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TOX/2010/18 
 
COT DISCUSSION PAPER: USE OF TOXICOGENOMICS IN 
TOXICOLOGY – DESIGN, ANALYSIS AND STATISTICAL 
ISSUES   
 
COVER PAPER 
 
Review background  
 
1. In 2001, the COT/COM/COC held a Joint Symposium1 to discuss 
issues relating to the use of genomics and proteomics in toxicology. A joint 
statement outlining the conclusions reached was subsequently published on 
the Committees websites [http://cot.food.gov.uk/pdfs/JointCOT-COM-
COCStatement.PDF]. The Committees agreed to periodically review the 
literature to consider whether the conclusions made in 2001 needed revising. 
A series of COT discussion papers2 followed resulting in a joint statement 
published in 2004 that updated the previous conclusions reached from the 
2001 Joint Symposium 
[http://cot.food.gov.uk/pdfs/cotstatementtoxicogen0410.pdf].  
 
2. The following general conclusions were made by the Committees as 
published in the 2004 Joint Statement:   
 

a) We recognise the rapid development in toxicogenomic methods 
(transcriptomics, proteomics and metabonomics) in toxicological 
hazard identification and characterisations since 2001.  

b) We confirm that these techniques may serve as adjuncts to 
conventional toxicology studies. There is a need to provide appropriate 
data from studies on gene expression, protein levels and metabolite 
changes in order to provide sufficient information on toxicologically 
relevant pathways.  

c) However, we consider that further research and validation is required 
before these techniques can be considered for routine regulatory 
toxicological risk assessment3. At present toxicogenomic approaches 
can provide valuable supportive data on mechanisms of target organ 
toxicity which can aid in the risk assessment process.  

d) There is a need for further refinement and optimisation of methods 
used, approaches to data interpretation and evaluation using statistical 
and bioinformatics methods and development of appropriate publically 
accessible databases.  

e) We note the need for generic guidance on the most suitable methods 
for statistical evaluation of different types of toxicogenomic data.  

                                                 
1
 A full write up of the meeting was published by Barlow et al (2003). See references section.  

2
 COT discussion papers: TOX/2003/08; TOX/2004/02; TOX/2004/26 and TOX/2004/27. 

3 A review paper by Battershill (2005) published in the Human & Experimental Toxicology provided a 

regulatory perspective of issues relating to proposed TGX applications, a possible approach to 

integrating TGX and conventional data into risk assessments, highlighting potential areas for future 

consideration.  

http://cot.food.gov.uk/pdfs/JointCOT-COM-COCStatement.PDF
http://cot.food.gov.uk/pdfs/JointCOT-COM-COCStatement.PDF
http://cot.food.gov.uk/pdfs/cotstatementtoxicogen0410.pdf
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3. The 2004 Joint Statement also includes conclusions reached by 
individual committees, and those published by the COT (following COT 
discussions at its February and September 2004 meetings) can be grouped 
under the following broad categories/themes4:  
 

a) Study design/reproducibility, evaluation and statistical analysis of raw 
data 

b) Pattern recognition, phenotypic anchorage and systems biology; 
c) Target organ (time course/reversal), prediction (NOAEL), validation, in-

house screening, regulatory submission; 
d) Variation in transcriptomics, array design 
e) High density vs. low density array design 
f) Proteomic methods 
g) Metabonomics/metabolomics, metabolite pattern changes, 

tracjectomes 
h) Toxicogenomics integration into risk assessment  
i) Animal use 
j) Epidemiology and toxicogenomics 
k) Database management and bioinformatics 

 
Review aims, objectives and layout 
 
4. This discussion paper (TOX/2010/18) focuses on issues represented 
by the above categories a), d) and e) as they relate to transcriptomic studies, 
i.e. the design, data and statistical evaluation of transcriptomic analyses. A 
literature search was conducted to retrieve useful reviews and original studies 
that report on relevant developments which can be used to update the 
previous COT conclusions. Studies derived from key organisations working in 
the field (e.g. ISLI-HESI, US EPA Toxcast Programme, NIEHS, and MGED 
Society), provide additional sources of authoritative information and were also 
considered in this review. In addition, discussions and conclusions arising 
from the COT 21st Century Toxicology Workshop held in February 2009 were 
used. This paper therefore provides an update to the previous statement by 
reviewing issues currently impacting on the design and reproducibility of 
transcriptomic (TRSX)-based toxicology studies, and the analysis and 
statistical evaluation of the resultant raw data.  
 
5. The review uses the following COT 2004 Joint Statement conclusions, 
(and related previous discussion papers) to structure the layout of this paper.   
 

a. There had been improvements in the design and reproducibility of 
studies, and approaches to the analysis of raw data and statistical 
approaches to evaluation and identification of toxicologically relevant 
patterns for gene changes. 
 

                                                 
4
 Conclusions represented by categories b), c), h), i) and j) principally address issues of relevance to 

regulatory risk assessment. 
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d. Regarding transcriptomic methods it was agreed that there were a 
considerable number of sources of variance which might affect the results 
of studies. The COT confirmed that for the present it was necessary to 
confirm key gene changes independently such as by quantitative PCR2 
analysis of mRNA. The design of experiments (e.g. pooling of samples), 
reproducibility of replicate mRNA analyses, the approach to assessment of 
background changes, use of different fluorometric methods to assess gene 
expression changes, use of housekeeping genes, variation between 
laboratories regarding analysis of mRNAs in particular the use of different 
platforms, and validation of the genes incorporated into microarrays were 
all examples of the potential sources of variation in transcriptomic 
analyses.  
 
e. There are few comparative data on the use of high density cDNA 
microarrays (e.g. with thousands of genes) and low density cDNA arrays 
(with small numbers of genes targeted for a limited number of toxic 
mechanisms). In general high density arrays are comparatively of greater 
difficulty and expense to develop and the evaluation and interpretation of 
data is complex. Low density arrays are cheaper, easier to evaluate, but 
may miss novel mechanisms and have limited coverage of genes. 

 
6. Section 1 discusses issues relating to the design of transcriptomic-
based toxicology studies (and includes consideration of microarray platform 
density); Section 2 considers the approaches used to analyse raw 
transcriptomic data while Section 3 focuses on the statistical approaches used 
to identify and evaluate toxicologically relevant gene expression changes. 
Issues relating to quality control and sources of variation of transcriptomic-
based analyses (which permeate all levels of a TGX study i.e. sample 
preparation, data generation and data analysis stages) are addressed as 
separate topics in Sections 4 and 5 respectively. Issues relating to the 
reproducibility of TGX data will be discussed in a subsequent paper at the 
next COT meeting in September 2010.  
 
7. Annex 1 contains details of the literature search strategy used. 
Narrative summaries/abstracts of selected key reviews and original studies 
are provided in Annex 3. Members should note that TOX/2010/18 is not based 
on a comprehensive systematic review of the literature due to the extensive 
amount of work published in the field rendering such an approach unfeasible. 
TOX/2010/18 is a discussion paper that uses selected review papers, original 
studies and work published from key organisations to address issues 
previously raised and reveal current developments and associated challenges. 
In doing so, it is hoped this will further advance the integration of 
toxicogenomics into toxicology. 
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EXECUTIVE SUMMARY 

 
I. Design of transcriptomic-based toxicology studies 
 
1. Issues relevant to considering the design of transcriptomic-based 
toxicology studies are those relating to the generation of accurate, precise 
and reliable data, and the approaches undertaken to minimise the effect of 
factors altering the ability to answer the question of interest as clearly and 
efficiently as possible. Deciding a prior objective is considered particularly 
important as it impacts on the subsequent design. These experimental 
objectives have been categorised by NAS (2007ab) as either class 
comparison, prediction or discovery (paragraphs 4-6). Selecting appropriate 
animal species or cell lines constitutes a key consideration to minimise false 
positives and maximise true positives (paragraph 7).  
 
2. Reflecting interest in using species from lower phyla, the zebra-fish has 
been investigated as a potential alternative to mammalian models in several 
studies (paragraphs 8-9).  
 
3. Undertaking preliminary calculations of appropriate sample size is 
essential to ensure studies have sufficient power to detect regulated genes at 
acceptable cost. Various factors must be considered and several methods are 
available to calculate the most appropriate size including Wilks‟ lamda score 
F-test, and the Microarray Power Atlas reported by Page et al (2006) 
(paragraphs 10-15).  
 
4. Deciding dose and time points for studies represents a significant 
design consideration. The value of multiple dose groups and appropriate time 
course experiments is described in relation to elucidating the shape of the 
dose response curve at low levels of exposure and establishing relationships 
with downstream changes, respectively (paragraphs 16-20).  
 
5. The sampling of RNA must be carefully considered to avoid introducing 
bias and various approaches are described i.e. in-vivo approaches using 
whole or regional tissue, as well as the use of laser capture microscopic 
techniques to extract single cells (paragraphs 22-31). Studies either support 
or criticise the use of in-vitro approaches in gene expression profiling and 
these are described in paragraphs 33-36. Other issues addressed include the 
use of peripheral blood (paragraphs 29-31) and information arising from 
activities of the International Life Sciences Institute (ILSI) Health and 
Environmental Sciences Institute (HESI) and the European Centre for the 
Validation of Alternative Methods (ECVAM) regarding the use of in-vitro 
toxicogenomic (TGX) studies (paragraphs 37-38). The conclusions from the 
COT workshop on 21st Century Toxicology are summarised in relation to the 
application of large scale non- in-vivo TGX studies in chemical risk 
assessment (paragraphs 40-46) with further information of two FP7 
Programme projects incorporating TGX methods (paragraphs 47-49).  
 
6. Various design issues relating to microarray technology are noted 
including the advantages and disadvantages of the two main microarray 
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platforms used (paragraphs 50-57); platform density (paragraph 58); the 
significance of microarray gene target selection to characterise a toxic 
response (paragraph 59); and the advantages and disadvantages of using 
single or double channel microarrays (paragraphs 60-62). The overall 
limitations of the technology in relation to its inability to detect gene 
expression changes at levels of environmental exposure , the lack of 
correlation between platforms and, more importantly, the lack of correlation 
with downstream (proteomic) changes (paragraphs 63-68) are also 
considered. A summary of the use of alternatives to microarray technology as 
reviewed by Gant (2007) is provided, with particular attention on the mRNA 
translation assay (paragraphs 69-73). The remaining design issues discussed 
include the need to consider the type of hybridisation approach to fit the 
experimental objective e.g. direct, loop or reference design (paragraph 74), 
the various sources of bias (paragraphs 75-79) and the approaches used to 
minimise their effects e.g. blocking and randomisation (paragraph 80), and the 
use of replicates (paragraphs 81-85). Finally, whether or not to pool samples 
and other recommendations are provided in paragraphs 86-88. 
 
II. Low level data analysis of raw transcriptomic data 
 
7. The analysis of transcriptomic data involves two distinct stages. The 
first stage involves analysis of the raw transcriptomic data and is referred to 
as data processing, pre-processing or low-level data analysis. Data 
processing principally aims to correct data sets for sources of variability 
arising from random and systematic error during the experimental procedure. 
Various factors must be considered, which include the choice of scanning 
approach (which can optimise data acquisition) (paragraphs 93-95); the image 
analysis protocol for either spotted cDNA or oligonucleotide microarray; 
(paragraphs 96-102); and the various methods available to sort poor, i.e. 
uninformative, data from potentially useful data e.g. via visual representation 
or using quality metrics (such as Percent present) and Pearson‟s correlation 
(paragraphs 103-105).  
 
8. Transforming the data to correct for background noise represents a 
critical preprocessing step and can be done either via log transformation 
(paragraphs 106-107) or normalisation, for which various methods and 
approaches are available which largely depend on platform type used   
(paragraphs 108-116). Filtering represents a vital pre-processing step to 
remove unreliable data prior to analysis and is discussed in paragraph 118. 
 
III. High-level data analysis (statistical and computational approaches) 
 
9. The second stage of data analysis (also referred to as high-level data 
analysis) refers to the statistical and computational manipulation of 
transformed data. There are two key objectives (i) to identify significant gene 
expression changes (hypothesis testing) and (ii) evaluate toxicologically 
relevant patterns (data mining). 
 
10. Hypothesis testing requires that investigators first decide on the level of 
gene analysis to perform i.e. whether to make single or multiple gene 
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comparisons (paragraphs 123-126). Other considerations include the 
approach used to adjust for multiple testing e.g. calculating the family wise 
error rate (FWER) or controlling the false discovery rate (FDR) (paragraphs 
137-139) and whether to use threshold or statistical based approaches to 
select differentially-expressed genes (DEGs) (paragraphs 127-136). The 
outcome of hypothesis testing is a list of genes, changes in which are 
associated with the condition being tested. It should be noted that the 
outcome of such studies is often more hypothesis generation than hypothesis 
testing. 
 
11. The approaches used in data mining depend on the experimental 
hypothesis/ type of study e.g. class prediction or class discovery, and involve 
either supervised or unsupervised approaches (or both). The 
statistical/computational methods used in class prediction are typically 
supervised and involve the application of a classifier (the type used depending 
on the level of gene analysis) e.g. K-Nearest Neighbour for individual gene 
analysis and Support Vector Machines for multiset analysis (paragraphs 140-
145). Class discovery studies use unsupervised methods such as principal 
component analysis (PCA) for individual gene analysis (paragraphs 146-147), 
or the various clustering algorithms for multiple gene analysis (paragraphs 
148-156). The various software packages used in data mining are briefly 
summarised in paragraphs 158-159.  
 
12. Approaches used to validate the observed differentially regulated 
genes are discussed in relation to quantifying gene expression via real time 
RT-PCR (paragraphs 162-169), or interpreting their biological significance via 
post-analytical approaches (paragraph 170). These include structural gene 
annotation (paragraphs 171-173) followed by the identification of pathways 
and networks overrepresented in a given gene list via pathway and network 
analysis (paragraphs 174-185). The quality of databases storing TGX data 
impacts on data interpretation and various issues relating to management of 
the databases (paragraphs 186-190) and their role in supporting data 
comparison (paragraphs 191-193) and standardisation of TGX protocols 
(paragraphs 194-198) are discussed. 
 
IV. Quality control and sources of variation  
 
13. The final two sections of the paper discuss issues of relevance to both 
design and analysis of TGX data. The application of quality control (QC) 
measures before hybridisation (paragraphs 200-207) or after hybridisation 
(paragraphs 208-222) is considered. Pre-hybridisation QC measures relate to 
the various approaches used to assess RNA quality and target preparation. 
Post hybridisation measures can be based on either assessment of individual 
spots (which links to image analysis data quality assessments) (paragraphs 
208-210), within individual chips/hybridisations (based on a selection of spots 
e.g. housekeeping genes or spike in controls (paragraphs 211-216), or 
between chips e.g. by comparing intensities and expression ratios across 
chips (paragraphs 217-220). Issues relating to the validation of TGX platforms 
are discussed in paragraph 223-224. Finally, the different sources of variation 
in TGX data are described (paragraphs 225-227) including the approaches 



 8 

that have been used to identify and characterise them (paragraphs 228-233) 
and the implications for reproducibility (paragraph 234). 
 
14. Members are reminded that the COT secretariat plans to discuss 
issues relating to the reproducibility of TGX data as a separate discussion 
paper at the next COT meeting in September 2010. This will include 
consideration of factors affecting reproducibility (i.e. specific aspects of TGX 
design and analysis that either enhance or impair reproducibility); comparative 
studies (e.g. cross platform correlation studies); the MicroArray Quality 
Control (MAQC) Project (evaluation of inter and intra-platform reproducibility); 
and the findings from inter-laboratory studies. 
 

 
QUESTIONS FOR THE COMMITTEE 
 
15. Members are asked to comment on the updated information in relation 
to the design, analysis and statistics of TGX studies. 
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SECTION 1: DESIGN OF TRANSCRIPTOMIC-BASED TOXICOLOGY 
STUDIES 
 
INTRODUCTION  
 
1. As with any experimental investigation, design issues of transcriptomic-
based toxicology studies principally relate to those aspects necessary to 
ensure the generation of accurate, precise and reliable data, and approaches 
undertaken to minimise the effect of factors altering the ability to answer the 
question of interest as clearly and efficiently as possible. These issues are 
extensively discussed in the published literature, and the most commonly 
raised topics are outlined below.   
 
2. Various approaches are undertaken to minimise/avoid introducing bias 
in the data and improve the power of studies to detect genes differentially 
expressed between treated and control samples. These include the use of 
replication, randomisation and blocking. The identification and estimation of 
sources of variability and the approaches used to reduce their effects are 
considered separately in section 5.   
 
3. Members may wish to note that Dr Richard S. Paules, who heads the 
Environmental Stress and Cancer Group and the NIEHS Microarray Group 
within the Laboratory of Toxicology and Pharmacology recently gave an 
award lecture at the 2010 SOT Conference in Salt Lake City, Utah, U.S. 
discussing TGX at the NIEHS and how it is impacting on toxicology. Paules 
noted (in a summary abstract) that although technical problems associated 
with signals, the bioinformatic determination of significant changes and 
reliability across platforms and different users have been addressed, there is 
still a critical need to address the more complex and significant issues of the 
appropriate experimental design and interpreting the vast amounts of 
information produced in TGX studies.   
 
A. EXPERIMENTAL OBJECTIVES 
 
4. Outlining the main goal of the study in advance is routinely stated in the 
literature as a prerequisite to producing well designed investigations (Lee et al 
2005). This is because the design must reflect the objective and the practical 
constraints of the experiment being done, so that the most appropriate 
procedures and methods are selected and applied to answer the research 
question. Typical constraints include sample numbers and availability and 
cost which determine the number of slides used and ultimately the reliability of 
the data produced. Research objectives in TGX microarray studies typically 
aim to delineate mechanisms, classify toxicants, predict toxic endpoints and 
identify biomarkers.  
 
5. The National Research Council (NRC) Committee on the Validation of 
Toxicogenomic Technologies held a workshop in 2005 to consider current 
practices and advances. A summary was published and various fundamental 
topics were covered including the categorisation of experimental objectives 



 14 

into class comparison, class prediction and class discovery types (NAS, 
2007a). 
 
