, farmer, wood preservative painter. A translation of a validated American Thoracic Society questionnaire was used to identify cases of chronic respiratory disease, and within this group, clinical confirmation of asthma was undertaken. There were 407 children with a chronic respiratory disease diagnosis. In a multivariate logistic regression analysis, associations were observed between the following symptoms/diseases and para-occupational exposure to pesticides: respiratory disease, OR 1.85, 95% CI=1.13-3.02, p<0.01; asthma, OR 4.61, 95% CI 2.06-10.29, p<0.001; chronic phlegm, OR 2.56, 95% CI 1.56-4.21, p<0.001; recurrent wheezing, OR 1.57, 95% CI 0.92-2.72, p<0.05; and ever wheezing, OR 1.73, 95% CI 1.09-2.74, p<0.05. In contrast, chronic cough was not associated with para-occupational exposure to pesticides (OR 0.95, 95% CI 0.62-1.45). Although a large number of subjects participated in the study (3,291 completed guestionnaires) from a random selection of schools in the country, and para-occupational exposure was identified as a separate category of exposure, there was no direct measure of exposure. The authors noted that use of a cross-sectional design could introduce bias, since it was not possible to be sure that exposures preceded the onset of disease, and there may have been errors in the recall of exposures. 53

Asthma in Children and Adults

Case-Control Study

61. Salameh et al 2006⁵² identified 245 cases of newly diagnosed asthma outpatients from 10 Lebanese hospital centres, and 262 controls who were either individuals accompanying cases (parents, friends), or outpatients at the same hospital being treated in a different department, and without respiratory problems or symptoms. Participants were aged 12-99 years (mean 36.2 years in cases, 37.6 years in controls). Both cases and controls answered a questionnaire that included questions on occupational and para-occupational exposure to pesticides. Para-occupational exposure was defined as having "a family member occupationally exposed to pesticides' – individual pesticides were not specified. Diagnosis of asthma was made by a pulmonologist and confirmed using the self-reported symptoms from the questionnaire, which included an Arabic translation of a standardised American Thoracic Society questionnaire. Cases with chronic bronchitis or unclassified respiratory problems were not included in the analyses. In multivariate logistic regression analyses the OR for asthma and para-occupational

exposure to pesticides was not statistically significant (OR 1.45, 95% CI 0.60-3.51, p= 0.40). However, only 12 cases and 9 controls were para-occupationally exposed.

Chronic Bronchitis

Case-Control Study

Salameh et al⁵⁴ identified 110 outpatients with newly diagnosed chronic 62. bronchitis, who were recruited from 10 Lebanese hospital centres as part of the study described above⁵². These included individuals with or without obstruction (on lung function testing). The diagnosis of chronic bronchitis was confirmed by an independent pulmonologist according to questionnaire-reported symptoms of cough and phlegm. Patients with additional diagnoses (asthma, tuberculosis, cancer etc.) were excluded. These cases were compared with 262 controls who were either individuals accompanying cases (parents, friends), or outpatients at the same hospital being treated in a different department and without respiratory problems. Participants were again stated to be aged 12-99 years (mean 50.7 years in cases, and 37.6 years in controls). Para-occupational exposure was ascertained as previously, through questionnaire reports from participants of occupational use of pesticides by a family member. Five cases and nine controls were paraoccupationally exposed and the OR for exposure was not statistically significant (OR 1.35, 95% CI 0.44- 4.13).⁵⁴

63. In both of the studies by Salameh et al published in 2006^{52 54}, although paraoccupational exposure was clearly defined, only small numbers of participants were exposed in this way, and no quantitative estimates of exposure were reported . Further, the controls (family members and friends and outpatients from other hospital departments) may not have been representative of the population at risk of being included in the study as cases. In particular, the para-occupational exposures of family members may have been too similar to those of the cases, which in an unmatched analysis could lead to under-estimation of risk.

Conclusion for Respiratory Effects

64. The COT agreed that while there was some evidence suggesting an association of para-occupational exposure to pesticides with asthma and allergic disease, the findings were limited and not entirely consistent. While observations were at odds with findings that asthma is generally less common in people who have been brought up on farms⁶⁴, the observed protective effect of farms may be related specifically to livestock exposure ⁶⁵. One research team looked for and found this protective association with farm livestock in their data, despite positive associations of pesticides with allergic disease or hayfever⁶⁰ In light of the findings reviewed, there is a case for further research on atopic disease in children of farmers who use pesticides, but only if reliable information can be obtained on use of specific compounds.

ACUTE EFFECTS

65. A number of studies were identified which looked at acute health effects from bystander exposure to pesticides, but none that related to para-occupational exposures.

OCULAR EFFECTS

66. There was only one study of ocular effects in relation to para-occupational exposure to pesticides.³⁷ This was a questionnaire survey of retinal detachment in wives of farmer pesticide applicators in the Agricultural Health Study in North Carolina and Iowa, during 1993-1997. An increased risk of self-reported doctor-diagnosed retinal detachment was found with husband's ever use of fungicides (adjusted OR 1.9, 95% CI 1.2-3.1) but not in analyses for specific fungicides. COT agreed that this single cross-sectional study could only be regarded as exploratory and hypothesis-generating.

OTHER HEALTH EFFECTS

67. A single case-control study of rheumatoid arthritis in relation to paraoccupational exposure to pesticides²² was identified. This study identified 135 physician-confirmed cases of rheumatoid arthritis and 675 age-matched controls without auto-immune disease (of whom 4 cases and 24 controls were applicators and the remaining cases and controls were spouses of applicators) nested in the in the Agricultural Health Study in which 52,000 private applicators (mainly farmers) were enrolled. No statistically significant associations were seen with questionnaireassessed use of any pesticide by applicators: 3 types (insecticides, herbicides, fungicides), six chemical groups (e.g. organophosphates) and nine specific pesticides were considered. COT agreed that this did not allow any useful conclusions.

DISCUSSION

68. Epidemiological studies of para-occupational exposure to pesticides allow investigation of health outcomes that cannot readily be addressed in relation to occupational exposure – for example, possible effects on cognitive development and allergic disease in children, and of maternal exposures on reproductive outcomes in women. It is for such health outcomes that study of para-occupational exposures is likely to be most rewarding. Furthermore, because para-occupational exposures can be higher than those that occur in residents, where adverse effects occur, they should be more readily detectable (because risks will tend to be higher).

69. At the same time, there are challenges in investigating the effects of paraoccupational exposures, especially in the valid and meaningful characterisation of exposures. Perhaps for this reason, the epidemiological literature on such exposures is rather sparse.

70. The Committee identified a number of generic limitations which applied to most of the studies summarised in this statement. Most studies investigated exposure to 'pesticides', or to classes of pesticides, such as insecticides, fungicides or herbicides. These broad terms cover a wide variety of chemical compounds which differ from each other substantially in their toxicology, and which therefore would be expected to have different health effects. Combining such compounds in a single exposure category will tend to dilute and obscure any adverse effects that they produce. At the same time, in studies where exposures to specific compounds were investigated, the numbers of individuals exposed to any one chemical were small, again limiting the power to detect adverse effects.

71. Few studies of associations with health entailed direct measurement of paraoccupational exposure through biomarkers or environmental sampling. In most of the studies, exposure was self-reported, and in some cases this may have led to bias from errors of recall.

72. Selective publication of studies, or of positive findings within studies, may have distorted the overall balance of evidence in the literature. Furthermore, where positive findings have been reported, they have often emerged in a context of multiple testing with no strong a priori reason to expect the specific associations observed. This may be an indication for further confirmatory research, but in the absence of replication, the associations can be given little weight.

73. Of all the positive findings identified in the review, the possibly increased risk of spontaneous abortion in association with para-occupational exposure to fungicides is most deserving of further investigation. Such an association is plausible given that a number of fungicides are aneugens or interfere with reproductive hormones. There is also a case for further research on atopic disease in children of farmers who use pesticides, but only if reliable information can be obtained on use of specific compounds.