 6. The term class comparison is used to describe studies that seek to 
identify a list of genes that are differentially expressed among predefined 
classes of samples e.g. for comparing control and test samples exposed to a 
particular toxicant. Such approaches can be used to identify mechanisms of 
action of particular toxicants. In class prediction studies the objective is to 
develop a method capable of predicting whether a sample belongs to a 
particular predefined class by way of gene expression data. It therefore has a 
similar setup to class comparison in that there is a prespecified group. Such 
an approach requires use of predefined classes to develop the predictive 
method i.e. samples treated with a particular toxicant to produce a known 
gene expression profile. In class discovery studies, there are no predefined 
classes, which rather are constructed during the course of data analysis. The 
researchers are interested in finding some sort of structure in the data set. 
Either genes or samples can be classified.  
 
B. ANIMAL SPECIES  
 
(i) Key issues  
 
7. The type of animal species used in in-vivo based transcript profiling 
toxicology studies constitutes a key design consideration (Lee et al 2005). 
Species differences in xenobiotic metabolising enzymes require that the most 
appropriate species is selected to minimise false positives and maximise true 
positives. However, TGX-based approaches could potentially overcome the 
species-specific differences that typically complicate safety/risk assessment, 
particularly in view of the findings of a study that sought to determine whether 
comprehensive gene expression data from rat in-vivo/in-vitro and human in-
vitro systems could explain the well-known species-specific difference in the 
toxicity of coumarin (Uehara et al., 2008). The authors reported that the 
overall responsiveness of genes identified (relating to glutathione metabolism 
and oxidative stress) were, as expected, much higher in rats than in humans. 
Mammalian animal models, such as rodents, are typically used although the 
use of non-mammalian alternatives such as the zebrafish (Danio rerio) is the 
subject of increasing debate. The use of zebrafish embryo models in 
toxicogenomics is particularly pertinent to regulatory risk assessment 
initiatives seeking to find alternatives to reduce the number of higher-phyla 
animals currently used in toxicity testing, which is discussed further in this 
section.  
 
(ii) Zebrafish (Danio rerio) 
 
8. The use of zebrafish in toxicity assessment was discussed in a 
symposium organised as part of the British Toxicology Society (BTS) Annual 
Meeting in 2008. Issues raised included the similarity of zebrafish tissues to 
their mammalian counterparts and the applicability of zebrafish as a model 
organism, although their use as a frontloaded screen rather than a 
replacement for current regulatory models was emphasised. The session also 
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discussed the methodologies being developed to produce a high throughput 
approach to screening using zebrafish larvae, and an example was provided 
of a study demonstrating how gene expression profiling of zebrafish exposed 
to TCDD enabled identification of the Ahr2 gene as a mediator of TCDD 
toxicity. 
 
9. A scan of the published literature identified two useful reviews and 
several studies using zebrafish models in transcriptome analysis5. Ju et al 
(2007) discussed the use of gene expression profiling in relation to its 
application to aquatic model research. Key issues noted included the lack of 
Affymetrix chips bearing probes (gene targets) for zebrafish due to the limited 
use of the species rendering probe synthesis for zebrafish genechips 
uneconomical; spotted arrays are therefore typically used in zebrafish 
transcriptome analyses. A review by Scholz et al (2008) presented examples 
of the use of zebrafish embryos to study the effect of chemicals on mRNA 
(and protein) patterns and the potential implications of differential expression 
for toxicity. The authors considered zebrafish embryos excellent models for 
studies aimed at understanding toxic mechanisms and identifying possible 
adverse and chronic effects. Lam et al (2008) performed expression-based 
chemogenomics6 on adult zebrafish (using PAHs and oestrogenic 
compounds). Knowledge-based data mining of human homologs of zebrafish 
genes revealed highly conserved chemical-induced biological 
response/effects, health risks and novel biological insights associated with the 
aryl hydrocarbon receptor and oestrogen receptor, from which relevance to 
humans could be inferred. This led them to conclude that zebrafish were in a 
strategic position to bridge the gap between cell-based and rodent models in 
chemogenomics research and applications. Wahl et al (2008) analysed the 
effects of an abundant polybrominated diphenyl ether (PBDE) congener on 
AhR activity and signalling and noted changes in gene expression and toxicity 
similar to those with known AhR agonists. Usenko et al (2008) used zebrafish 
embryos as a model organism to confirm the potential of the nanomaterial 
fullerene C60to elicit oxidative stress responses. Evidence for the applicability 
of zebrafish to integrative toxicogenomic approaches was provided in a study 
by De Wit et al (2008) who exposed two adult zebrafish populations for 14 
days to 0.75 and 1.5 uM TBBPA (a frequently used HPV brominated flame 
retardant) and employed a combined transcriptomic and proteomic approach 
to evaluate molecular hepatotoxic effects. Gene expression findings 
(confirmed by RT-PCR) enabled the authors to hypothesize several working 
mechanisms of TBBPA thereby demonstrating the potential of a combined 
genomic and proteomic approach to generating detailed mechanistic 
toxicological information.  Finally, given the limited knowledge on the action of 
manmade chemicals on vertebrate development, Yang et al (2007) exposed 
zebrafish embryos to a range of environmental toxicants to determine whether 
distinct chemicals would induce specific transcriptional profiles. A barcode-like 
response was observed in what has been considered the most 
comprehensive report on zebrafish embryo toxicogenomics to date, in which 

                                                 
5
 Most zebrafish studies relate to its application to ecotoxicology and developmental issues. 

6
 Chemogenomics is defined as the study of genomic responses to chemical compounds.  
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11 distinct compound and stage specific transcription patterns were identified 
for embryos exposed for 24 h at different time frames (Scholz et al 2008).  
 
C. SAMPLE SIZE 
  
10. Various definitions of sample size exist in the published literature e.g. 
sample size has been used to refer to biological replicates, and to the total 
number of microarray slides or individuals (Lee et al., 2005). Choosing the 
optimal number of biological replicates is a critical step in the design of a TGX 
experiment as the larger the size the more reliable the results, although the 
more expensive it becomes. Therefore, calculating the most appropriate 
sample size is essential – the most appropriate being a size that maximises 
the scientific information at minimal cost i.e. the smallest sample size that still 
provides sufficient power to recognise genes regulated at a specified level, 
while controlling the false discovery rate (FDR) at an acceptable level 
(Elashoff et al 2008).  
 

11. Calculation of sample size is a complex process as it requires 
consideration of: the magnitude of the variability of the population (gene 
expression levels); magnitude of effect (i.e. expression changes that are 
biologically meaningful or desirable to detect); acceptable false 
positive/discovery rate (FDR) (e.g. 0.05); and the desired power to detect 
differences (e.g. to detect only the 10% most-regulated genes requires a 
power = 0.1) (Lee et al 2005; Ahmed, 2006a; Page et al 2006; Jorstad et al 
2007). This information is frequently derived from previous pilot studies 
performed by the research team or from similar data in the literature. However, 
it is also possible that relevant information is not available, for example the 
minimum change in the magnitude of expression of a given gene that is 
biologically meaningful. 
 
12. Several statistical/ computational based methods are in use, for 
example power analysis can be used to estimate the minimum number of 
array samples for two colour multiclass discrimination (Ahmed, 2006a). The 
procedure employs the Wilks‟ lambda score (F-test) together with the leave-
one-out cross validation to measure the proportion of variance, and Fischer 
discriminant analysis (FDA) to find linear combinations of discriminatory 
genes that characterise/separate samples. Sample size formulas are also 
available for class comparison studies which take into account how the 
relative sources of variation impact on the sample size requirement and how 
the design decisions (i.e. pooling, technical replicates and dye swaps) 
influence the costs associated with the arrays (Ahmed, 2006a; NAS, 2007a). 
For class prediction several guidelines and methodologies have been 
suggested, while size calculation for class discovery studies is considered 
more problematic (NAS, 2007a).  
 
13. Wei et al (2004) reported that available studies in general used sample 
sizes that were too small to detect a 2-fold change with 90% probability and a 
p-value of 0.01 in humans. For experimental animals, Lee et al (2005) 
suggest that practically up to 10 inbred mice per group are required for 
treatment with toxic agent, while in humans a much larger number is needed 
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e.g. 85 individuals (Lampe et al., 2004). The reason why more subjects are 
needed for studies that involve humans (or any other outbred population) cf. 
studies that employ samples from an inbred population is because humans 
typically exhibit larger variability than those seen in experimental animals or 
cell cultures due to genetic influence on gene expression. Ahmed (2006a) 
reports that approximately 5 times as many humans are required relative to 
mouse samples to detect the same magnitude of change with the same 
statistical power at the same significance level for cDNA array data. To detect 
a twofold change with 90% probability and a p-value of 0.01 in humans 
requires at lease 20 samples in the 75% least-variable genes. This is much 
larger than the number of samples commonly employed in such studies. 
 
14. Page et al (2006) developed the Microarray PowerAtlas, considered to 
be a valuable resource for estimating required sample sizes. The atlas 
enables investigators to build on previous studies that have similar 
experimental characteristics and also allows researchers to upload their own 
pilot data to derive power and sample size estimates. At the time of 
publication, estimates in the PowerAtlas were based on 632 experiments from 
Gene Expression Omnibus (GEO). These are regularly updated with new 
datasets from GEO and other databases. The authors comment that the use 
of PowerAtlas not only prevents investigators using too many samples in a 
group (which is cost inefficient) but also helps by eliminating costs arising 
from experiments that have too few replicates to have sufficient power to yield 
good results.  
 
15.  In a previous meeting, Members commented on the potential value of 
TGX in reducing the number of animals used in toxicological tests. Initiatives 
to reduce animal numbers and the potential role of TGX are discussed further 
in paragraphs 38-48. NB. Such issues are not driven solely by financial 
concerns but also by humane considerations and the biological relevance of 
toxicity testing in animals. 
 
D. DOSE AND TIME-POINTS  
 
(i) Dose dependent analysis 
 
16. The dose level/treatment regime used in TGX studies constitutes 
another key design consideration, particularly with regard to their potential 
application in risk assessment. Incorporating multiple dose groups enables 
toxicity thresholds to be determined (Lee et al 2005). Multiple doses in the low 
dose range may enable detection of small effects (if they exist) at low levels of 
exposure i.e. lower than the lowest observed effect level for traditional toxicity 
endpoints, which thereby makes it possible to address questions about the 
shape of the dose-response curve at these lower exposure levels. Studies 
using inappropriate doses can limit the value of their data, as the gene 
expression changes detected in those that use only high doses may relate 
mainly to overt cytotoxic mechanisms. Conversely, too low a dose may result 
in no discernable toxicologically relevant gene signatures being detected, an 
outcome that might be considered to be cost ineffective. However, this very 
much depends on the objective of the study. 



 18 

 
17. Clearly, the use of multiple dose levels can yield more reliable and 
relevant data but such experiments are neither simple nor inexpensive.  Dose 
response gene expression studies that integrate other analyses (such as 
histopathology or proteomics) should incorporate not only multiple dose levels 
but also multiple time points to accommodate any downstream related 
changes. Furthermore, the number of animals at each dose and time point 
must be sufficient to provide reasonable statistical power. Andersen et al 
(2008) provide a good illustration of the use of global gene expression 
analysis to support conclusions about dose-dependent transitions7 in toxic 
responses, in this case the response of the rodent nasal epithelium to 
formaldehyde (tumourigenic). The study included both time (6h inhalation per 
day, 5 days/week for up to 3 weeks) and dose (0-15 ppm) dimensions and the 
two lowest doses (0.7 and 2 ppm) did not produce discernable effects at the 
histological or macroscopic level at any time point. Furthermore, gene 
expression data provided confirmation that the responses were not linear at 
low doses.  
 
18. Burgoon & Zacharewski (2008) developed an automated application 
called ToxResponse Modeler that can be used to analyse any large dose 
response data set, such as that generated in a TGX study. The ToxResponse 
Modeler uses an automated process capable of large scale modelling and 
model selection to streamline analyses and point of departure calculations 
across hundreds of responses. The authors propose that the application could 
be used to assist in the ranking and prioritisation of compounds that warrant 
further investigation and development.  
 
(ii) Temporal analysis  
 
19. Temporal analyses of gene expression changes provides further 
insight into the key biochemical mechanisms and processes associated with 
toxicant exposure (particularly chronic exposures) (Lee et al 2005). 
Incorporating a time course into an experiment enables researchers to 
determine not only genes involved in early/adaptive responses but those 
involved in the elicitation and progression of adverse effects. The use of 
inappropriate time points can preclude association with other downstream 
changes thereby hindering data interpretation and phenotypic anchorage of 
toxicologically relevant gene expression changes. Naciff et al (2007) 
evaluated the temporal response of the uterus to an oestrogenic stimulus (17 
alpha-ethinyl estradiol – EE) and detected expression changes in families of 
genes responsible for eliciting each stage of the oestrus cycle prior to 
appearance of cellular and morphological changes in the tissue. Genes that 
control cell division and suppress apoptosis were expressed a few hours 
before the onset of measurable cell proliferation. Toxicologically relevant time-
and dose-dependent gene expression profiles were identified in a study by 
Kwon et al (2008) who exposed mice to multiple doses of a bile duct-
damaging chemical (4,4‟-methylene dianiline – MDA) (10 or 100 mg/kg b.w.) 

                                                 
7
 Dose-dependent transitions are described by Daston (2008) as inflection points in the dose-response 

curve that occur when the concentration of the exogenous agent is sufficiently high to alter normal 

physiological function.  
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killed 6, 24 and 72 hours after treatment. Serum chemistry, histopathological 
and transcript profiling analyses were performed. Resultant bile duct cell injury 
followed by regeneration was associated with up and down regulation of 
various functionally defined and undefined genes, verified by RT-PCR. The 
authors were able to hypothesize that the chemokine-mediated Th1 pathway 
was involved in the inflammatory process, and Wnt/beta-catenin signalling 
pathways were responsible for the repair of the MDA-injured liver.  
 
20. Morgan et al (2004) noted a branch of mathematics known as Fourier 
Analysis of Time Series that considers the interactive/changing (dynamic) 
nature of gene expression changes via time series experiments. It is thought 
such an approach provides a better understanding of a system‟s 
structure/behaviour in response to chemical exposure ultimately leading to 
improved study design and data that are more reliable.  
 
E. RNA SAMPLING 
 
21. The procedures used and tissues sourced to derive RNA for 
transcriptomic analysis must be carefully considered to avoid introducing bias 
into the results. Investigators conducting in-vivo studies must weigh the 
advantages against the limitations of sampling the whole organ, region or 
specific single cells from a chosen tissue. In-vitro studies, however, while not 
faced with tissue-handling considerations have drawbacks of their own. 
 
(i) In-vivo approaches  
 
1. Whole organ, regional tissues  
 
22. Although potentially any organ can be used as a source of RNA, to 
date, the liver has been used most often for gene expression profiling 
experiments due to its involvement in the biotransformation of compounds to 
their toxic metabolites, ease of sampling and removal, and the high quality 
RNA yielded from liver tissue preparations (Irwin et al 2004). However, the 
drawback of using the whole liver (as with any whole organ) arises from the 
fact that any treatment response represents an average of all cells/locations 
(Morgan et al 2004). Spatial and regional issues abound due to the existence 
of zonal/lobular gene expression differences (i.e. genes coding for metabolic 
enzymes exhibiting a gradient of expression), and differential sensitivity to a 
toxicant‟s effects due to the mixed cell population8 of the liver. Furthermore, 
there are also temporal issues due to the liver‟s dynamic transcriptome 
activity. Other organs9 exhibiting similar zonation issues include the kidney.   
 
23. Irwin et al (2004) suggests possible approaches to addressing zonation 
issues with liver samples, and highlights potential flaws in paracetamol 
studies using intra-peritoneal injection as a route of administration. These 

                                                 
8
 Cell types include hepatocytes, endothelial cells, Kuppfer cells, Ito cells (hepatic stellate cells) and 

biliary epithelial cells. NB. Sixty per cent of nuclei in the rat liver are hepatocytes yet all cells in a 

sample will contribute to the analysis after homogenisation). 
9
 In fact, the liver (in comparison to other organs) is one of the more homogeneous tissues.  Almost all 

other tissues have zonal problems. 
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authors have proposed that IP administration bathes the liver in solution of the 
compound resulting in a non-uniform exposure of liver lobes, producing 
inaccurate/ misleading gene expression patterns that do not reflect what 
would occur from oral administration.  
 
24. RNA sourced from particular regions of a tissue would clearly yield 
more accurate data than whole organ based analyses and approaches such 
as laser microscopic dissection (or laser capture microscopy (LCM)) have 
been developed to isolate specific tissue regions. Plummer et al (2007) used 
LCM to isolate cells from either the interstitium or seminiferous cords of the 
fetal rat testes. LCM use requires that tissues first undergo staining to 
visualise cell boundaries and allow for sufficient structural orientation. 
However, this usually results in a considerable reduction in RNA content of 
dissected specimens. To circumvent this, Ruetze et al (2010) developed a 
modified hematoxylin/eosin staining protocol that allows concurrent 
visualisation of important structures and subsequent isolation of sufficient 
RNA for use in linear amplification and quantitative analyses.  
 
2. Single cells  
 
25. The ideal method of choice would be to conduct transcriptome 
analyses using specific cells of interest isolated from toxicant exposed tissues. 
Single cell gene expression profiling is increasingly being used as an 
approach to generating treatment responses that are specific to a particular 
cell/location.  
 
26. Tietjen et al (2003) provides an early study example of attempts to 
monitor expression profiles of individual cells. Single mature and progenitor 
cells of the highly heterogeneous mammalian olfactory system were collected 
in an effort to generate mechanistic data on neuronal differentiation and 
diversification. Transcriptome data was generated following PCR amplification 
of synthesised cDNA. Retrospective PCR and Southern blot analysis was 
used to determine the identity and developmental stage of the cells. The 
authors identified a wealth of transcriptional differences between different 
cells and were able to define signal pathways expressed by individual 
progenitors at precise developmental stages.  
 