CONCLUSIONS

- 74. The COT concluded:
- i) Epidemiological studies of para-occupational exposure to pesticides allow investigation of health outcomes that cannot readily be addressed in relation to occupational exposure for example, possible effects on cognitive development and allergic disease in children, and of maternal exposures on reproductive outcomes in women. Moreover, para-occupational exposures may be higher than those that occur in bystanders and residents, making it easier to detect adverse effects where they occur (because risks will tend to be higher).
- ii) Despite these theoretical advantages, currently available studies of paraoccupational exposure to pesticides are limited in number, scope and design, and do not provide strong pointers to any health hazard, either from broad classes of pesticide or from specific compounds.

iii) Most worthy of further investigation are a possible association of spontaneous abortion with para-occupational exposure to fungicides, and further research on atopic disease in children of farmers who use pesticides.

Secretariat August 2011

Reference List

- 1. Royal Commission on Environmental Pollution. The Royal Commission on Environmental Pollution report on crop spraying and the health of residents and bystanders. 2005.
- Committees on Toxicity and Carcinogenicity of Chemicals in Food Consumer.Products and the Environment. Joint statement on Royal Commission on Environmental Pollution report on crop spraying and the health of residents and bystanders. 2006. <u>http://cot.food.gov.uk/pdfs/cotstatementrcep0605pdf</u>
- 3. Department for Environment Food and Rural Affairs. The Royal Commission on Environmental Pollution report on crop spraying and the health of residents and bystanders Government response. 2006.
- 4. Committee on Toxicity of Chemicals in Food Consumer.Products and the Environment. Draft discussion paper on the systematic review of epidemiological literature of para-occupational exposure to pesticides and health outcomes. TOX/2009/27. 2009
- Committee on Carcinogenicity of Chemicals in Food Consumer Products and the Environment. Statement on the systematic review of epidemiological literature of paraoccupational exposure to pesticides and health outcomes, CC/11/S1 http://www.iacoc.org.uk/statements/documents/ParaoccupationalpesticideCOCfinalstatement 2011Editedwlogo.pdf
- 6. Alarcon W.A., Calvert G.M., Blondell J.M., Mehler L.N., Sievert J., Propeck M., Tibbetts D.S., Becker A., Lackovic M., Soileau S.B., Das R., Beckman J., Male D.P., Thomsen C.L., and Stanbury M. (2005) Acute illnesses associated with pesticide exposure at schools. *JAMA* 294, 455-65.
- 7. Alavanja M.C., Sandler D.P., Lynch C.F., Knott C., Lubin J.H., Tarone R., Thomas K., Dosemeci M., Barker J., Hoppin J.A., and Blair A. (2005) Cancer incidence in the agricultural health study. *Scand J Work Environ Health* 31 Suppl 1, 39-45; discussion 5-7.
- Alderton L.E., Spector L.G., Blair C.K., Roesler M., Olshan A.F., Robison L.L., and Ross J.A. (2006) Child and maternal household chemical exposure and the risk of acute leukemia in children with Down's syndrome: a report from the Children's Oncology Group. *Am J Epidemiol* 164, 212-21.
- 9. Arbuckle T.E., Savitz D.A., Mery L.S., and Curtis K.M. (1999) Exposure to phenoxy herbicides and the risk of spontaneous abortion. *Epidemiology* 10, 752-60.
- 10. Arbuckle T.E., Lin Z., and Mery L.S. (2001) An exploratory analysis of the effect of pesticide exposure on the risk of spontaneous abortion in an Ontario farm population. *Environ Health Perspect* 109, 851-7.
- Ascherio A., Chen H., Weisskopf M.G., O'Reilly E., McCullough M.L., Calle E.E., Schwarzschild M.A., and Thun M.J. (2006) Pesticide exposure and risk for Parkinson's disease. *Ann Neurol* 60, 197-203.

- 12. Azaroff L.S. and Neas L.M. (1999) Acute health effects associated with nonoccupational pesticide exposure in rural El Salvador. *Environ Res* 80, 158-64.
- Azaroff L.S. (1999) Biomarkers of exposure to organophosphorous insecticides among farmers' families in rural El Salvador: factors associated with exposure. *Environ Res* 80, 138-47.
- 14. Buckley J.D., Meadows A.T., Kadin M.E., Le Beau M.M., Siegel S., and Robison L.L. (2000) Pesticide exposures in children with non-Hodgkin lymphoma. *Cancer* 89, 2315-21.
- 15. Carreon T., Butler M.A., Ruder A.M., Waters M.A., Davis-King K.E., Calvert G.M., Schulte P.A., Connally B., Ward E.M., Sanderson W.T., Heineman E.F., Mandel J.S., Morton R.F., Reding D.J., Rosenman K.D., and Talaska G. (2005) Gliomas and farm pesticide exposure in women: the Upper Midwest Health Study. *Environ Health Perspect* 113, 546-51. Notes: CORPORATE NAME: Brain Cancer Collaborative Study Group
- 16. Colt J.S., Davis S., Severson R.K., Lynch C.F., Cozen W., Camann D., Engels E.A., Blair A., and Hartge P. (2006) Residential insecticide use and risk of non-Hodgkin's lymphoma. *Cancer Epidemiol Biomarkers Prev* 15, 251-7.
- 17. Cooney M.A., Daniels J.L., Ross J.A., Breslow N.E., Pollock B.H., and Olshan A.F. (2007) Household pesticides and the risk of Wilms tumor. *Environ Health Perspect* 115, 134-7.
- Cox R.D., Kolb J.C., Galli R.L., Carlton F.R., and Cook A.M. (2005) Evaluation of potential adverse health effects resulting from chronic domestic exposure to the organophosphate insecticide methyl parathion. *Clin Toxicol (Phila)* 43, 243-53.
- 19. Curtis K.M., Savitz D.A., Weinberg C.R., and Arbuckle T.E. (1999) The effect of pesticide exposure on time to pregnancy. *Epidemiology* 10, 112-7.
- 20. Dahlgren J.G., Takhar H.S., Ruffalo C.A., and Zwass M. (2004) Health effects of diazinon on a family. *J Toxicol Clin Toxicol* 42, 579-91.
- Daniels J.L., Olshan A.F., Teschke K., Hertz-Picciotto I., Savitz D.A., Blatt J., Bondy M.L., Neglia J.P., Pollock B.H., Cohn S.L., Look A.T., Seeger R.C., and Castleberry R.P. (2001) Residential pesticide exposure and neuroblastoma. *Epidemiology* 12, 20-7.
- 22. De Roos A.J., Cooper G.S., Alavanja M.C., and Sandler D.P. (2005) Rheumatoid arthritis among women in the Agricultural Health Study: risk associated with farming activities and exposures. *Ann Epidemiol* 15, 762-70.
- Duramad P., Harley K., Lipsett M., Bradman A., Eskenazi B., Holland N.T., and Tager I.B. (2006) Early environmental exposures and intracellular Th1/Th2 cytokine profiles in 24month-old children living in an agricultural area. *Environ Health Perspect* 114, 1916-22.
- Engel L.S., Hill D.A., Hoppin J.A., Lubin J.H., Lynch C.F., Pierce J., Samanic C., Sandler D.P., Blair A., and Alavanja M.C. (2005) Pesticide use and breast cancer risk among farmers' wives in the agricultural health study. *Am J Epidemiol* 161, 121-35.
- 25. Eskenazi B., Marks A.R., Bradman A., Harley K., Barr D.B., Johnson C., Morga N., and Jewell N.P. (2007) Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. *Environ Health Perspect* 115, 792-8.
- 26. Fischer A.B. and Eikmann T. (1996) Improper use of an insecticide at a kindergarten. *Toxicol Lett* 88, 359-64.
- 27. Flower K.B., Hoppin J.A., Lynch C.F., Blair A., Knott C., Shore D.L., and Sandler D.P. (2004) Cancer risk and parental pesticide application in children of Agricultural Health Study participants. *Environ Health Perspect* 112, 631-5.