27. Plummer et al (2007) used LCM to isolate specific cells (Leydig and 
Sertoli cells) from microscopic regions of sectioned fetal rat testes to 
determine in which compartment dibutyl phthalate (DBP) induced gene 
expression changes occurred.  The procedure involved marking out the area 
to be dissected (with only microscopically clearly definable regions outlined) 
and cutting using a PALM UV laser microbeam. Samples were then pooled 
and RNA extracted for microarray analysis. Plummer et al (2009) were able to 
identify and localise DBP regulated genes to the Leydig cells and hypothesise 
a possible mechanism of action.  
 
28. Roach et al (2009) exposed primary hepatoctyes to oxidative stress 
over multiple timepoints and dynamically monitored the responses for each 
cell by developing a microwell cytometry platform consisting of a 
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microfabricated in-vitro device with high density arrays of cell-sized microwells 
and custom software for automated image processing and data analysis. The 
cells were labelled with fluorescent probes that were sensitive to 
mitochondrial membrane potential and free radical generation. The authors 
found that the cytometry platform was able to provide a detailed picture of the 
heterogeneity present in cell responses to oxidative stress and concluded that 
it was a particularly useful tool for delineating issues with heterogeneity in cell 
populations .  
 
3. Peripheral blood  
 
29. The use of peripheral blood (PB) as a tissue source of RNA offers 
significant advantages to TGX research. As a non-invasive surrogate for 
inaccessible tissue, PB offers translational benefits to clinical settings; the 
rationale being that circulating blood might reflect physiological and 
pathological events occurring in different tissues in the body. Various 
techniques are used to prepare PB for gene expression analysis such as 
PAXgene (isolates RNA from whole blood), QIAamp (selectively lyses 
eythrocytes prior to RNA isolation), Ficoll-Hypaque (separates peripheral 
blood mononuclear cells prior to RNA isolation) (Thompson & Hackett, 2008).  
 
30. A microarray study by Debey et al (2004) assessed whether blood 
isolation factors could affect gene expression analysis and thereby potentially 
bias the results. RNA was isolated from blood taken from human volunteers 
with a 20-24h delay in processing. The authors observed expression of 
hypoxia-related gene signatures and noted that these and change in the 
expression of other genes prevented the assessment of gene signatures of 
inter-individual variation. Gene expression patterns were also found to be 
dependent on the cell type chosen and RNA technique used. The authors 
recommended that TGX studies should aim to reduce the time to RNA 
isolation and consider the cell type prior to conducting the study.  
 
31. Aside from the obvious limitations of using surrogate tissues, the 
predominance of globin mRNA from the reticulocyte population in total blood 
is reported to reduce the sensitivity (of detecting changes) when PB is used 
as an RNA source (Thompson & Hackett, 2008). A possible redress is the 
removal of blood components or the use of fractionated blood (for peripheral 
blood mononuclear cells which are the most transcriptionally active cell 
population in blood) although this can interfere with microarray data and 
potentially bias the results. 
 
 
4. Archival tissue 
 
32. Archiving tissue is considered to be particularly useful to enable 
subsequent gene expression studies. To preserve tissue for later RNA 
isolation, tissue fixative and processing methods are employed e.g. liquid 
nitrogen immersion, which has been reported to compromise RNA integrity 
(Thompson & Hackett, 2008). However, a study by Sumida et al (2007) 
provides evidence that tissues and RNA quality are well preserved even after 
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freezer storage for up to 2.5 years. Furthermore, LCM can be used to extract 
RNA from formalin-fixed paraffin embedded tissue although there is concern 
that this can mute lower fold changes in expression.  
 
(ii) In-vitro approaches 
 
1. Advantages and disadvantages  
 
33. Aside from being cheaper than in-vivo testing and more readily 
automated (and thus faster), in-vitro based analyses provide opportunities for 
improved understanding of a transcriptomic response to toxicants. This is 
because of the complexity and detail of the studies that can be performed.  
For example, Morgan et al (2002) used cDNA microarrays to examine 
chemically induced alterations of gene expression to detect one or more 
selected mechanisms of toxicity in HepG2 cells exposed to a diverse group of 
toxicants. Gene expression correlated with morphological and biochemical 
indicators of toxicity and there was good correlation between biochemical 
measures of oxidative stress and transcriptional measures. However, there is 
concern that in-vitro studies are limited by the fact that the data do not directly 
compare to the results obtained in vivo (at least not on a gene-to-gene 
comparison basis). Indeed, questions about their relevance to in-vivo toxicity 
limit their use in the regulatory decision making process without additional 
supporting data.  
 
34. A study conducted by Boess et al (2003) highlighted the problems of 
using in-vitro data. The authors characterised and compared the microarray 
gene expression of several in-vitro systems (i.e. rat cell lines, primary 
hepatocytes in conventional monolayer or sandwich culture and liver slices) 
with gene expression of whole liver tissue. Their study findings led them to 
conclude that primary in-vitro systems result in pronounced gene expression 
changes related to adaptation and de-differentiation. However, two studies 
identified in the published literature counter the concerns over the relevance 
of in-vitro to in-vivo-based analyses.  
 
35.  Suzuki et al (2008) examined the feasibility of screening for 
hepatotoxicity by an in-vitro gene expression analysis using rat primary 
hepatocytes and Affymetrix arrays. Hepatocytes were exposed to for 6 or 24 h 
to eight drugs with different mechanisms of hepatoxicity (i.e. paracetamol, 
cyclophosphamide, clofibrate, chlorpromazine, lithocholic acid, cisplatin, 
diclofenac and disulfiram) at one third of the cytotoxic concentration (TC50). 
The types of transcriptional changes observed were generally consistent with 
previously reported in-vivo data to the extent that the authors were able to 
conclude that in-vitro gene expression analysis of hepatocytes provides a 
useful tool for evaluating the toxicological profile of drugs and in screening for 
the direct toxicity of drugs against hepatocytes.  
 
36. Elferink et al (2008) analysed the effect of different model hepatotoxins 
(liposaccharide, paracetamol, carbon tetrachloride and gliotoxin) at the gene 
expression level in rat liver both in-vivo and in-vitro (via a precision cut liver 
slice model whereby all liver cell types are present in their natural 
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architecture). The authors consider this model particularly useful owing to the 
multi-cellular nature of toxicant-induced effects that involve hepatocytes and 
other cell types. The authors found that the in-vitro profiles of gene expression 
could predict the toxicity and pathology observed in vivo and concluded that 
the rat liver slice system could be used as an appropriate tool for the 
prediction of multi-cellular liver toxicity.  
 
37.  The HESI Committee on the Application of Genomics to Mechanism-
based Risk Assessment conducted a cross-sector international online survey 
to assess the state of TGX and identify real and potential barriers to progress 
(Pettit et al 2010). From the 112 respondents, it appeared that in-vitro models 
(cell lines and primary cultures) were favoured more than whole organ or in-
vivo approaches. It was suggested that this was due to the fact that their 
inherent simplicity renders data interpretation more straightforward. Also, 
given the cost of generating samples from in-vitro systems is substantially 
less than the costs required to generate samples from in-vivo systems, 
running inexpensive experiments to generate samples for use on expensive 
platforms is generally considered reasonable.   
 
38. The European Centre for the Validation of Alternative Methods 
(ECVAM)10 aims to promote the scientific and regulatory acceptance of non-
animal tests (i.e. in-vitro, in-silico tests) through research, test development 
and validation, and a database service (http://ecvam.jrc.ec.europa.eu/). 
ECVAM considers TGX approaches as second generation of alternatives that 
can be applied in areas where no satisfactory alternatives exist e.g. 
carcinogenicity, endocrine disruption and chronic toxicity. Through workshops, 
task-force meetings and special symposia, experts review current status on 
specific topics and make recommendations about the best way to integrate in-
vitro tests and alternative methods into the regulatory process. The first 
workshop on the topic, entitled „Validation of TGX-Based Test Systems‟ held 
in Italy in 2003 (jointly organised by the Interagency Coordinating Committee 
on the Validation of Alternative Methods (ICCVAM) and National Toxicology 
Program (NTP) Interagency Center for the Evaluation of Alternative 
Toxicological Methods (NICEATM)), discussed and defined principles 
applicable to the validation of TGX platforms and specific toxicological test 
methods that incorporate TGX technologies (Corvi et al 2006). The validation 
of TGX platforms is discussed further in section 4.  
 

39. A recent attempt to integrate in-vitro toxicology into regulatory risk 
assessment is provided by Muellner et al (2010) who conducted a focussed 
TGX analysis of the regulated disinfection by-product (DBP) bromoacetic acid 
(BAA)11. The authors aimed to determine how BAA regulates expression of 
genes involved in DNA damage/repair and toxic response in non transformed 
human cells. Transcriptome profiles for 168 genes with 30 min and 4h 
exposure times that did not produce cytotoxicity were generated, and the 
levels of 25 transcripts were significantly modulated following 30 min BAA 

                                                 
10

 ECVAM is part of the EC Joint Research Centre, Institute for Health & Consumer Protection 
11

 DBPs arise from the application of current water disinfection methods and produce toxicologically 

relevant effects and thus represent an important class of environmentally hazardous chemicals with 

potential long term health implications (Muellner et al., 2010) 
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treatment (16 up/ 9 down). The majority of transcripts with altered profiles 
were from genes involved in DNA repair, especially repair of double stranded 
DNA breaks. The authors concluded that their study was the first TGX study 
in a nontransformed human cell of a regulated drinking water disinfection by-
product, and implicated double strand DNA breaks as a consequence of BAA 
exposure.  
 
 
2. Twenty-First Century Toxicology 
 
40. Hazard screening typically involves in-vivo and in-vitro tests . The 
critical question is whether TGX can improve hazard screening by making 
these tests faster, more comprehensive, less reliant on higher order animals 
and more predictive and accurate without being prohibitively expensive (NAS, 
2007b).  
 
41.  The COT held a workshop in February 2009 entitled „21st Century 
Toxicology‟ to discuss issues emerging from the 2007 report „Toxicity Testing 
in the 21st Century: A Vision‟ published by the National Research Council of 
the US National Academies (NRC, 2007). The report documented a 10-20 
year strategy to develop and validate toxicological protocols that produced 
better science and reduced animal testing. The reasoning behind this initiative 
centres on the fact that although in-vivo testing covers many biological 
processes which in-vitro models cannot emulate, there are drawbacks and 
these relate to concern over the ethics of the scale of animal experimentation, 
the relevance of animal to human extrapolations, the cost of animal studies, 
and their inability to identify idiosyncratic human responses. The COT 
workshop noted the establishment of international efforts to meet these aims, 
there being a particular focus on predicting human in vivo responses to 
exposures of substances assessed under REACH and similar initiatives. It is 
envisioned by the NRC and others that this will be achieved via the 
development and validation of novel methods that can predict hazards, 
determine mechanisms and integrate data e.g. in-vitro (biochemical and cell-
based assays), in-vivo (lower order organisms e.g. zebrafish, C. elegans) and 
computational models of biological systems. TGX was identified as a key 
approach to addressing the following issues12: 
 
a). Prioritisation and prediction of environmental toxicity  
 
42. This issue relates to the thousands of substances in use/produced for 
use for which there are inadequate toxicological data. Prioritising the safety 
assessment of substances that raise most potential concern is considered the 
most appropriate approach given the sheer volume of candidate chemicals to 
be assessed and the fact current in-vivo approaches are untenable.  
 

                                                 
12

 Other issues discussed in the workshop included the metabolic profiling strategies for 

characterisation of toxic mechanisms and a tiered approach for the use of non-testing methods in the 

regulatory assessment of chemicals. These are not addressed in this paper, as they do not specifically 

relate to transcriptomic profiling analyses.  
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43. In the United States, the Environment Protection Agency (EPA) 
ToxCast Program plans to do this via the application of computational 
toxicology, defined as “the integration of modern computing and information 
technology with molecular biology to improve Agency prioritisation of data 
requirements and risk assessment of chemicals”. Kavlock et al (2008) notes 
that the main difference between computational and traditional toxicology is 
scale with regards to the number of chemicals studied, the breadth of 
endpoints and pathways covered, the levels of biological organisation 
examined, the range of exposure conditions considered and the coverage of 
life stages, genders and species. ToxCast therefore involves conducting 
research to characterise hazards via high throughput assays that measure the 
impact of substances on various endpoints and then combining these results 
with a priori information to identify compounds likely to present greatest 
hazard/risk. The ToxCast Program also aims to predict hazards by screening 
for potential toxic in-vivo effects, without testing in animals, via predictive 
modelling. This would involve developing predictive models via a training set 
of substances well-characterised in-vivo (e.g. pesticides) and running poorly 
characterised or uncharacterised compounds through the models for 
comparisons to see if any similarities exist that are predictive of possible in-
vivo effects. However, further validation of the training set is required with 
plans to include a further 300 or more data-rich chemicals and examination of 
animal to human extrapolations using known human toxicants. Nanomaterials 
would be used as a pilot before passing any other poorly characterised or 
uncharacterised substances through the models. It is envisioned that this will 
result in fewer animals being used in the process and a significant reduction in 
the assessment period.  
 
44. Computational toxicology is being led on a global level by a 
collaboration between the secretariats of the International Programme on 
Chemical Safety (IPCS) and the Organisation for Economic Co-operation and 
Development (OECD). This collaboration arose from the need to prioritise co-
ordination and exchange of information, given the rate of change in TGX and 
the scarcity of resources. Workshops organised in 2003 (in Germany) and 
2004 (in Japan) provided a focus to work on various joint objectives including 
surveying available omics tools. A meeting in 2007 for the IPCS/OECD 
advisory group (open to representatives of other sectors) provided an open 
forum on computational toxicology.  
 
b) The EU FP6/7 and other Europe-wide projects contributing to the vision 
 
45. Questions over the accuracy, specificity and relevance of current 
carcinogenicity assessment methods and concerns about their cost, speed 
and use of animals have led to calls from EU REACH regulation and 
elsewhere for alternative approaches. TGX forms the basis of these 
alternative tests, particularly in relation to two initiatives: (a) the 
Carcinogenomics Project, launched under the 6th Framework Programme and 
presented as an in-vitro alternative to rodent bioassays; and (b) the Children‟s 
Environment & Health Action Plan for Europe, which is applying omics based 
biomarkers to analyse perinatal exposures to carcinogenic agents following 
concern over environmental health effects in European children.  
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46. Toxicogenomic approaches were also applied in the FP6 Programme 
InnoMed PredTox which aimed to identify early in development drugs that 
would result in unacceptable toxicity in chronic bioassays and thereby provide 
substantial cost savings and reduce animal use. The plan involved exposing 
animals (short term) to failed drug candidates (with known chronic liver/kidney 
toxicity) and generating microarray data of gene expression profiles to predict 
future chronic toxicity. Such an approach is considered valuable as it provides 
an indication of chronic effects in short term study. The FP7 Programme 
Predict-IV extends the aims of PredTox to improve prediction of drug toxicity 
to accelerate the drug development process and reduce failure rates in later 
stages of development. The work involves a multidisciplinary approach that 
incorporates TGX methods.  
 
47.  The Innovative Medicines Initiatives (IMI)13 (initially launched under the 
FP6 for Research) represents one of the first Joint Technology Initiatives 
introduced under the 7th Framework programme to realise Public-Private 
Partnerships at the European research level. In view of several challenges 
within the European biopharmaceutical sector (i.e. insufficient R&D 
investment, complex technologies and the fragmented nature of research in 
Europe) IMI‟s overall goal is to reinvigorate the biopharmaceutical sector in 
Europe, and in particular, overcome difficulties in predicting safety and 
efficacy, poor knowledge management, and gaps in education and training. 
IMI hope to achieve this by pooling competencies and resources from the 
public and private domain (via a unique collaboration between competitor 
pharmaceutical companies) and produced a research agenda that sets forth 
recommendations to overcome the above research bottlenecks in the drug 
development process. Fifteen IMI projects are currently ongoing (from the first 
call for proposals in 2008) and the following two Norvartis Pharma co-
ordinated projects represent TGX-based efforts.  
 
48. The MARCAR project/consortium14 (an acronym for BioMARkers and 
molecular tumor classification for non-genotoxic CARcinogenesis) seeks to 
address the lack of reliable tools for predicting which compounds have a 
potential for later cancer development. The MARCAR project will apply 
mechanism-based (TGX) approaches to establish reliable biomarkers for the 
early prediction of potential for non-genotoxic carcinogenesis and to improve 
the molecular classification of tumors that can be caused by non-genotoxic 
carcinogenesis.  
 
49. The eTOX Project15 aims to develop a computer-based database and 
novel software tools to enable better in silico prediction of the toxicological 
profiles of new compounds in the early stages of drug development. This 
follows from the lack of a comprehensive computer toxicology database and a 
lack of integrative tools capable of exploiting such a database. The eTOX 
database, therefore, aims to be the largest toxicology repository for data 
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 IMI website: http://imi.europa.eu/index_en.html 
14

 MARCAR is managed by University of Dundee,  
15

 eTOX is managed by the private non-profit independent Spanish organisation Fundacio IMiM 
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derived from a range of toxicology-related disciplines. eTOX plans to combine 
public data and historical data from 14 pharmaceutical companies and device 
management tools for large databases to make computer based predictions of 
the potential toxicity profiles of new compounds based on their chemical 
structure.  
 
 
F. MICROARRAY 
 
50. Microarray design issues comprise a key subject area and mostly 
relate to the different platforms available and the experimental approach used 
in TGX studies.  
 
(i) Microarray platforms  
 
51. The type of microarray platform used is a key design consideration for 
any TGX microarray study (Lee et al 2005). Evaluation of the literature shows 
that to date two main types of DNA microarrays are widely used in TGX 
research: spotted and Affymetrix (high density) gene chip microarrays, 
although other platforms are increasingly being used e.g. Illumina (as noted 
below).  
 
1. Spotted microarrays  
 
52. Spotted16 microarrays use either cDNA or oligonucleotides as their 
gene targets, which confer specific advantages and disadvantages over high 
density arrays (Lee et al 2005; Ju et al 2007). Gene targets are represented 
by a single cDNA [or oligonucleotide] clone spotted on the array (Morris et al 
2006), and contain between 10-20K in one microarray slide (Yang & Speed, 
2002).  Notable advantages include the cost (spotted arrays are considerably 
cheaper per array than high density chips), and the fact that spotted arrays 
are customised which allows the researcher to determine the microarray 
content. cDNA microarrays are also not as sensitive to variation in sequence 
polymorphisms as occurs with short oligonucleotide arrays (Ahmed, 2006a). 
However, spotted microarrays are limited by their long set-up time, the 
variable amounts of DNA that can be placed on spots, their increased 
susceptiblility to contamination and high background levels. Investigators may 
use spotted oligonucleotide microarrays (or long17 oligonucleotide microarrays 
(LOM)) in preference to their cDNA-based counterparts (or amplicon18 arrays), 
following reports of better correlation between LOM expression data and 
quantitative real-time PCR (Ju et al 2007). LOM data is also noted to have 
greater concordance with Affymetrix data.  However, given that amplicon 
arrays use longer gene targets, this enables more stringent washing 
conditions which results in stronger signals and less background.  
 

                                                 
16

 The word “spotted” refers to the process by which sequences of DNA are attached to a glass slide or 

other surface (Kerr & Churchill, 2001).  
17

 Note. These targets are longer than the oligonucleotides used in Affymetrix arrays and are based on 

expressed sequence tags (ESTs) (Ju et al 2007).  
18

 Due to the PCR amplification of the cDNA fragments (Ju et al 2007)  



 28 

2. Oligonucleotide microarrays  
 
53. In high density oligonucleotide arrays, gene targets are represented by 
“probes” or short sequences of nucleotides from the target gene sequence 
(Morris et al 2006). Affymetrix Inc. is the largest producer of oligonucelotide 
arrays (GeneChips), other types typically used include Agilent and Nimblegen. 
A single Affymetrix array slide contains between 200-500K probes (Yang & 
Speed, 2002). These oligonucleotides are noted for providing better 
characterised gene targets than spotted cDNA arrays (as the concentration 
and sequences are known and probe pairs are used to ensure specificity (Lee 
et al 2005). Furthermore, the fact that Affymetrix chips can be automated 
produces fewer problems with samples.  
 
54. GeneChips contain multiple probes for each gene aka „probeset‟ as an 
attempt to average out the natural variability among probes wrt their binding to 
matrix. The probes (based on sequence information contained in GenBank, 
Unigene, RefSeq databases) are 25 bases long and classed as either Perfect 
Match (PM) probes i.e. the target sequence or mismatch (MM) probes that are 
identical to the PM probes but their middle position base (13) is substituted by 
its complimentary base (these corresponding MM probes are for normalisation 
purposes). A probe pair comprises one PM and one MM, with a single probe 
pair scanning a particular sequence of a gene. A probe set comprises 11-20 
related probe pairs for a target RNA.  
 

55. Another microarray platform documented in the literature is the nylon 
cDNA array (Atlas array), considered to be an early form of microarray that 
uses radioactive rather than fluorescent labelling. Atlas arrays are thought to 
increase sensitivity (NRC, 2007) but they are limited by their low density and 
their high false positive rate (which arises from bleeding of highly 
overexpressed genes into adjacent targets on the membrane autoradiography 
(Irwin et al 2004)).  
 
56. The Illumina Microarray (aka BeadArray) is becoming a popular 
microarray platform due to its cost effectiveness and accuracy (Kuhn et al 
2004;). The BeadArray is based on randomly arranged beads, and each bead 
binds many identical copies of a gene-specific probe sequence; each type of 
bead having on average 30 randomly positioned replicates. Such a design is 
thought to contribute to the BeadArray‟s enhanced measurement precision 
and reliability (as it yields higher confidence calls and more robust estimations 
compared to other microarray types). However, its unique design does make 
preprocessing and quality control steps significantly different from other types 
of microarrays, such that most Illumina-based analyses incorporate 
preprocessing methods originally designed for Affymetrix microarrays. Du et 
al (2008), however, describe the development and implementation of „lumi‟, a 
Bioconducter package especially designed to process Illumina microarray 
data.  
 
57. Overall, the range of choices available for microarray platforms is a 
limitation as it contributes to variation in data (Yauk & Berndt 2007). Other 
challenges identified relate to technical problems arising with gene annotation, 
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programmes generating gene lists and the target‟s location on the chip, 
although these issues could possibly be resolved by considering the biological 
plausibility of results and using quantitative PCR to confirm a subset of genes 
identified (Irwin et al 2004).  
 
3. Platform density  
 
58.  This issue was identified in the 2004 Joint statement (See COT 
conclusion (e)) and relates to the advantages and disadvantages of using 
high or low density microarray platforms and the lack of studies comparing the 
type of data generated in both. Concern was raised that the expense of using 
high density microarray platforms resulted in studies using less microarrays 
thereby compromising the quality of study design. This issue has however 
been resolved particularly in view of the findings of cross platform studies led 
by the HESI Nephrotoxicity Working Group, that examined the ability of 
different microarray platforms (e.g. custom (spotted) cDNA microarray vs. 
high density oligonucleotide Affymetrix microarray) to identify gene expression 
changes in kidneys of rats treated with cisplatin (Thompson et al 2004). A set 
of 93 differentially expressed genes associated with cisplatin-induced renal 
injury were identified on the cDNA array of which 48 could be identified as 
differentially expressed on the Affymetrix platform. The authors suggested 
that these findings demonstrate that gene profiles linked to specific types of 
tissue injury or mechanisms of toxicity (and identified in well-performed 
replicated microarray experiments) may be extrapolatable across platform 
technologies. Members are advised that the issue of cross-platform 
comparisons will be further addressed in a separate COT discussion paper on 
reproducibility.  
 
(ii) Gene target selection for microarray 
 
59.  The type and number of genes to measure in a microarray that will 
ultimately help characterise a toxic response constitutes another key design 
issue (Lee et al 2005). Genes fall into many categories (e.g. xenobiotic 
metabolism, DNA repair, etc) and ready-made online resources of categorised 
genes are available to investigators conducting knowledge-based microarray 
experiments i.e. where and a priori hypothesis exists in relation to the toxicant 
mechanism of action. Notable online resources include GeneCards, Kyoto 
Encylcopedia of Genes and Genomes (KEGG), Toxicogenomics Research 
Consortium (TRC) and Chemical Effects in Biological Systems (CEBs). The 
first experiment is usually an exploratory one employing comprehensive 
arrays that include as many genes as possible in order to generate 
hypotheses (Ahmed, 2006a). These are followed by focussed arrays to test 
the hypotheses and elucidate mechanisms.  
 
(iii) Single vs. double-channel microarray approaches  
 
60.  TGX studies use one of two microarray approaches: the single (one-
colour) fluor/channel approach or the double (two colour) fluor/channel 
approach (Irwin 2004; Hayes & Bradfield 2005). The single channel approach 
involves hybridising control and experimental samples on separate 
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microarrays. Affymetrix arrays are inherently single channel, though some 
associated analysis tools facilitate pairwise comparisons (Slonim & Yanai, 
2009). NB. Agilent and NimbleGen can be run using either one or two 
channels. For oligonucleotide arrays, labelling is achieved via use of an 
antisense copy of RNA with biotinylated nucleotides and after hybridisation, 
gene expression is measured by treating the chip with streptavidin-labelled 
with phycoerthyrin dye and scanned followed by calculation of hybridisation 
intensities.  
 
61.  In contrast, the more commonly used double channel approach 
involves hybridising control and experimental samples against the same array. 
Such an approach provides additional options for experimental design, that is 
it allows control for some technical issues by allowing a direct comparison in 
one hybridisation, where the second channel can either be used as part of the 
experiment or as an external control (Ahmed 2006a; Slonim & Yanai, 2009). 
cDNA arrays typically involve two channels. For cDNA (spotted) (and Agilent, 
Nimblegen), labelling is achieved by use of cy3 and cy5 fluorophores 
(fluorescent tags) with different excitation and emission spectra, from which 
the expression ratio for both samples at the same location is calculated and 
the data presented as a heat map. A useful schematic of the different labelling 
procedures used in cDNA spotted and high density oligonucleotide arrays are 
provided in Lee et al (2005). Also, Repsilber & Ziegler (2005) describe the 
experimental steps for a typical two colour microarray gene expression 
experiment particularly in relation to the cDNA spotted and Agilent platforms 
that use the two colour approach.  
 
62.  Experimental design and analysis is generally considered more 
straightforward with one-colour than two colour microarrays which can limit 
options for downstream analysis (Ahmed, 2006a). Slonim & Yanai (2009) cite 
the findings of a paper by Patterson et al (2006), which compared single and 
two channel methods on three platforms that allow for both options. It was 
suggested that two-channel arrays may have greater sensitivity while single 
channel arrays were more accurate for estimating fold changes. It was further 
suggested that single channel arrays allowed for more flexibility in the 
analysis and were better geared towards estimating raw transcript abundance, 
partly due to the lack of competition between samples for the same probes. A 
potential drawback of single channel arrays is the apparent increase in the 
number of arrays needed (and hence cost). However, responses to a cross-
sector international online HESI Survey question about the type of high-
density19 microarray technologies used revealed that 46% of the respondents 
used single channel high-density oligonucleotide arrays (Affymetrix arrays) in 
2007, compared to only 16.7% of respondents using cDNA microarray, a 
trend which rarely changed since 2005 (Pettit et al., 2010).  
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Pettit et al (2010) describe high density microarrays as those generating more than 6000 data points 
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(iv) Limitations of microarray technology 
 
63. Clearly, the main application of microarray technology is to determine 
mRNA levels from a large number of genes simultaneously thereby providing 
an indirect measure of global gene expression.  However, several review 
papers identify various challenges associated with microarray gene 
expression detection, in particular, the inability of microarrays to detect 
chemical-induced TGX expression changes at environmental exposure levels 
(Lee et al 2005). There is concern that the wide variation in baseline gene 
expression levels amongst individuals and experimental animals may hinder 
the detection of (small) changes induced by environmental chemical exposure.  
 
64. In the past criticisms levied against the use of microarrays to measure 
gene expression have included the fact that: the genes surveyed are limited to 
those included in the microarray (NAS, 2007b); cross hybridisation between 
similar sequences restricts microarrays to using non-repetitive fractions of 
genomes which can complicate analysis of related genes; a reliance on PCR-
based amplification of biomaterial can introduce bias into samples; and the 
fact that since microarray design requires a priori knowledge of the genome 
this presents a problem for incomplete/incorrectly annotated genomes (Hurd 
& Nelson (2009).   
 
65. The Microarray Quality Control (MAQC) Project led by the US Food & 
Drug Administration (FDA) involving 137 participants from 51 organisations 
was initiated to address concerns about the reliability of microarray 
technology, performance and data analysis issues (Shi et al 2006). These 
concerns relate principally to the fact that studies using different microarray 
platforms to analyse identical RNA samples are obtaining dissimilar or 
contradictory results. NB. Reproducibility issues will be further discussed in a 
subsequent COT paper.  
 
66. In functional genomics, the assessment of mRNA profiles is considered 
to provide a  measure of the practical20 functional genome of any cell i.e. DNA 
that encodes proteins actually functioning within a cell. However, a more 
general (and perhaps more critical) concern relating to the use of microarray 
technology, is the lack of evidence that the transcribed mRNA undergoes 
further translation en route to protein synthesis (Gant 2007). Attempts have 
been made to address the latter issue (through proteomic approaches), 
although these are reportedly hampered by limitations associated with, for 
example 2D gel resolution.  
 
67. Maier et al (2009) reviewed the available literature on the correlation of 
mRNA and protein abundances in cells and found that most of the published 
literature focussed on yeast species with very few studies conducted in 
bacteria and mammalian cells. The authors noted that protein and mRNA 
abundances do not appear to follow a normal distribution and hence their 
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 The practical functional genome is part of the theoretical functional genome i.e. DNA that codes for 

RNA message that can in theory be translated into a protein (comprises only 1-2% of genome) (EPA. 

2004).  
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correlation is best described using Spearman rank coefficient (rs) rather than 
the Pearson correlation coefficient (rp). A weakly positive correlation was 
revealed in a study using two hematopoietic mouse cell lines rp = 0.59, 425 
mRNA-protein pairs (Tian et al., 2004). Yu et al (2007) developed the Protein 
Abundance and mRNA Expression (PARE) web tool which allows for rapid 
assessment of mRNA-protein correlation for complex samples with data-sets 
for rat and mice provided. The review authors concluded that the available 
literature failed to provide strong evidence of mRNA-protein correlation and 
suggested possible factors responsible for the quantitative differences 
between the transcriptome and translatome. These include technical factors 
such as experimental noise and error and post-transcriptional and post-
translational factors e.g. RNA secondary structure, Shine Dalgarno sequence 
differences, regulatory proteins and sRNAs, codon bias and codon adaptation 
index, ribosomal density and occupancy and protein half-lives.  
 
68. The IPCS/OECD secretariats conducted two surveys to review the 
available TGX tools in OECD member countries. The first survey was 
conducted in preparation for the 2004 Workshop on ecotoxicogenomics. The 
second survey (which was led by Japan) was conducted (and published) in 
2009 to follow up on the current approaches used given the rate of 
acceleration in the field‟s development. A questionnaire21 was used to gather 
information on available TGX methods and queried the type of mammalian 
effects analysed and respondents‟ experiences of using omics tools for the 
evaluation of chemicals. The following eight countries participated in the 
survey: Japan, Korea, The Netherlands, Switzerland, US, UK, France and 
Germany. The results (shown in Table 1) of the survey showed that during the 
three years since the first 2004 survey, the application of omics technologies 
to toxicology drastically changed. In 2004, nearly 80% of studies were 
transcriptome analysis but in 2007 the ratio had decreased to 55% largely due 
to the introduction of the emerging omics technologies, metabolomics and 
proteomics (in particular, the number of applications in metabolomics 
increased from 2 to 11). The report concluded on the importance of periodical 
surveillance of the omics technologies in order to evaluate progress in this 
field.  
 
Table 1. Comparison of the IPCS/OECD survey results obtained in 2004 
and 2007 (Reproduced) 
 2004 2007 

Countries 5 8 

Total studies 42 62 

Transcriptomics 33 32 

Proteomics  7 19 

Metabolomics  2 11 

Published studies  10 32 
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The questionnaire was distributed in July 2006 and collected information between August and Nov 
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(v) Alternative applications of microarray technology 
 
69. Given the above challenges associated with the significance of mRNA 
level measurements, alternative applications of microarray technology have 
been developed, and a review by Gant (2007) suggests that these novel 
techniques could provide more extensive information on the molecular 
changes that characterise a toxic response. These techniques provide 
information of events either upstream of mRNA synthesis (e.g. array 
comparative genomic hybridisation (ArrayCGH) or downstream of mRNA 
synthesis (e.g. the mRNA translation assay). Table 2 summarises the 
application, value and challenges of each of these methods (see end of 
section 1).  
 
70. The mRNA translation assay may prove to be a key gene expression 
assessment tool in view of its ability to bridge the transcription vs. translation 
dilemma. The assay works by exploiting the differential densities of different 
mRNA fractions. The less dense (light) monosomal fraction bears ribosomal 
RNA only. In contrast, the denser (heavy) polysomal fraction includes 
attached ribosomes, which are considered a measure of active translation (in 
which the number of bound ribosomes is proportional to the protein amount 
produced). The fractions are separated by running them on a polysomal 
gradient and visualised via a UV tracer. The mRNA content of each layer is 
then measured and the layers compared via microarray analysis.  
 
71. The use of density RNA fractionation with microarrays in toxicology is 
limited. Two studies identified have used the assay to further characterise 
gene expression changes following a toxic insult. Mazan-Mamczarz et al 
(2005) exposed human cells to UV light and monitored mRNA distribution 
along polysome gradients with each layer analysed via spotted cDNA array 
analysis. The authors were able to identify and verify translationally 
induced/repressed mRNAs, and concluded that the mRNA translation assay 
provides key information in relation to which genes are ultimately expressed 
by determining degrees of translational engagement. The mRNA translation 
assay was also used in a study by Shenton et al (2006) which analysed the 
regulation of protein synthesis after oxidative stress in yeast exposed to 
hydrogen peroxide. The authors were able to conclude that translational 
control is a key component of a cell‟s response to oxidative stress. 
 
72. Gant (2007) also suggests that the pattern of microRNA (miRNA 
expression profiling) could be used to identify specific toxicities, although to 
date there has been no application of this technology in toxicology. 
MicroRNAs are single stranded RNA molecules that control gene (mRNA) 
translation. They are transcribed from polycistronic regions of the genome via 
RNA polymerase II and III to produce immature transcripts. These transcripts 
are processed in the nucleus/cytoplasm to produce mature miRNA (21-23 
nucleotides long). MiRNA regulates translation by interacting with a 
multiprotein complex called RNA-inducing silencing complex (RISC) which 
essentially represses translation. MiRNAs store mRNAs in P-bodies within the 
cytoplasm which are later retrieved for translation. Such actions can increase 
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protein levels without new transcription. The potential regulation of miRNA 
expression by chemicals is thereby significant since any alteration in miRNA 
expression could alter the cell protein complement and a cell‟s subsequent 
response to chemical exposure. MiRNA profiling is fraught with technical 
challenges associated with the short nature of mature miRNA species. Use of 
the RNA tailing method for labelling and use of modified targets on 
microarrays (aka locked nucleic acid nucleotides) for hybridisation are 
suggested as ways forward (Castoldi et al 2006). 
 