- 28. Garry V.F., Harkins M., Lyubimov A., Erickson L., and Long L. (2002) Reproductive outcomes in the women of the Red River Valley of the north. I. The spouses of pesticide applicators: pregnancy loss, age at menarche, and exposures to pesticides. *J Toxicol Environ Health A* 65, 769-86.
- 29. Greenlee A.R., Arbuckle T.E., and Chyou P.H. (2003) Risk factors for female infertility in an agricultural region. *Epidemiology* 14, 429-36.
- Hancock D.B., Martin E.R., Mayhew G.M., Stajich J.M., Jewett R., Stacy M.A., Scott B.L., Vance J.M., and Scott W.K. (2008) Pesticide exposure and risk of Parkinson's disease: a family-based case-control study. *BMC Neurol* 8, 6.
- 31. Handal A.J., Lozoff B., Breilh J., and Harlow S.D. (2007) Neurobehavioral development in children with potential exposure to pesticides. *Epidemiology* 18, 312-20.
- 32. Handal A.J., Lozoff B., Breilh J., and Harlow S.D. (2007) Effect of community of residence on neurobehavioral development in infants and young children in a flower-growing region of Ecuador. *Environ Health Perspect* 115, 128-33.
- Hartge P., Colt J.S., Severson R.K., Cerhan J.R., Cozen W., Camann D., Zahm S.H., and Davis S. (2005) Residential herbicide use and risk of non-Hodgkin lymphoma. *Cancer Epidemiol Biomarkers Prev* 14, 934-7.
- Infante-Rivard C., Labuda D., Krajinovic M., and Sinnett D. (1999) Risk of childhood leukemia associated with exposure to pesticides and with gene polymorphisms. *Epidemiology* 10, 481-7.
- 35. Kato I., Watanabe-Meserve H., Koenig K.L., Baptiste M.S., Lillquist P.P., Frizzera G., Burke J.S., Moseson M., and Shore R.E. (2004) Pesticide product use and risk of non-Hodgkin lymphoma in women. *Environ Health Perspect* 112, 1275-81.
- 36. Kilburn K.H. (1999) Evidence for chronic neurobehavioral impairment from chlorpyrifos an organophosphate insecticide (Dursban) used indoors . *Environ Epidemiol Toxicol* 1, 153-162.
- 37. Kirrane E.F., Hoppin J.A., Kamel F., Umbach D.M., Boyes W.K., Deroos A.J., Alavanja M., and Sandler D.P. (2005) Retinal degeneration and other eye disorders in wives of farmer pesticide applicators enrolled in the agricultural health study. *Am J Epidemiol* 161, 1020-9.
- Kristensen P., Andersen A., Irgens L.M., Bye A.S., and Sundheim L. (1996) Cancer in offspring of parents engaged in agricultural activities in Norway: incidence and risk factors in the farm environment. *Int J Cancer* 65, 39-50.
- Lizardi P.S., O'Rourke M.K., and Morris R.J. (2008) The effects of organophosphate pesticide exposure on Hispanic children's cognitive and behavioral functioning. *J Pediatr Psychol* 33, 91-101.
- 40. Ma X., Buffler P.A., Gunier R.B., Dahl G., Smith M.T., Reinier K., and Reynolds P. (2002) Critical windows of exposure to household pesticides and risk of childhood leukemia. *Environ Health Perspect* 110, 955-60.
- 41. McDuffie H.H., Pahwa P., McLaughlin J.R., Spinelli J.J., Fincham S., Dosman J.A., Robson D., Skinnider L.F., and Choi N.W. (2001) Non-Hodgkin's lymphoma and specific pesticide exposures in men: cross-Canada study of pesticides and health. *Cancer Epidemiol Biomarkers Prev* 10, 1155-63.
- 42. Meinert R., Kaatsch P., Kaletsch U., Krummenauer F., Miesner A., and Michaelis J. (1996) Childhood leukaemia and exposure to pesticides: results of a case-control study in northern Germany. *Eur J Cancer* 32A, 1943-8.
- 43. Meinert R., Schuz J., Kaletsch U., Kaatsch P., and Michaelis J. (2000) Leukemia and non-

Hodgkin's lymphoma in childhood and exposure to pesticides: results of a register-based case-control study in Germany. *Am J Epidemiol* 151, 639-46; discussion 647-50.

- 44. Monge P., Wesseling C., Guardado J., Lundberg I., Ahlbom A., Cantor K.P., Weiderpass E., and Partanen T. (2007) Parental occupational exposure to pesticides and the risk of childhood leukemia in Costa Rica. *Scand J Work Environ Health* 33, 293-303.
- 45. Petrelli G., Figa-Talamanca I., Lauria L., and Mantovani A. (2003) Spontaneous abortion in spouses of greenhouse workers exposed to pesticides. *Environmental Health & Preventive Medicine* 8, 77-81.
- 46. Rohlman D.S., Arcury T.A., Quandt S.A., Lasarev M., Rothlein J., Travers R., Tamulinas A., Scherer J., Early J., Marin A., Phillips J., and McCauley L. (2005) Neurobehavioral performance in preschool children from agricultural and non-agricultural communities in Oregon and North Carolina. *Neurotoxicology* 26, 589-98.
- 47. Rubin C., Esteban E., Kieszak S., Hill R.H. Jr, Dunlop B., Yacovac R., Trottier J., Boylan K., Tomasewski T., and Pearce K. (2002) Assessment of human exposure and human health effects after indoor application of methyl parathion in Lorain County, Ohio, 1995-1996. *Environ Health Perspect* 110 Suppl 6, 1047-51.
- 48. Ruckart P.Z., Kakolewski K., Bove F.J., and Kaye W.E. (2004) Long-term neurobehavioral health effects of methyl parathion exposure in children in Mississippi and Ohio. *Environ Health Perspect* 112, 46-51.
- Ruder A.M., Waters M.A., Butler M.A., Carreon T., Calvert G.M., Davis-King K.E., Schulte P.A., Sanderson W.T., Ward E.M., Connally L.B., Heineman E.F., Mandel J.S., Morton R.F., Reding D.J., Rosenman K.D., and Talaska G. (2004) Gliomas and farm pesticide exposure in men: the upper midwest health study. *Arch Environ Health* 59, 650-7. Notes: CORPORATE NAME: Brain Cancer Collaborative Study Group
- Ruder A.M., Waters M.A., Carreon T., Butler M.A., Davis-King K.E., Calvert G.M., Schulte P.A., Ward E.M., Connally L.B., Lu J., Wall D., Zivkovich Z., Heineman E.F., Mandel J.S., Morton R.F., Reding D.J., and Rosenman K.D. (2006) The Upper Midwest Health Study: a case-control study of primary intracranial gliomas in farm and rural residents. *J Agric Saf Health* 12, 255-74. Notes: CORPORATE NAME: The Brain Cancer Collaborative Study Group
- Salam M.T., Li Y.F., Langholz B., and Gilliland F.D. (2004) Early-life environmental risk factors for asthma: findings from the Children's Health Study. *Environ Health Perspect* 112, 760-5.
 Notes: CORPORATE NAME: Children's Health Study
- 52. Salameh P., Waked M., Baldi I., Brochard P., and Saleh B.A. (2006) Respiratory diseases and pesticide exposure: A case-control study in Lebanon. *J Epidemiol Community Health* 60, 256-261.
- 53. Salameh P.R., Baldi I., Brochard P., Raherison C., Abi Saleh B., and Salamon R. (2003) Respiratory symptoms in children and exposure to pesticides. *Eur Respir J* 22, 507-12.
- 54. Salameh P.R., Waked M., Baldi I., Brochard P., and Saleh B.A. (2006) Chronic bronchitis and pesticide exposure: a case-control study in Lebanon. *Eur J Epidemiol* 21, 681-8.
- 55. Senthilselvan A., Dosman J.A., Semchuk K.M., McDuffie H.H., Cessna A.J., Irvine D.G., Crossley M.F., and Rosenberg A. (2000) Seasonal changes in lung function in a farming population. *Can Respir J* 7, 320-5.
- 56. Teitelbaum S.L., Gammon M.D., Britton J.A., Neugut A.I., Levin B., and Stellman S.D. (2007) Reported residential pesticide use and breast cancer risk on Long Island, New York. *Am J Epidemiol* 165, 643-51.