73. Finally, Gant (2007) also discusses the significance of epigenetic 
modifications in inducing transmissible genomic changes and their 
assessment via microarray and immunoprecipitation methods.  The 
epigenome serves as an interface between the dynamic environment and the 
inherited static genome and given the potential impact epigenetic 
mechanisms could have on the toxic action of xenobiotics, incorporating 
epigenetics in the assessment of the safety of chemicals may become a 
standard requirement (Szyf, 2007). This subject was recently discussed at a 
2009 ILSI HESI Workshop designed to evaluate and enhance the scientific 
knowledge base regarding epigenetics and its role in disease (Goodman et al 
(2010). Through several breakout groups of cross sector representatives the 
workshop addressed the issue of what needs to be known prior to thinking 
about incorporating an epigenetic evaluation into safety assessment. It was 
concluded that a great deal still needs to be learned before an epigenetic 
evaluation can be rationally incorporate into safety assessment.  
 
G. TYPES OF HYBRIDISATION APPROACH  
 
74.  Hayes & Bradfield (2005) describe the three different types of 
hybridisation approaches available to two-channel microarray studies to help 
achieve particular study objectives (hence hybridisation approach is often 
referred to as the experimental design of a microarray study i.e. microarray 
experiment type). The direct design is considered the most sensitive and 
involves hybridising the control sample directly against the test sample. This 
approach is particularly useful for studies seeking to determine the identity of 
gene targets i.e. what genes are expressed at a particular time, and thus 
requires comparing each time point to time-matched controls. Loop designs 
involve hybridising biological replicates against each other i.e. the control 
sample from one animal hybridised against the control sample of another 
(presumably at different timepoints and a comparison of the range of 
treatment groups). This approach is used for studies seeking to determine the 
temporal nature of a gene target i.e. how gene expression changes over time, 
and requires comparing each time point against preceding and subsequent 
time points. Although better information is provided on how time influences a 
target gene, such an approach reduces the sensitivity of detecting any 
changes. The final approach, the reference design, involves hybridising the 
control and test sample against a common reference sample. The reference 
design is particularly useful for studies seeking to determine both the identity 
of a target gene and the temporal nature of changes in its expression i.e. what 
gene is differentially expressed and how does its expression change over 
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time.. However, the reference design is reported to be limited by reducing the 
study‟s statistical power.  
 
H. SOURCES OF BIAS  
 
75. The multitude of measurements and estimates made in microarray 
studies increases the likelihood of multiple systematic errors arising. 
Systematic errors are problematic because they introduce bias in the data i.e. 
a systematic directional distortion of measured gene expression values or 
other related data from the true actual value. Such errors result in consistently 
inaccurate readings/results irrespective of the number of repeat 
measurements made. The development of approaches to better identify and 
characterise sources of bias in TGX studies and thus correct-for or limit their 
effect comprises a significant research priority.  
 
76. Bias can be categorised as systematic, selection or confounding. 
Systematic bias relates to bias of a measurement system or estimation 
method. This can therefore arise in any quantification step employed in a 
microarray experiment.  
 
77. Selection biases in TGX studies can arise from errors made in, for 
example, the selection of gene targets for microarray assessment, or from the 
tissue region selected for RNA extraction (in which the latter may be 
particularly sensitive to a particular toxicant resulting in a biased gene 
expression profile) (Thompson & Hackett, 2008). NB. Issues relating to RNA 
sampling are further discussed elsewhere in this paper.   
 
78. Confounding bias arises from factors that obscure the real effect of 
exposure to a particular agent, and a review by Thompson & Hackett (2008) 
describes how circadian rhythm regulation, vehicle anaesthesia, human 
variation and the two-colour labelling step contribute to the production of 
biased gene expression data. Circadian rhythm regulation is an important 
design consideration for TGX studies. For example, hepatic gene expression 
varies during the day and since tissue collection can also vary during the day 
circadian rhythm can confound the TGX data obtained. Boorman et al (2005) 
evaluated temporal hepatic gene expression in untreated rats and reported 
differential expression in day/night comparisons. The study noted periodically 
expressed genes in liver samples collected at multiple times during the day 
and also observed circadian genes in rat livers demonstrating rhythms of 
gene expression, thereby concluding that prominent circadian rhythm gene 
expression exists in the rat. Takishima et al (2006) found that the corn-oil 
vehicle used in a single bolus or repeat dose TGX study modulated fatty acid 
metabolism genes. Human variation is also reported to have a confounding 
effect on differential gene expression as demonstrated in a study exploring 
inter-individual and temporal variation in gene expression patterns (Whitney et 
al 2003). Finally the two-colour labelling microarray approach can introduce 
bias due to the differential rates at which dyes can be incorporated into the 
sample or the differences in quantum efficiencies between the two dyes as 
well as the differential sensitivities of Cy5 and Cy3 dyes to quenching, 
photobleaching and degradation.  
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79.  As in toxicology in general, other confounders include the nutritional 
status of animals used in in-vivo studies, which presents a particular 
challenge due to fed and fasted animals responding differently, for example to 
treatment with paracetamol, thereby requiring that treated and control groups 
are matched with respect to their nutritional status (Irwin et al 2004). A related 
potential confounder arises when treatment affects food and water 
consumption rate resulting in reduced body weight which can influence the 
pattern of gene expression in the liver and other tissues.  
 
80.  Several design and statistical approaches are used to respectively 
minimise and correct for the sources of bias discussed above. However 
before biases can be remedied they must first be detected and quantified. To 
reduce the likelihood of bias arising in a microarray study investigators can 
incorporate various experimental design approaches such as matching, e.g. 
the use of time-matched controls to minimise bias due to differences in 
diurnally expressed genes (Thompson & Hackett, 2008). Randomisation is 
considered one of three fundamental experimental design approaches and is 
used to reduce the likelihood of systematic biases caused by selection or 
assignment (Chen et al 2004). It is suggested that randomisation be applied 
throughout a whole experiment i.e. randomising biological samples to a 
particular treatment and randomising measurements, etc. Blocking and 
replication represent the two other fundamental experimental design concepts. 
Blocking is described as an approach used to increase the precision of any 
estimates made in a study and involves arranging a TGX experiment into a 
smaller subset of homogenous experimental units to enable the study to be 
conducted at different times and locations (Chen et al 2004). Replication is a 
particularly significant design feature for three main reasons.  The number of 
replicates incorporated into a microarray study not only determines the type 
(quality) of statistical methods that can be used to analyse the data, but also 
the more replicates a study uses the greater its ability to detect small 
differences in gene expression and distinguish differential gene expression 
from noise (Chen et al 2004). Replication can be incorporated at every level of 
data generation e.g. wrt a sample – use replicate no. of animals/tissues/cell 
types; array – use replicate no. of arrays; spot – use replicate no. of spots of 
the same gene, which is more common (Lee et al 2005). However, different 
types of replicates are used depending on the aim of the experiment as 
described below. 
 
I. REPLICATES  
 
81. Two types of replicates are commonly used: technical and biological.  
 
(i) Technical replicates 
 
82. Technical replicates describe replications in which the mRNA sample is 
derived from one single source (Chen et al 2004; Irwin et al 2004; Lee et al 
2005). These replicates are typically incorporated into a study to reduce 
experimental variabilities i.e. data variation in measurements (and thereby 
ensure reproducibility) or when an individual response/gene expression profile 
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is desired. Technical replicates can help identify data variation in 
measurements because using the same sample renders it more likely that any 
variation in data arises from technical procedures, enabling the assessment of 
experimental variation. Subsequent data analysis would thereby utilise a 
statistical test based on technical replicates.  
 
83. A technical replicate commonly used in two-colour microarray channel 
studies is the dye reversal/flip design. This approach aims to compensate for 
dye bias and involves using two microarrays, in which the hybridisation of the 
first microarray is based on labelling the test and control sample with Cy5 and 
Cy3 dye respectively and for the second microarray switching the dye 
orientation between the samples. Such an approach is reported to help reveal 
systematic bias in labelling reaction/fluorescence yield. However, Rosenzweig 
et al (2004) considers the above approach impractical and inefficient because 
it requires additional microarrays and reagents which can be costly to end 
users. The authors propose an alternative approach that involves 
incorporating split-control microarrays within a set of concurrently processed 
hybridisations, which specifically measures dye bias and maintains 
experimental accuracy and technical precision.  
 
84. Fujita et al (2009) highlight the lack of attention generally paid to 
checking the technical replicates (i.e. to ensure that the error of measure is 
small enough to be of no concern) and provide an interpretable and objective 
way to ensure the technical replicates quality.  
 
(ii) Biological replicates 
 
85. A limitation of studies that use only technical replicates is their inability 
to provide information on average response, which can be obtained via the 
use of biological replicates. Biological replicates describe replications in which 
the mRNA sample is derived from more than one discrete biological sample , 
and for this reason are also referred to as the sample size (Lee et al 2005) - 
as it often refers to the number of animals used per treatment/control group 
(Irwin et al 2004). Biological replicates are typically used in studies seeking to 
obtain an estimate of the variability about the average response, with 
subsequent data analyses utilising statistical tests based on a biological 
replicate design. This design approach enables investigators to determine the 
extent to which individual responses vary between treated and control groups. 
A study investigating variability in gene expression data also evaluated the 
effect of introducing replication to data consistency and reliability (Lee et al., 
2000). After combining data from all replicates, the authors found that fewer 
genes were incorrectly classified as having altered expression, which led 
them to suggest that pooling replicate data provides a more reliable analysis. 
The authors further concluded that experiments should be designed using a 
minimum of 3 biological replicates which should help reduce misclassification 
rates. 
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J. POOLING 
 
86. RNA samples are sometimes pooled prior to labelling and hybridisation 
to either avoid the need for RNA amplification, in cases where individual RNA 
samples are insufficient, or to reduce costs arising from using multiple arrays. 
Sample pooling is performed in order to reduce the effects of biological 
variation, without having to measure multiple individual samples. This is 
because differences due to individual variations will be minimised, making 
substantive differences easier to detect (Ahmed, 2006a). Pooling is 
considered worthwhile only when samples are cheap relative to microarrays 
(NAS, 2007a). Pooling different biological samples can enable an average 
response to be obtained, although at the expense of obtaining information on 
variation in response between samples. Therefore, if samples are valuable 
(e.g. human samples) then pooling is not recommended due to loss of 
information on individual samples (i.e. lack of individual variability data).  
 
87. Members previously raised concern that pooling to save money can 
result in poor quality study designs due to too loss of information on biological 
variability and the subsequent statistical implications. Ahmed (2006a) 
assessed studies examining the implications of pooling in detecting differential 
gene expression. It was noted that pooling should only be recommended 
when there is insufficient RNA from each individual sample to perform an 
analysis.  The review also identifies a study by Zhang & Gant (2005) which 
provided formulae to estimate conditions under which a pooled design is 
preferred versus a nonpooled design (taking into account unit costs of 
microarray platform and biological subject).  
 
88. Members also previously commented on the failure of published 
studies to clarify whether samples were pooled (and the type of replicate 
used). Jafari & Azuaje (2006) reviewed hundreds of MEDLINE-indexed 
papers involving gene expression data analysis published between 2003 and 
2005 on the basis of their reporting practices/ standards. A total of 293 studies 
were identified that used microarray transcript profiling methods and of these 
only 33 studies reported their pooling procedures. The authors concluded that 
studies published at the time lack key information required for properly 
assessing their design quality and potential impact and suggested the need 
for more rigorous reporting of important experimental factors such as 
statistical power and sample size as well as the correct description and 
justification of statistical methods applied. The authors further concluded that 
their study highlights the importance of defining a minimum set of information 
required for reporting on statistical design and analysis of expression data.  
 
K. RECOMMENDED STUDY DESIGNS  
 
89. Adherence to recommended study designs not only facilitates quality 
assurance and peer-review processes but also the reproducibility of the 
results.  Elashoff (2008) recommends that a TGX study should be designed 
with 3-6 animals per control/dose group with a single RNA sample run per 
animal, with animals exposed to several doses to enable comprehensive dose 
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response analysis (wrt overall toxicity and on an individual gene/pathway level 
basis). As there is still uncertainty over the most appropriate study timepoint 
to use a range of 3-4 timepoints is suggested. Ahmed (2006a) suggests that 
the following guidelines should be considered when designing a microarray 
experiment: use of technical replication and repeated measurements to 
ensure effective precision (when variability of measurement is greater than 
the variability between experimental units); pooling samples when biological 
variability between individual samples is large and units not too costly; use of 
cDNA microarrays when minimal or no information is known about the study 
organism; use of dye swapping and looping to balance dyes and samples and 
using at least a single round of RNA amplification when the starting amount of 
RNA is limiting to ensure that there is enough material for analysis. 
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Table 2. Summary of some other microarray technology approaches (Gant, 2007) 
 
Method ArrayCGH Epigenetic analysis ChIP analysis Transcription rate analysis mRNA translation assay 

 

Description Array comparative genomic 
hybridisation  
 

Study of inheritable gene 
expression changes arising in 
the absence of changes to DNA 
sequence  
 

Chromosome 
immunoprecipitation analysis  

Measure of rate of gene 
transcription e.g. following 
chemical exposure  

Technique used to determine 
whether mRNA is translated and 
if this occurs differentially 
following chemical exposure.  

Application 
 

To identify chemicals that may 
act by causing deletions/ 
amplifications in genome 
(chromosomal changes in 
genome) 
- Characterising cells and animal 
strains for testing purposes 
- Drug efficacy/safety evaluation 
 
 

To identify/further characterise 
chemicals that may act (regulate 
gene expression) by causing 
epigenetic modifications (e.g. 
DNA methylation)  
 

Map localisation of modified 
histones/transcription factors on 
the genome (Collas 2009) 
To evaluate chemicals that may 
act (affect gene expression) by 
regulating binding of transcription 
factors to promoter regions of 
genes?? 

To obtain quantitative information 
about the relative rates of 
transcription in different genes 
from isolated nuclei  
 
Alternative indirect measure of 
mRNA expression 

To provide a more accurate 
measure of gene expression  

Protocol 
 

(For two-colour channel 
microarray):  
- Extract genomic DNA (gDNA) 
- Label control/test sample with 
different fluorescent dyes 
- Hybridise probes onto same 
microarray  
- Scan image 
- Determine ratio of fluorescence 
dye (where > test DNA  
amplification; < test DNA  
deletion) 
- Produce chromosome map 
 

- Microarray gene target: print 
spots on slides containing target 
sequences from gene promoter 
regions 
- Sample preparation: Fragment 
DNA; immunoprecipitation of 
methylated fragments (fragments 
identified using ab raised against 
5-methylcytosine) 
- Identify differential methylation: 
via microarray analysis (by  
compare differences in DNA 
sequence between 
immunoprecipitated fractions) 
 

Similar methodology as used in 
epigenetic analysis except  
- ab against transcription factor 
of interest (not 5-methylcytosine) 
- DNA fragment is crosslinked to 
transcription factor prior to 
immunoprecipitation  
 

(For microarray approach):  
- Isolate nuclei from test and 
control sample 
- Incorporate labelled nucleotide 
in RNA (during transcription) 
- Isolate RNA (as via nuclear run 
on assay)  
- Hybridise on microarray 
- Detect differential gene 
transcription 

- Inhibit mRNA translation  
- Separtae monosomal from 
polysomal mRNA 
- Visualise two fractions  
- Conduct microarray analysis  
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Value 
 

Over other cytogenetic methods 
include 
- higher resolution and 
throughput 
shorter turn around time (no 
need for cell culture); high 
reproducibility; robustness; 
precise mapping of aberrations 
(Shinawi & Cheung 2008) 

Aids understanding of how 
drugs/chemicals affect DNA 
methylation patterns and 
subsequent gene expression 
changes leading to toxicity.  
NB. Thought to account for 
differences in susceptibility and 
resistance 
 

Generates mechanistic data  - Provides a direct measure of 
the activity of genes (since 
hybridisation assays only give a 
measure of how much RNA is 
present (steady-state level).  
Hence allows changes in 
transcription rate to be measured 
- Aids mechanistic understanding 
of toxicants 
- Compliments ChIP analysis  

Provide a more complete 
account of gene expression 
changes cf. mRNA assessment 
  

Limitations/  
challenges 
 

Inability to identify balanced 
rearrangements (e.g. 
translocations/inversions) and 
detect polyploidy 
Area of genome assayed 
dependent on microarray targets 
present. (Shinawi & Cheung 
2008) 
 
 
 

- Current methods analyse only 
one type of epigenetic 
modification at a time (Cipriany 
et al 2010) 
- Requires substantial input 
material (Cipriany et al 2010) 
- Need to conduct research to 
determine the role of epigenetic 
modifications in chemically 
mediated toxicities 

- Cumbersome procedure (Collas 
2009) 
- Requires large number of cells 
(Collas 2009) 
- Lack of microarray targets with 
suitable promoter fragments (NB. 
Companies developing 
appropriate microarrays) 

- Presence of artefacts from the 
nuclear isolation steps 
- Time consuming  
- Requires use of radioactivity 
and large number of cells  
- Limited data set  
- Methodology not fully 
established 
 
 

(Melamed et al 2009) 
- Sedimentation in polysomal 
gradient may not always be due 
to ribosomes (Melamed et al 
2009) 
- Include large cellular 
complexes and their associated 
mRNAs (Melamed et al 2009) 
- No of ribosomes bound to the 
mRNA does not always correlate 
with its translational 
status(Melamed et al 2009) 
- Uses fractionated mRNA so 
must be conducted with care 
- Limited use of density RNA 
fractionation with microarrays in 
toxicology 
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SECTION 2. APPROACHES USED TO ANALYSE RAW 
TRANSCRIPTOMIC DATA   
 
INTRODUCTION  
 
90. The analysis of toxicogenomic data was previously discussed at the 
February 2009 COT Workshop on 21st Century Toxicology (published as a 
statement at 
http://cot.food.gov.uk/cotstatements/cotstatementsyrs/cotstatements2009/cot2
00903). A presentation by Dr Cliff Elcombe entitled, „Toxicogenomic tools for 
chemical safety assessment‟ summarised approaches used to analyse 
transcriptomic data and grouped them into three main categories: data 
preprocessing, data analysis and data validation and interpretation (the latter 
including bioinformatics22 and pathway analyses). Several reviews (e.g. Butte 
et al 2002; Boes & Neuhauser., 2005; Ittrich., 2005; Rahnenfuhrer, 2005a 
Ahmed, 2006b) and book chapters (NAS, 2007b; Durinck, 2008) discuss the 
analysis of raw transcriptomic data with different perspectives on what 
constitutes data analysis. For example, Butte (2002) and NAS (2007b) 
describe data analysis on the basis of the type of analytical methods used i.e. 
unsupervised vs. supervised, while other papers consider data analysis in 
terms of strata i.e. with reference to oligonucleotide /Affymetrix GeneChip 
microarrays. Low-level data analysis applies to methods (background 
correction, normalisation, PM adjustment and summarisation) used to 
calculate the expression values of probe sets from scanned image values 
(pixels) of probes (Boes & Neuhauser., 2005). These methods survey how to 
correct for typical biases in microarray gene expression data (Repsilber et al 
2005). High-level data analysis, therefore, refers to the methods applied to 
transformed raw data. This section discusses the steps involved in low-level 
data analysis. Steps represented by high-level data analysis comprise largely 
of statistical and computational manipulation of transformed data to identify 
gene expression changes and evaluate toxicologically relevant patterns and 
are therefore further discussed in Section 3 on statistical analysis.  
 