- 57. van Wijngaarden E., Stewart P.A., Olshan A.F., Savitz D.A., and Bunin G.R. (2003) Parental occupational exposure to pesticides and childhood brain cancer. *Am J Epidemiol* 157, 989-97.
- 58. Wasley A., Lepine L.A., Jenkins R., and Rubin C. (2002) An investigation of unexplained infant deaths in houses contaminated with methyl parathion. *Environ Health Perspect* 110 Suppl 6, 1053-6.
- 59. Zeitz P., Kakolewski K., Imtiaz R., and Kaye W. (2002) Methods of assessing neurobehavioral development in children exposed to methyl parathion in Mississippi and Ohio. *Environ Health Perspect* 110 Suppl 6, 1079-83.
- 60. Weselaka M, Arbuckle TE, Wigle DT, and Krewski D.(2007) In utero pesticide exposure and childhood morbidity. *Environmental Research*;103, 79-86
- 61. Advisory Committee on Pesticides. Minutes of the 310th meeting of the Advisory Committee on Pesticides held on 18th November 2004. ACP 19 (310/2004). 2004 Nov.
- 62. IEH (2005) Pesticides and Parkinson's Disease- A Crticial Review (Web report W21), Leicester, UK, MRC Institute for environment and Health, available at <u>http://www.le.ac.uk/ieh/</u>
- 63. O'Rourke MK; Lizardi PS; Rogan SP;, Freeman NC, Aguirre A, Saint CG.(2000) Pesticide exposure and creatinine variation among young children. *Journal of Exposure Analysis and Environmental Epidemiology* 10, 672-681]
- 64. von Mutius E, Vercelli D (2010). Farm living: effects on childhood asthma and allergy. *Nature Reviews Immunology* 10:861-868]
- 65. Gern JE. (2011) Barnyard microbes and childhood asthma. N Engl J Med. 364:769-70].
- Acquavella J.F., Alexander B.H., Mandel J.S., Gustin C., Baker B., Chapman P., and Bleeke M. (2004) Glyphosate biomonitoring for farmers and their families: results from the Farm Family Exposure Study. *Environ Health Perspect* 112, 321-6.
- 67. Alexander B.H., Burns C.J., Bartels M.J., Acquavella J.F., Mandel J.S., Gustin C., and Baker B.A. (2006) Chlorpyrifos exposure in farm families: results from the farm family exposure study. *J Expo Sci Environ Epidemiol* 16, 447-56.
- 68. Alexander B.H., Mandel J.S., Baker B.A., Burns C.J., Bartels M.J., Acquavella J.F., and Gustin C. (2007) Biomonitoring of 2,4-dichlorophenoxyacetic acid exposure and dose in farm families. *Environ Health Perspect* 115, 370-6.
- 69. Bernard C.E., Nuygen H., Truong D., and Krieger R.I. (2001) Environmental residues and biomonitoring estimates of human insecticide exposure from treated residential turf. *Arch Environ Contam Toxicol* 41, 237-40.
- Fenske R.A., Kissel J.C., Lu C., Kalman D.A., Simcox N.J., Allen E.H., and Keifer M.C. (2000) Biologically based pesticide dose estimates for children in an agricultural community. *Environ Health Perspect* 108, 515-20.
- 71. Krieger R.I.and Dinoff T.M. (2000) Malathion deposition, metabolite clearance, and cholinesterase status of date dusters and harvesters in California. *Arch Environ Contam Toxicol* 38, 546-53.