A. DATA PROCESSING 
 
91.  Slonim & Yanai (2009) note that the task of analysing microarray data 
is typically more time consuming than the laboratory protocols required to 
generate the results. This is in part due to the pre-processing or data 
preparation stage, which principally focuses on assessing the quality of data 
and ensuring that all samples are comparable for further analysis. Data 
preparation/pre-processing aims to correct data sets for sources of variability 
arising from random and systematic error during experimental procedure 
(Magglioli et al 2006; Suarez et al 2009) and a schematic of the data 
processing stage is provided in Annex 2.  
 

                                                 
22

 The US, EPA defines bioinformatics as data acquisition and processing technologies that store and 

analyse data generated from omic technologies (EPA, 2004) 

http://cot.food.gov.uk/cotstatements/cotstatementsyrs/cotstatements2009/cot200903
http://cot.food.gov.uk/cotstatements/cotstatementsyrs/cotstatements2009/cot200903
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92. Data processing essentially involves scanning the array slide; saving 
the image/text data in a database; discarding poor quality images and filtering 
extremes; normalising qualified data (Ju et al 2007). Although scanning and 
image analysis can be considered to represent post-hybridisation (data 
acquisition) steps, the application of analytical approaches to sort and process 
microarray data for subsequent high-level data analysis justifies their inclusion 
in this section.  
 
(i) Scanning 
 
93. Microarray slides are scanned to detect hybridised spots via the use of 
lasers that excite the dyes with the resultant image saved on a computer. In 
two channel microarray approaches the amounts of bound targets are 
quantified by recording fluorescence signals resulting in a Tagged Image File 
Format (TIFF). Selection of appropriate scanning setting is particularly 
important as it can affect data acquisition (Williams & Thomson, 2010). 
Various options have been proposed, in particular multi-scanning noted for its 
ability to reduce quantification error and minimise the effects of saturation.  
 
94.  Skibbe et al (2006) developed a scanning approach that extends the 
dynamic data range by acquiring multiple scans of different intensities. The 
authors used multiple scan and linear regression approaches to identify and 
compare the sets of genes that exhibit statistically significant differential 
expression. Data were separately analysed from each of three scan intensities 
(low, medium and high). In the multiple scan approach only one third of DEGs 
were shared among the three scanning intensities, and each scan intensity 
identified unique sets of DEGs (all verified via qRT-PCR). The authors found 
that signal intensities (average) of DEGs were highest for low intensity scans 
and lowest for high intensity scans and suggested that the low intensity scans 
should be used to detect expression of high signal genes and high intensity 
scans should be used to detect expression of low signal genes. The authors 
concluded that the multiple scan approach effectively identifies a subset of 
statistically significant genes that linear regression approaches are unable to 
identify.  
 
95. Once an image has been scanned, all the data are fixed regardless of 
image quality (Rahnenfuhrer, 2005a). Poor quality images automatically lead 
to a decrease in power of subsequent statistical analyses.  
 
(ii) Image Analysis  
 
96. Repsilber et al (2005) consider image analysis23 to be the first step of 
the statistical analysis of microarray experiments and outline two key aims: (1) 
to identify spots belonging to a single transcript, (2) to quantity the signal 
intensity of spots identified. The output of image analysis is the assignment of 
a signal intensity for each gene. To achieve this, the background must be 
corrected for, as the signal observed (at this stage) comprises the true 

                                                 
23

 Commercial image acquisition programmes are available e.g. Automated Microarray Image Analysis 

(AMIA) software (Yauk & Berndt 2007). 
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(foreground) signal (from the specific hybridisation of interest) and the 
background signal (due to non-specific hybridisation and/or contamination) 
(Suarez et al 2009). The standard approach for background correction is to 
estimate background intensity24 and subtract this from the spot intensity (and 
an alternative approach would be to examine image plots of log intensities). 
Qin et al (2004) notes that this can substantially change data and questions 
whether background subtraction from spot intensity measurements improves 
accuracy. 
 
97. Procedures conducted from this point onwards depend on the type of 
microarray platform used i.e. whether the array is a spotted cDNA microarray 
or oligonucleotide microarray. Spotted cDNA microarrays are able to generate 
either one- or two channel data and contain a single probe for each target 
RNA (Suarez et al 2009). For two-channel cDNA microarray approaches, after 
hybridisation the two differently colour-labelled biological samples are 
scanned separately and the relative expression is determined by comparing 
intensities (Butte, 2002). Spotted cDNA microarrays therefore report 
differences in gene expression between two samples. This contrasts with the 
oligonucleotide microarray (e.g. Affymetrix GeneChip), which typically deploys 
one channel approaches and reports absolute expression levels (Boes & 
Neuhauser, 2005).  
 
98. AMIA software uses three steps to assign a signal intensity to a gene 
(in two channel analyses) as described for both platforms below. 
  
1. Image analysis for spotted (cDNA) microarrays 
 
99. For spotted cDNA microarrays, after obtaining TIFF files, the next step 
is to derive a ratio of fluorescence measurements for green and red dyes, 
which represents the relative abundance of corresponding mRNA. This 
involves generating intensity values for red dye, green dye and their ratio via 
the process of gridding, segmentation and intensity extraction.  
 
100. Gridding localises areas in an image that belong to a spot i.e. identifies 
regions on the slide containing single spots by assigning co-ordinates 
(Rahnenfuhrer, 2005a; Suarez et al 2009). The spot and its background 
represent the target area (patch). Segmentation describes the process of 
partitioning the target area of every spot into two distinct regions: the spot 
area containing the signal of interest from the background area surrounding 
the spot (Repsilber et al 2005; Suarez et al 2009). Segmentation is used to 
differentiate the pixels within a spot containing region into the foreground (true 
signal) and background (Rahnenfuhrer, 2005a). Intensity/information 
extraction uses the pixels of an image to calculate „summarising‟ values for 
foreground and background intensities (Suarez et al 2009).  
 
101. Ideally all spots would be separated by the same distance and have a 
circular shape however Rahnenfuhrer (2005a) notes that the available 

                                                 
24

 Background intensity is liable to increase from dust, fibres, fingerprints, auto fluorescence of coated 

glass, hybridisation problems, or residual effects from inadequate washing (Suarez et al 2009) 



 45 

technology does not make this possible. The causes of various errors in 
image analysis include variable spot size and shape, artefacts caused by 
printing process and hybridisation technique, scanner sensitivity and 
experimental quality (Suarez et al 2009). It is important to rectify these errors 
and several algorithms for this are used that fall into two method groups: 
spatial methods attempt to capture the shape of a spot by fixing a circle with a 
constant diameter to all the spots in the image; while distribution methods 
apply a threshold value using Mann-Whitney test to classify pixels as either 
foreground or background depending on whether their value is greater or less 
than the threshold (Rahnenfuhrer, 2005a).  
 
2. Image analysis for oligonucleotide microarrays 
 
102. For oligonucleotide microarrays a slightly different procedure is used. 
After scanning, gridding is performed using a set of probes present on the 
borders and the middle of the array. MM oligonucleotide probes are used to 
calculate cross-hybridisation and local background signals. MM probe 
intensities are then subtracted form the intensities of the corresponding PM 
probes. If the MM value is less than the PM value it is possible to estimate 
background intensity. Sometimes MM probes have intensities higher than 
their corresponding PM probes resulting in negative expression values.  
 
(iii) Data quality assessment/data sorting  
 
103. Data quality assessment represents a key pre-processing step in 
microarray TGX analysis, and essentially separates poor data from potentially 
useful data (Morgan et al 2004). Various methods exist to assess the quality 
of the microarray experiments and graphical representations of array data can 
help quickly identify bad arrays and the need for normalisation (Durinck, 2008). 
For spotted cDNA microarrays, hybridisation problems are often identified by 
plotting images of foreground and background intensities for each channel 
used, and for Affymetrix Genechips the images of the PM and MM values are 
plotted. The quality of a particular hybridisation can also be assessed by 
either identifying the number of spots above background, in which low 
numbers would suggest repeating the hybridisation (Durinck, 2008), or by 
visualising the differences between arrays which can be done in two ways: 
plotting boxplots25 of raw intensities grouped per array or correlation 
heatmaps. For heatmaps, correlations between hybridisations are expected to 
be high while for the boxplot approach, failing arrays show up as outliers (the 
pattern also reveals the necessity for between array normalisation). Either 
way, hybridisations failing these quality assessments would suggest the array 
is discarded, redone or given lower priority in subsequent analysis.  
 
104. Elashoff (2008) provides an alternative description of the data quality 
assessments used and considers quality metrics and correlation as the two 
main approaches. Quality Metrics employs various methods to detect variation 
in data quality. These include: percent present (PP) or PP calls (PPC) –  

                                                 
25

 Also known as box-and-whisker diagram or plot. Boxplots are a convenient way of graphically 

depicting groups of numerical data. They can identify outliers and are non-parametric 



 46 

considered the most informative measure of gene expression quality, which 
measures the percentage of genes present (expressed) in a sample as a 
fraction of (genes deemed present / total no of genes present on chip) 
although PP is limited by the fact that the value depends on the type of chip 
and sample used; the threshold benchmark approach – metrics that fall short 
of a predetermined value fail; consistency – failing metric values lie outside 
the norm within a study; and balance – which compares the distribution of 
metric values between study groups. Elashoff (2008) describes Pearson‟s 
correlation as an example of a correlation measure used to visualise 
differences between arrays. Pearson‟s correlation measures the similarity of 
expression log values between pairs of samples and uses the entire set of 
genes to derive correlation values26 (or average) for each sample relative to 
another within the same study, which are used to produce a correlation matrix 
(heatmap). By taking the mean (expression value) for each sample a low 
value for a sample (i.e. < 0.9) would suggest that the expression profile differs 
from others in the study i.e. sample is of low quality compared to others in the 
study.  
 
105. Other methods used in the data quality assessment of microarray data 
include the 5‟3‟ ratio for specific control genes, which measures RNA 
degradation; scale factor, which involves scaling unnormalised gene 
expression mean values; specifically for Affymetrix GeneChips the MM > PM, 
which provides a measure of chip quality by ensuring that PM probe pairs > 
MM probe pairs (Elashoff (2008); Thompson & Hackett, 2008) 
 
(iv) Standard Transformations  
 
106. Typically background corrected data are subject to standard 
transformations to make them more suitable for statistical and biological 
analysis between biological samples (Irwin et al 2004). Log transformation 
and normalisation are the two most commonly described approaches in the 
literature.  
 
1. Log transformation 
 
107. Log transformation is typically required to address the limitations 
associated with evaluating cDNA microarray data. Spotted cDNA microarray 
data are usually evaluated by looking at ratios e.g. the ratio between two 
conditions on the same array, to provide a measure of gene expression 
changes. However, the drawback of such an approach is the different way in 
which up and down regulated genes are treated. For example, genes 
upregulated by a factor of 2 have an expression ratio of 2 and genes 
downregulated by a factor of 2 have an expression ratio of 0.5. Visualisation in 
a graph results in upregulated genes having a much wider range than down 
regulated ones (i.e. a positively skewed graph). Log transformation of 
expression ratios treats numbers and their reciprocals symmetrically (i.e. 
numerically equilibrates similar magnitudes of increases and decreases) 
whereby a log2(1)=0, log2(2)=1, log2(1/2)= -1. It therefore transforms positively 

                                                 
26

 Typical average correlation values are ≥0.95  
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skewed data into a more symmetrical distribution around 0 and graphically 
treats up and down regulated genes in a similar fashion. Log transformation is 
typically performed after background subtraction but before normalisation 
 
2. Normalisation  
 
108. Repsilber et al (2005) considers normalisation as the starting point of 
the so-called high-level analyses as it allows informative comparison of 
expression intensity values, without which it would be impossible to identify 
differentially expressed genes (Boes & Neuhauser, 2005). Normalisation is 
applied to raw microarray data to correct for (miminise) sources of technical 
(systematic) variation i.e. unequal quantities of starting RNA, differences in 
labelling or detection efficiencies between dyes which can lead to systematic 
biases in measured gene expression levels (Lee et al., 2005, Ahmed, 2006b). 
Minimising the amount of non-biological variation makes it possible to focus 
on the real biological changes during data analysis, however this represents a 
big challenge. Thus, normalisation becomes necessary particularly when 
dealing with experiments involving multiple arrays (Suarez et al 2009). 
Normalisation is also conducted to help eliminate questionable measurements 
and adjust measured intensities thereby aiding comparisons between samples 
and subsequent selection of DEGs between samples.  
 
109. Various normalisation approaches and methods are available and have 
a profound effect on the expression levels and consequently on the detection 
of differentially expressed genes (Boes & Neuhauser, 2005). Some methods 
combine information from all arrays while other methods first determine a 
baseline array and normalise other arrays on the basis of the baseline array 
values (which presents issues over deciding on which array should be the 
baseline array). Normalisation can be done either between channels or 
slides/experiments. Visualisation of the raw data is an essential part of 
choosing a normalisation method and estimating the effectiveness of 
normalisation (Slonim & Yanai 2009), however, there is no general consensus 
on which is the best method to use although the microarray platform type 
influences the approach used.  
 
a) Normalisation for spotted cDNA microarrays  
 
110. For two-channel spotted cDNA microarrays, normalisation can be 
applied either within a single slide (involves normalising the log ratios of red 
and green channel intensities separately for each slide); between pair of 
slides (for dye swap experiments); or among multiple slides (involves 
adjusting for scale differences between slides) (Ittrich, 2005, Ahmed, 2006b). 
NB. To normalise single channel arrays all slides of the experiment are 
incorporated, with log ratios computed afterwards (Ittrich, 2005).  
 
111. Which genes on which to base a normalisation method presents a 
further consideration. The simplest approach is a global average (all genes) 
which uses the majority of spots on a chip for applying robust normalisation 
procedures (Ittrich, 2005, Ahmed, 2006b). However, this is only applied on the 
condition that there is a large number of spots on a chip, similar number of 
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up/down regulated genes can be assumed, only a relatively small proportion 
of genes are expected to vary significantly in expression between two 
samples or there is symmetry in expression levels of regulated genes. Ideally, 
normalisation methods are based on a set of genes assumed to be non-
differentially expressed between samples in the experiment. When a large 
proportion of genes on probes on a chip are expected to be differentially 
expressed between conditions it then becomes necessary to include a set of 
controls that function as a subset of genes with a constant expression to 
which the complete dataset can be normalised.  One approach is to use a 
combination of housekeeping genes believed to have a constant expression 
across a variety of conditions. However, if there are too few genes or the 
intensities do not cover the whole range of different intensity levels this may 
preclude use of complex normalisation methods like intensity dependent 
normalisation. Furthermore, genes may not be constitutively expressed at 
constant levels (Ittrich, 2005). The use of exogenous universal control genes 
(aka spiked controls) as defined by their synthetic DNA sequences or DNA 
sequences from a different organism provides an alternative approach. NB. 
Also referred to as spike-in normalisation (Slonim & Yanai, 2009).  These 
controls are spotted onto the array and also included in the two different 
samples (discussed further in section 4). Other approaches include the use of 
genomic DNA, and a microarray sample pool, which describes a set of 
controls analogous to genomic DNA but lacks non-coding regions (Ittrich, 
2005). MSP (microarray sample pool) is derived by pooling PCR-amplified 
ESTs of all spots on an array, diluting and then spotting on the array in each 
print tip group.  
 
112. Another consideration is how to perform the normalisation and two 
types of approach are commonly documented in the published literature: total 
intensity (global) and intensity-dependent normalisation. Total intensity 
normalisation makes a number of assumptions, one being that the total 
hybridisation intensities summed over all elements in the arrays are the same 
for each sample i.e. that dye intensities within a slide are related by a constant 
factor, so the intensity of each spot can be scaled by that factor. However, the 
fact that stronger signals dominate the summation is a drawback of this 
approach, although variations in the method have been developed to address 
this and include the median method, trimmed mean (trims 5% of highest and 
lowest extreme values and then globally normalises the data using the mean 
method) and the global intensity method (specifically for oligonucleotide 
arrays). Intensity-dependent normalisation can be linear or non-linear. Ahmed 
(2006b) states that intensity-dependent linear regression is noted for its ability 
to normalise intensity dependent dye bias arising in 2 colour channel 
microarrrays (which occurs when fluorescent dyes Cy3 and Cy5 emit unequal 
light resulting in low correlation of signals between Cy dyes (Ju et al., 2007)). 

Intensity-dependent linear regression involves firstly making a visual display of 
the data distribution to visualise how the intensity and dye bias relate via an 
MA plot (i.e. a scatter plot of log ratios vs. log intensities) that enables 
intensity specific artefacts to be revealed. Normalisation is then performed by 
applying a statistical regression method known as locally weighted scatterplot 
smoothing (LOWESS) (Kepler et al 2002).. Ahmed (2006b) also notes that a 
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colour normalisation method is used to eliminate data artefacts introduced by 
dyes.  
 