Annex 1

Table 1. Comparison of systemic exposure based on urinary metabolites biomonitoring for farm families

Study	Occupational exposure of	Para occupational	n	Systemic exposure	Comments
	farmers (mg/kg bw/d)	Exposure group		(mg/kg bw/d)	
	Farm Family	Spouses	48	0.00004 maximum	Five consecutive 24h samples from day before to 3 days post application. Absorbed glyphosate excreted unchanged in urine. Systemic doses not reported in detail Five consecutive 24h samples from day before to 3 days post application Systemic doses estimated on total 3,5,6- trichlorochlorpyrifos (TCP) excretion over 3 day post application period.
Acquavella J.F et al.(2004) ⁶⁶ Glyphosate	Exposure Study 0.004 maximum	Children	79	0.0008 maximum	
Alexander B.H., et al (2006) ⁶⁷ Chlorpyrifos	Farm Family Exposure Study 0.0021 geometric mean	Spouses	34	0.0007 geometric mean 0.0041 maximum	
		Children	50	0.001 geometric mean 0.0063 maximum	
Alexander B.H., et al (2007) ⁶⁸	Farm Family Exposure Study 0.00246 geometric mean	Spouses	34	0.00008 geometric mean 0.00016 75 th percentile 0.00025 90 th percentile 0.00114 maximum	Five consecutive 24h samples from day before to 3 days post application. 2,4-D excreted unchanged in urine (93% clearance).
2,4-D	0.00928 75 th percentile 0.02399 90 th percentile 0.05848 maximum	Children	53	0.00022 geometric mean 0.00046 75 th percentile 0.000107 90 th percentile 0.03107 maximum	
Bernard C.E., et al (2001) ⁶⁹ Chlorpyrifos	Occupational exposure not reported (Pesticide applied by custom applicator at low pressure)	Female (Jazzercise activity)	5 (whole body covered) 6 (1 piece dance suit) 11 (2 piece dance suit)	0.0011 mean 0.0015 mean 0.0014 mean	Exposure started 3h post application. Urine collected for 5 days after 20 minute exposure period. Daily 3,5,6- trichlorochlorpyrifos (TCP) clearance estimated

				0.0054 ±	Single voids taken from
				0.0054 ±	children on two
				mean ±	occasions. The second
				SD	sample was taken 3-7
		Children (of	49	0.0078	days after the first and
		operators)		75 th	all within the 6-8 week
				percentile	spraying season.
				0.0153 ^ª	Dialkylphosphate
	Study			max*	metabolites analysed
	undertaken in			0.0038 ±	and data converted to
	agricultural			0.0044	OP concentrations and
Fenske R.A. et	region			mean ±	daily doses. Median
al (2000) ⁷⁰	surrounding	Children (of	13	SD	dose of children of
Azinphos-	Wenatchee, Washington,	workers)	13	0.0045 75 th	operators was 4-9x reference children.
methyl/phosmet	U.S.A.			percentile	Estimates for all
metry/priositiet	Occupational			0.0153	agricultural children 3-6x
	exposure not			maximum	higher than reference
	reported			0.0035 ±	children.
	·			0.0050	
				mean ±	
		Children		SD	
		(control)	14	0.0073	
		(control)		75 th	
				percentile	
				0.015	
	Data wandana			maximum	Creat managements of
Krieger D L and	Date gardens in the	Girl aged 9	1	0.0006	Spot measurements of two children and spouse
Krieger R.I.and Dinoff T.M.	Coachella	Boy aged 4		0.005	who lived within the date
(2000) ⁷¹	Valley,				garden. Urine analysed
(2000)	California,				for dimethylphosphates.
Malathion	U.S.A.	Spouse	1	0.004	No equivalent use of
	Applicators				malathion in U.K.
	1-3				

* spray season estimates calculated by volume adjusted presented here as these were highest

^a there appears to be an error in the paper and this value should be 0.029 mg/kg bw/d. In addition, higher maximum values were observed in siblings of the study focus children up to 0.036 mg/kg bw/d, and up to 0.072 mg/kg bw/d for single day samples.