113.  After using normalisation to remove or minimise the systematic 
variations, gene expression matrix tables are generated in which rows 
represent genes and columns represent various samples e.g. experimental 
conditions or tissues.  
 
b) Normalisation for oligonucleotide microarrays 
 
114. For oligonucleotide microarrays, several linear and non-linear 
normalisation approaches are available. Boes & Neuhauser (2005) refer to the 
linear scaling approach as a method that uses a baseline array, in which the 
first array or the one in the middle of the dataset can be specified as the 
baseline. Slonim & Yanai (2009) refer to this approach as mean-signal or 
“scaling” and consider it to be the simplest normalisation method since each 
microarray‟s expression level is adjusted against the same level. Scaling, 
although minimal, avoids over-normalisation and is thought particularly 
worthwhile if the samples to be compared are expected to have similar 
average levels (e.g. they come from the same tissues and developmental 
stage, or have similar mRNA quality, etc). Non-linear methods such as cyclic-
loess, contrast based method and quantile normalisation are described as 
complete data methods because they make use of data from all arrays in 
order to form the normalisation relationship i.e. they normalise without 
specifying a baseline array. For example quantile normalisation equalises the 
distribution of probe signals over all n arrays, so that after normalisation all 
arrays have the same distribution of probe intensities such that the most 
highly expressed value is set to be the same across arrays, as is the next 
most highly expressed and so on (Slonim & Yanai, 2009). Boes & Neuhauser 
(2005) recommend this method but emphasise that this cannot be defined as 
a gold standard, and indeed that it is not possible to define one, as no single 
method could ever be suitable for all circumstances.  
 
(c) Limitations of normalisation 
 
115. A significant drawback of normalisation is the possibility that it may 
modify the data by reducing both technical and biological variation. It is 
considered particularly important that biological variation is not reduced 
otherwise this may affect the outcome of significance testing and elevate false 
discovery rates. Therefore, it is best to minimise the amount of normalisation 
by having a good experimental design.  
 
116. Which normalisation method to choose depends on the design of the 
microarray used (platform) and how much the resulting data set changes 
when the normalisation method is applied. The global method is 
recommended when the dataset is generated from large microarrays 
containing thousands of gene sequences reflecting a broad range of cellular 
activities. Normalisation methods based on housekeeping genes are 
recommended when the dataset is generated from a focussed array. Boes & 
Neuhauser (2005)) define a good normalisation method as one that considers 
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precision, accuracy, practicability (computing time) and the impact on 
significance testing and false discovery rate. Ittrich (2005) notes that the 
usefulness of different normalisation procedures can be compared by 
assessing both the correction of bias (improved accuracy) and the 
improvement of variance (precision). However, normalisation is considered a 
trade-off27 between bias and variance as both parameters cannot be 
optimised simultaneously.  
 
117.  Various software tools are freely available as either a desktop package 
e.g. BRB-ArrayTools or via the Internet e.g. SNOMAD (Ahmed, 2006b) for 
normalisation.  
 
(v) Filtering 
 
118. Filtering is considered to be a vital preprocessing step to remove 
unreliable data prior to analysis (Yauk & Berndt (2007). Filtering removes 
genes that are either not expressed over all samples or show little variation 
across sample types. Those probes with low intensities have values near or 
below the noise level of the assay and therefore represent questionable 
results and so filtering them out improves the reproducibility of subsequent 
gene lists, reducing the number of genes that have to be tested for differential 
gene expression (Ahmed, 2006b, Durinck 2008). Filtering is typically applied 
prior to detection of differentially expressed genes (Durinck 2008), as a 
threshold for the variance of the gene across chips, an arbitrary threshold for 
a test statistic based on for e.g. t-test, or on excluding a certain percentage of 
the genes (Ahmed, 2006b). However, because the methods used are arbitrary, 
they should be used conservatively to filter out only the least differentially 
expressed genes (Ahmed, 2006b). 
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increase and squared bias decreases; the opposite behaviour occurs as the model complexity is 

decreased (Ittrich, 2005).  



 52 

SECTION 3. STATISTICAL APPROACHES USED TO IDENTIFY/ 
EVALUATE TOXICOLOGICALLY RELEVANT GENE EXPRESSION 
CHANGES 
 
INTRODUCTION  
 
119. Members previously noted that the statistical analysis of microarray 
data is conducted on both the gene level (to test hypotheses, estimate the 
size of differences in gene expression and explore data) and on the pathway 
level (to determine which genes within a pathway correlate and to establish 
which pathways are differentially regulated). Indeed, statistical methods are 
employed throughout both high- and low-level data analysis, and are used in 
the former:  

a) to test hypotheses and thereby identify toxicologically relevant gene 
changes (i.e. detect differentially expressed genes (DEGs)), and;  

b) to evaluate these toxicologically relevant gene changes by detecting 
patterns in data (data-mining) and interpreting them by classifying the 
functional dependency of these genes (Suarez et al., 2009).  

 
120. This section discusses the various statistical approaches used in the 
high-level data analysis of toxicogenomic (transcriptomic) data and 
approaches to validate/interpret toxicologically relevant gene changes.  
 
A. DATA ANALYSIS 
 
121. High-level data analysis comprises the second part of the analysis of 
raw (albeit transformed) toxicogenomic data. Its two key objectives are to: (i) 
identify gene changes by testing hypotheses of interest (e.g. class comparison, 
class prediction and class discovery), generating a gene list of differentially 
expressed candidate genes; (ii) extract patterns/trends in the data, i.e. pattern 
recognition by applying data mining methods, graphically presenting gene 
groupings that could be further investigated (Repsilber et al 2005). Which data 
analysis strategy to adopt depends on the purpose of the microarray 
experiment and the extent of the user‟s knowledge of the biology of the 
system being studied. Various methods are available to determine either 
approach, and these have been categorised into one of two of the following 
groups: supervised28 learning methods (that use information about the various 
samples being analysed in a supervised fashion and are applied to both class 
comparison and class prediction studies); and unsupervised learning methods 
(that characterise components of [i.e. find relationships within] a dataset 
without prior information about the sample – also referred to as exploratory 
analysis and applied to class discovery studies) (Butte et al 2002, Ahmed, 
2006b; NAS, 2007b). It is worth noting that although class comparison, 
prediction and discovery studies each have theirs own set of statistical 
methods, these methods can overlap.  
 
122. A schematic of the data analysis stage is provided in Annex 2  
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(i) Hypothesis testing  
 
123. The key aim of testing hypotheses of microarray experiments is to 
identify differentially expressed genes i.e. whether or not the functional group 
shows altered expression. To achieve this, investigators must first ensure that 
the experiment is powered to answer the hypothesis tested (which often 
requires using a smaller number of probe sets/functional groups of genes) 
(Ahmed, 2006b). Investigators must decide on the level of gene analysis to 
perform (i.e. whether to make single or multiple gene comparisons), the 
approach used to adjust for multiple testing and select DEGs. The outcome of 
hypothesis testing is a list of genes that are believed to be regulated by the 
condition being tested, although sometimes the outcome should be 
considered more as hypothesis generation. These issues and approaches are 
described for class comparison studies in the following text.  
 
1. Single or multiple gene level comparison 
 
124. Class comparison studies seek to find genes with expression levels 
that are significantly different between groups of samples and investigators 
are required to choose whether to base the analysis on single gene or multiple 
gene comparisons. Single gene (pairwise) approaches compare microarrays 
one pair at a time, and examine each gene or transcript individually to find 
genes that [by themselves] have statistically significant differences in 
expression between samples with different phenotypes or characteristics 
(Slonim & Yanai 2009). Once these genes have been identified they will 
undergo further examination to see if they are over-represented in specific 
functions or pathways (See Section 3.2). It is thought that single gene 
comparisons may be more appropriate for studying a biological process that is 
poorly understood (as it allows hitherto unexpected genes and gene sets to 
be implicated) although the fact that they could miss trends existing between 
measurements is a significant drawback (Butte, 2006; Slonim & Yanai 2009).  
 

125. Multiple gene (or gene set) comparisons identify groups (sets) of 
functionally related genes ahead of time and test whether these gene sets (as 
a group) show differential expression (also referred to as Gene Set Analysis - 
GSA) (Slonim & Yanai 2009). GSA is considered a powerful alternative to 
pairwise comparisons as it can detect subtle changes in gene expression that 
individual gene expression analysis may miss. GSA also combines 
identification of differential expression and functional interpretation into a 
single step, however, it is limited by the need to identify the appropriate gene 
sets ahead of time.  
 
126. Hayes & Bradfield (2005) summarise the approach used to identifying 
sets of co-ordinately regulated (overrepresented) genes, which involves 
assuming all genes are regulated independently and look for genes that 
deviate from this. Any gene profiles that correlate can then be examined for 
co-regulation and associated biology.  
 
 
 



 54 

2. Selecting differentially expressed genes    
 
127. Threshold and statistical-based approaches are typically used to select 
DEGs. 
 
a) Threshold based approaches 
 
128. In single gene comparisons, threshold approaches have used cut-offs 
such as fold change to select DEGs. Such studies end up using fewer 
microarrays as only one or two microarrays are required per experimental 
condition (Ahmed, 2006b). However, the drawbacks of using this approach 
are well documented in the published literature; the main limitations being the 
arbitrary nature of fold changes (in which the spot intensity is used to 
determine how reliable fold increases and decreases are) thereby questioning 
its sensitivity and reliability (Irwin et al 2004). Furthermore, the fact that fold-
change cannot address the reproducibility of absolute differences or provide a 
level of confidence about statistical significance of microarray data renders its 
use a dubious one (the exception being if the microarray study is used solely 
as a preliminary or coarse screen (Ahmed, 2006b)). The use of statistical 
significance as a criterion to generating a gene list (P-value) is reported to be 
a possible solution. Statistical approaches provide the most reliable and 
unbiased way of selecting DEGs, enabling the precise measurement of genes 
exhibiting even a small fold increase or decrease in expression (into which 
many important genes fall) (Irwin et al 2004).  Indeed, Morgan et al (2004) 
consider that the statistical level of change is more relevant than fold change 
and suggest that use of fold-change cut off approaches should be avoided.  
 
b) Statistical based approaches  
 
129. Various types of statistical methods are available to detect DEGs. 
These „supervised approaches‟ report the probability of the observed test 
score occurring by chance under the null hypothesis that there is no difference 
in expression related to the phenotype being studied (Butte, 2002; Slonim & 
Yanai, 2009). The chosen method depends largely on the level of gene 
analysis employed.  
 
130. For single gene comparisons, the available statistical tests are 
described as being either parametric, non-parametric or Bayesian based. 
Parametric tests make assumptions about the normality of data. Examples 
include the t-test statistics (paired t-test, Welch t-test) and ANOVA. These 
tests look for differences in the average expression level between groups 
(Irwin et al 2004; Morgan et al 2004; Slonim & Yanai, 2009). However, since 
the assumptions regarding normality are often inappropriate the reported P-
values are more appropriately used as a guide to prioritise genes rather than 
accurate probabilities. ANOVA is used to determine the statistical significance 
of increases and decreases in gene expression and provides a solid statistical 
basis29 (based on p-values) for identifying DEGs (Irwin et al 2004). ANOVA F-
test has been used with the One–Vs–All (OVA) test to identify genes that 
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 But based on same assumptions re: variance distribution as t-tests 
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significantly varied (changed in expression) in treatment groups (Tsai et al 
2005).  
 
131. Non-parametric tests make no assumptions as to the distribution of the 
data and various tests are used. These include: the Wilcoxon-signed rank 
test/Mann-Whitney U Test – an alternative to parametric t tests (although its 
use is limited by its reduced power to detect important differential 
expressions); and the significance analysis of microarrays (SAM) – that can 
also be used to correct for multiple experiments by utilising the false discovery 
rate (FDR) concept to assist in determining a cut-off after performing adjusted 
t-tests (although this can become computationally intensive) (Ahmed, 2006b; 
Zhou et al 2009).  
 
132. Bayesian methods are used to order microarray expression (and are 
also used in error measurements and quality control).  
 
133. Multiple gene comparisons may use the Bonferroni correction method 
to adjust for multiple significance testing (although it is mainly used to adjust 
for large false positive rates (see below) (Lee et al 2005).  
 

134. Butte (2002) notes that use of the above statistical approaches requires 
consideration of the following factors to help rank genes that are most 
significantly different: absolute expression level (i.e. is expression high or low, 
since low-level expression is often (but not always) associated with less 
reliable measurements and poor reproducibility); subtractive degree of change 
between groups (i.e. the difference in expression level between samples); fold 
change between groups (i.e. ratio of difference in expression level between 
samples); and the reproducibility of measurement (i.e. do similar samples 
produce same levels of expression).  
 
135. Volcano plots are also used in studies to graphically represent DEGs 
and help in selection, and involve comparing the size of the fold change to the 
statistical significance level.  
 
136. A key limitation noted for statistical based approaches to identifying 
DEGs is that the final result can be dependent on the algorithm used (Ju et al 
2007). Therefore, it is recommended that investigators use different analytical 
methods with the same data sets to determine which best suit the 
experimental design.  
 
3. Adjusting for multiple testing  
 
137. A key stage in analysing microarray data and indeed a critical statistical 
issue in class comparison studies is adjusting the data for multiple testing. 
The COT previously reported the problems associated with multivariate 
analysis30, notably the n poor, p rich dilemma, in which testing a large number 
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 Multivariate analysis is defined as the simultaneous analysis of multiple variables (gene expressions). 

NB. Univariate analysis (e.g. pairwise comparisons) is concerned with Type I (i.e. the probability of 

rejecting the null hypothesis when it is true) and Type II (i.e. the probability of accepting the null 

hypothesis when it is false) errors (Suarez et al 2009).  
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(thousands) of variables (genes or „p‟), with comparatively only a few number 
(hundreds) of samples (experiments or „n‟) analysed, increases the likelihood 
of false positives. This typically results in the over-fitting of data onto statistical 
models, greatly inflating the number of significant results (when in fact most 
are false positives (FP)). Such high dimensionality presents a significant 
challenge for statistical methods as it makes the visualisation of samples 
difficult and thereby limits the exploratory potential of the data. Various 
approaches are available to account for this. However, most of these methods 
involve specific assumptions and characteristics that the experimenter should 
be aware of before choosing to apply them. The Family Wise Error Rate 
(FWER) defined as the probability of yielding one or more FP out of all 
hypothesis tested is commonly used, although the associated low power of 
the FWER method may cause many potentially interesting genes to be 
missed. The most preferred approach to adjust the high dimensionality of 
multivariate analysis is to control the false discovery rate (FDR).  
 
a) Controlling the False Discovery Rate 
 
138. The FDR is defined as the probability that any particular significant 
finding is a false positive (Slonim & Yanai, 2009). Ahmed (2006b) further 
defines FDR as the fraction of truly unchanged genes that appear as FP or 
false negatives (FN) i.e. the rate at which significant features are truly null 
(whereby a FDR of 5% means that on average, 5% of the genes found to be 
significantly differentially expressed are not i.e. are FP). Controlling this is a 
common approach to balance FP and FN (Zhou et al 2009)  
 

139. Methods used to control FDR include the use of the Bonferroni 
correction (which adjusts the false positive rate according to study objective 
(Lee et al 2005)), although it has been considered too conservative and 
inappropriate for when many thousands of genes are being compared as it 
can result in many FN (Ahmed 2006b)); permutation-based methods; and the 
Benjamini-Hochberg step down method. These methods calculate a „q‟ value, 
which is similar to the p value as a measure of significance and offer a 
reasonable combination of statistical rigor and power. However, Vlaanderen et 
al (2010) notes that the strongest safeguard against FP results is provided by 
replication of initial findings in follow-up studies.  
 
(ii) Data mining  
 
140. Data mining aims to find patterns in data and the approaches used 
depend on experimental hypothesis/ type of study e.g. class prediction or 
class discovery which adopt either supervised or unsupervised approaches 
(or both) (Ahmed, 2006b). Rahnenfuhrer (2005b) notes that these 
computational (i.e. bioinformatical) methods help to classify samples and 
genes. Sample classification approaches aim to find groups of samples that 
have similar gene expression patterns while gene classification approaches 
aim to identify groups of genes with similar expression values in different 
samples (based on the biological assumption that functionally related genes 
exhibit similar expression patterns under different conditions).  
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1. Pattern recognition in class prediction studies 
 
141. Class prediction studies typically aim to classify unknown samples into 
predefined groups based on the expression levels of key genes. These 
studies also attempt to predict the toxicological class of an unknown toxicant 
based on gene expression signatures of samples and therefore constitute key 
approaches in predictive toxicology. Both objectives are achieved via the 
application of a classifier (i.e. supervised learning method) to gene signatures 
of training set samples, which generates a mathematical model for predicting 
the toxicological class of the unknown sample (Magglioli et al 2006). A range 
of classifiers are available, and the type used depends on whether single or 
multiple genes are being analysed (Hayes & Bradfield 2005). For individual 
gene analyses, Bayesian probability, Linear Discriminant Analysis (LDA), and 
Genetic algorithm (GA)/K-Nearest Neighbours (KNN) have been used, while 
for multiple (geneset) analyses Support Vector Machines (SVM) are 
commonly used as well as decision trees and neural networks. Evaluating the 
classifier-generated models using individual samples from the training set 
comprises the final validation step of a class prediction study, including 
estimating the model‟s success rates to predict toxicological class of 
unknowns.  
 
142. Thomas et al (2001) applied a probabilistic approach based on 
Bayesian statistics to classify toxicants based on their mRNA transcript profile 
effects. Male C57BL/6J mice were exposed to 24 known (model) toxicants 
that fell into 5 toxicological classes i.e. non-coplanar PCBs, peroxisome 
proliferators, inflammatory agents, hypoxia inducing agents and aryl 
hydrocarbon receptor agonists. Following microarray analysis of gene 
expression changes in liver, the authors were able to classify toxicants with up 
to 70 % accuracy using the total gene set of 1200 transcripts, and were also 
able to identify and use a diagnostic set of 12 transcripts to predict with 100 % 
accuracy. The authors concluded that the use of classifiers not only provides 
huge cost savings but identifying a diagnostic gene set renders large arrays 
unnecessary for classification purposes. However, the authors acknowledge 
caveats within the study including how the toxicological categories selected 
primarily reflect the model compounds that toxicologists had extensively 
studied at the time, which represented only a small percentage of the 
chemicals in commerce to date. The authors consider their study as an early 
step towards accurately classifying toxic chemicals according to their 
transcript expression profiles.  
 
143. Although, clustering techniques are generally used as unsupervised 
approaches (see below) the nearest neighbour (NN) clustering algorithm is 
commonly used in a supervised fashion to find genes whose patterns match a 
designated query pattern (Butte, 2002). The K-NN algorithm is very simple to 
use and understand and its accuracy as a classifier can be improved via the 
use of specific noise reduction techniques. The algorithm first compares the 
similarity of expression patterns of measured genes (i.e. a test set) with an 
ideal gene pattern (training set) (by calculating distance of these expression 
patterns from training set) and ranks them according to their similarity with the 
ideal gene pattern to decide on similarity of mechanism of toxicity. Limitations 
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associated with this algorithm include the fact that it is sensitive to irrelevant or 
redundant features (since all features contribute to the similarity). Furthermore, 
K-NN may be outperformed by other techniques such as SVM.  
 

144. Steiner et al (2004) used two different SVM algorithms to produce 
predictive models to determine whether biological samples from rats treated 
with various compounds could be classified into different classes of 
hepatotoxicants based on gene expression profiles. Recursive feature 
elimination was also used to enhance the ability of SVM to create sets of 
informative genes. The authors were able to predict toxicity as well as mode 
of toxicity to discriminate hepatotoxic from non-hepatoxic compounds and 
correct toxicant class. Steiner et al (2004) also investigated the effect of strain 
differences for classification and generated a SVM algorithm using Wistar rat 
data to see whether it could correctly classify individual animals from Sprague 
Dawley rats. They found that the predictive model built on transcripts from 
Wistar strain could successfully classify profiles from Sprague-Dawley strain.  
 
145. Various limitations associated with the use of these algorithms and 
potential ways forward have been reported. Magglioli et al (2006) notes that 
given the numbers of classes and chemicals within each class will increase, 
the validation of a robust method that can incorporate and accurately predict 
toxicity using much larger data sets, represents a significant obstacle which 
hopefully future algorithms may address (Magglioli et al., 2006). Furthermore, 
to address the tendency of these algorithms to create models that over-fit the 
data thereby making it difficult to predict a future dataset using the same 
prediction rule, Mayo et al (2006) recommend splitting data into training set 
and validation set.  
 
2. Pattern recognition in class discovery studies  
 
146. Class discovery studies use unsupervised learning methods to 
visualise gene expression similarity (Magglioli et al (2006). However, as with 
other analytical approaches, the chosen method depends largely on whether 
single or multiple genes are being analysed. Single gene based analyses use 
principal component analysis (PCA) to find genes with interesting properties 
without looking for an a priori pattern. In multiple gene analyses, unsupervised 
methods such as clustering analysis and self-organising maps are used to find 
groups of genes/samples with similar patterns of gene expression. 
Unsupervised methods are also used on a network level to find interactions 
between genes. Examples include Boolean, Bayesian and Relevance 
networks, which are discussed further below. Class discovery is considered a 
subjective approach as the results tend to be influenced by the clustering 
algorithm and similarity metrics selected (Magglioli et al 2006).  
 
a) Principal Component Analysis (PCA) 
 
147. PCA is a multi-purpose mathematical approach that serves as both a 
visualisation and analytical technique, although its former use is considered 
more valuable (Butte, 2002). In class discovery studies, PCA is used to 
describe the variation seen in a multiple value/ expression data set (i.e. to 
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enable a visual assessment of the similarities and differences between 
samples) and thereby determine whether samples/genes can be grouped 
(Hayes & Bradfield 2005). This is achieved by summarising (reducing) the 
dimensionality of the data and graphically representing the reduced data to 
identify clusters and detect outliers (Thompson & Hackett, 2008). Reduction is 
accomplished by identifying directions (also known as principal components) 
along which the variation of data is maximal i.e. by linearly combining the 
components (transcripts) so that the first components represent the greatest 
amount of variability (Mei et al 2009). By using only a few components (e.g. 
the first three) each sample or gene can be represented by relatively few 
numbers of points in a multidimensional space instead of by values for 
thousands of variables (Ringner, 2008). PCA is particularly advantageous 
because it is able to reduce the dimensionality of data while retaining most of 
the variation in the data set. However, it is limited by its inability to describe 
how best to separate groups of genes or samples and the need to know 
whether genes have been centred (normalised?) before analysis which is not 
always documented (Butte, 2002) 
 
b) Cluster analysis  
 

148. Cluster analysis is a commonly used unsupervised technique to 
visually determine patterns in large data sets (Irwin et al (2004); Hayes & 
Bradfield (2005); Ju et al (2007)). Cluster analysis helps identify relevant 
biological structure31 in the data and can be applied either to samples to 
identify those sharing similar gene expression profiles, or to genes to identify 
those that behave similarly across various experimental conditions, which may 
indicate a possible relationship i.e. belonging to the same biological pathway 
(Ahmed, 2006b).  
 
149. Several essential steps are performed in cluster analysis, which include 
(i) calculating the Euclidean distance from heatmap; (ii) applying average 
linkage algorithm to distances between genes and plotting as a dendogram (iii) 
selecting an appropriate clustering method (iv) performing correlation tests.  
 
150. Heat maps are grids of coloured cells where each colour represents a 
gene expression value in the sample i.e. a matrix of gene expression values 
where genes are represented by rows and columns represent samples 
(Rahnenfuhrer (2005b); Ahmed, 2006b). Heat maps are considered 
particularly useful as they provide an overall view of the expression profile. 
Conventionally, red denotes increased expression, green denotes decreased 
expression and black denotes intermediate expression (Ahmed, 2006b). 
Although heat maps are used to visually determine patterns in data sets, they 
also provide a useful starting point for cluster analysis as they help calculate 
similarity or dissimilarity values used in constructing a hierarchical tree 
dendogram.  
 

151.  Similarity or dissimilarity measures (aka metrics) indicate the degree of 
similarity between genes. They are calculated from heatmaps and used by 
clustering methods to build groups of genes with similar patterns of 
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 Cluster analysis also identifies structure caused by systematic biases in the data (Mayo et al 2006). 
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expression, resulting in, for example, the construction of dendograms 
(Rahnenfuhrer, 2005b). An appropriate dissimilarity measure must be chosen 
so that an appropriate analytical technique can be applied. A common metric 
used is the Euclidean distance, which ranks similarities of gene expression 
profiles by treating each gene as a point in a multidimensional space (where 
the X and Y axis represent different samples and the axis co-ordinates denote 
the amount of gene expression per sample) (Butte, 2002). Use of this metric is 
limited by the fact that it can miss correlations of measurements (if 
measurements are not normalised) and genes negatively associated with 
each other (e.g. those associated with tumour suppressor genes). Pearson‟s 
correlation coefficient (r) provides an alternative metric and measures the 
strength of association between genes and is calculated from distances of 
each point from the linear regression line (aka residuals). However, r is 
particularly sensitive to outliers and involves various assumptions (i.e. normal 
distribution, which may not apply to datasets arising from oligonucleotide 
microarrays, and linear gene interactions). This can be rectified by replacing 
measurements with ranks (via calculation of rank correlation coefficients) 
(Butte, 2002).  
 
152. Several types of clustering methods (algorithms) are available and 
most expression analysis tool kits include some clustering or visualisation 
tools (Slonim & Yanai, 2009). Clustering tools are often accompanied with 
non-distance dimension reduction-based methods such as PCA and 
multidimensional scaling, to facilitate visualisation and provide new smaller 
sets of independent dimensions (which contain most of the information from 
the original data) by projecting data onto a lower dimensional space 
(Rahnenfuhrer, 2005b; Ahmed, 2006b). The two most common clustering 
techniques (hierarchical and K-Means clustering) are described below.  
 
153. Hierarchical clustering (HC) is a commonly used unsupervised 
technique that builds clusters of genes that have similar patterns of 
expression (Butte, 2002). It uses the similarity of expression to organise data 
into groups of highly correlated genes (clusters) (Hayes & Bradfield 2005). 
These algorithms find successive clusters using previously established 
clusters and are usually either agglomerative (bottom-up) or divisive (top-
down). HC is considered a particularly useful clustering algorithm as it 
produces a dendogram to visualise overall similarities in expression patterns 
observed in an experiment. Dendograms visualise resultant clusters by 
representing genes as leaves of a large branching tree. The branches link 
genes and the branch length indicates level of correlation whereby short 
branches denote similarity between genes and long branches dissimilarity 
between genes. HC is also a popular algorithm because it allows users to 
easily estimate the number and size of expression patterns within a data set 
(Rahnenfuhrer, 2005b). Furthermore, the fact that each cluster is further 
divided into subtrees makes it more informative than k-means, for example 
(Ahmed, 2006b). Disadvantages associated with HC include the loss of 
information (e.g. negative associations) due to the enforcement of tree 
structure to data and the lack of a probabilistic foundation to guide decision as 
to where to cut the dendogram, which can be rectified by using external 
criteria to choose the number of clusters (Butte, 2002). HC is also considered 
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unsuitable for finding up and downregulated genes in experiments (Ahmed, 
2006b). HC is considered more suitable for clustering genes than samples 
since the number of genes is usually several magnitudes greater and 
therefore often only compact subgroups of genes are sought after 
(Rahnenfuhrer, 2005b). 
 
154.  K-Means clustering is a type of partitioning algorithm that determines 
all clusters at once. Such algorithms seek to minimise the heterogeneity of 
clusters and maximise their separation for a given number of clusters. K-
means is the most widely used partitioning cluster algorithm due to its 
simplicity/ low computational complexity and speed (Ahmed, 2006b). It 
organises the data by producing divisions of the data set (bins) that are based 
on a predetermined number of groups/clusters that are viewable in tabular 
format (Hayes & Bradfield 2005; Magglioli et al 2006). However, it is limited by 
its assumption that each gene fits into only one cluster.  
 
155. Zhou et al (2009) report on a newly developed profile-based method for 
Extracting microarray gene expression Patterns and Identifying co-expressed 
Genes (EPIG) (first reported by Chou et al 2007). EPIG uses a filtering 
process to extract biologically informative patterns and co-expressed genes 
more effectively than other techniques such as CLICK (cluster identification 
via connectivity kernels). It evaluates the correlations among profiles, the 
magnitude of variation in gene expression profiles, and profile signal-to-noise 
ratios without a pre-defined seeding of the patterns.  
 
156. Slonim & Yanai (2009) highlight a significant drawback of using 
clustering approaches i.e. the possibility of finding predominant patterns in the 
data that do not correspond to the phenotypic distinction of interest in the 
experiment. They suggest the use of more directed methods to identify gene 
expression patterns related to a particular distinction. The fact that every 
clustering algorithm yields some grouping regardless of the true structure of 
the data is of concern as this can lead to an overly optimistic interpretation 
(Rahnenfuhrer, 2005b). Therefore, the deployment of an objective judgment of 
clustering results to assess the quality is recommended. Slonim & Yanai 
(2009) recommend the use of different methods which can reveal different 
patterns. In addition, the use of different algorithms to look at broad patterns in 
each data set can help rule out correlations with possible confounding 
variables, such as day effects.  
 

c) Self-organising maps  
 
157. Self-organising maps (SOM) are similar to HC algorithms but use a 
different approach to survey expression patterns within a data set (Butte, 2002; 
Ju et al 2007). SOM represent genes as points in a multidimensional space 
and provide a 2-D visualisation of expression patterns, with reduced 
computational requirements. However their use is limited by the arbitrary 
nature of the shapes and issues related to their reproducibility. SOM are also 
criticised for their potential to miss negative associations.  
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(iii) Microarray data analysis packages  
 
158. A range of commercial and publicly available software packages are 
used to analyse TGX data (Slonim & Yanai, 2009).  Commercial packages 
although plentiful are limited by their cost. Furthermore, they also have limited 
flexibility. However, a number of web-based tools are freely accessible online 
and include: Gene Set Enrichment Analysis (Broad Institute) used in gene set 
analysis; DNA-Chip Analyser (dChip) (Harvard University) – a Windows 
software package for probe-level (e.g. Affymetrix platform) and high level 
analysis of gene expression microarrays and SNP microarrays; BRB-Array 
tools that provide various utilities for processing expression data from multiple 
experiments, visualising data, multidimensional scaling, clustering and 
classification and prediction of samples; and Pipe, MeSHer32 and RACE 
(Ahmed, 2006b; Suarez et al., 2009).  

 
159. Open-source software packages provide their programme source-code 
freely for use or modification. The most commonly used is the Bioconducter 
Project, an open-development computational platform that provides tools for 
the analysis and comprehension of genomic data. Bioconducter is continually 
updated with the development of new methods and uses R-programming 
language based statistical software systems such as R/maanova that can be 
used for data quality checks and visualisation, data transformation, ANOVA 
model fitting and various statistical tests including cluster analysis (Ahmed 
2006b; Suarez et al 2009). Other available open-source software packages 
include the Java-based TM4 software system developed by the Institute for 
Genomic Research, MD, USA and BASE, a web-based system developed at 
Lund University, Sweden (Repsilber et al 2005). 

 

160. Members previously commented on the need for generic guidance on 
the most suitable methods to evaluate TGX data, given the wide range of 
analytical approaches available and subsequent lack of standardisation in 
data analysis methods. Members also highlighted the lack of statistical 
experts to peer review published studies, which would exacerbate the 
situation. Findings from the HESI Committee on the Application of Genomics 
to Mechanism-based Risk Assessment cross-sector international online 
survey revealed that principal component analysis (PCA), hierarchical 
clustering, and analysis of variance (ANOVA)/statistical analysis of 
microarrays (SAM) were the most commonly used statistical (computational) 
methods for analysing microarray data across all 112 respondents (Petit et al 
2010).  
 
161. Suarez et al (2009) considers further development is required in the 
following areas: methodology for pairwise comparison; preprocessing data 
(wrt different platforms to collect microarray data, segmentation procedures, 
normalisation methods, use of mismatched probes); and statistical inferences 
(wrt different t statistics, methods to control proportion of false positive 
declarations and problems in controlling correlation among genes and among 
tissues).  
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B. DATA VALIDATION/CONFIRMATION 
 
162. Computer-generated gene lists contains 10s to 1000s of transcripts 
that have been statistically significantly up/down regulated cf. reference 
population. After detecting patterns in regulated genes, further analysis is 
necessary to biologically validate the data. Several levels of validation can be 
distinguished. The first level requires use of an alternative assay/gene 
expression technique to determine whether there was a real difference in 
expression between the samples in a study (and typically involves the 
numerical verification of expression levels). The second level seeks to 
determine whether the expression is really affected by the treatment and 
achieves this via biological replication. Establishing the biological relevance of 
these gene expression changes comprises the next validation step of TGX 
data. The objective is to ascertain meaning (i.e. interpret the significance of) 
these regulated genes e.g. do the changes observed actually mean anything 
(and typically involves finding common promoter regions and biological 
relationships between genes) (Butte, 2002).  
 
(i) Numerical verification of regulated gene expression levels  
 
163. Confirmation of microarray data requires complimentary validation on a 
few genes by a quantitative method. Indeed current publication guidelines 
require that all microarray results are confirmed by an independent gene 
expression profiling method. Various approaches can be used such as 
Northern blotting, ribonuclease protection assays, and in-situ hybridisation. 
However, quantitative real-time reverse transcription polymerase chain 
reaction (RT-PCR)33 is generally considered the method of choice (Ahmed, 
2006b).  
 
1. Quantitative real-time RT-PCR 
 
164. Real time RT-PCR validates genes whose expression was found to be 
altered by the microarray analysis. It takes sample mRNA and quantifies the 
amount present thereby providing a measure of gene expression. Real time 
RT-PCR is considered to be particularly advantageous because it rigorously 
quantifies gene expression when mRNA levels are low and automates 
laborious processes involved in PCR (i.e. data analysis, standard curve 
generation and copy number generation) by quantifying reaction products for 
each sample in every cycle, thereby removing the need for user intervention 
or replicates. 
 
165. It is recommended that real time RT-PCR is performed for all genes of 
interest and a suitable housekeeping (reference) gene (whose relative 
expression level can used to normalise the expression of the genes of interest 
to control for sample to sample variation) (VanGuilder et al 2008). The same 
housekeeping gene used for the microarray experiment could also be used (if 
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applicable), however mRNA for glyceraldehdye-3-phosphate dehydrogenase, 
beta-actin, MHC1 and cyclophilin tend to be more commonly used. The 
design and availability of primer pairs (sets)34 may impact on the outcome of 
the gene expression validation step. This is because in-house primer sets are 
relatively cheap compared to those commercially available. However, it is 
reported that in house primer sets have potential for yielding non-specific 
amplification products while commercial primer sets are more reliable as they 
are designed by experimentally verified computer algorithms and tested in a 
quality control assay.  
 
166. After the PCR amplification rounds (range 20-40) that use fluorophores 
that permit measurement of DNA amplification during PCR in real time,  two 
quantification methods are used to determine gene expression. The standard 
curve method determines the relative level of expression of the genes of 
interest and housekeeping gene by firstly constructing a standard curve from 
RNA of known concentration (standards used can be either RNA, purified 
plasmid ds DNA, in-vitro generated ssDNA, and cDNA sample expressing the 
target gene). The curve is then used as a reference standard for extrapolating 
quantitative information for mRNA targets of unknown concentrations, 
followed by spectrophotometric assessment of the concentration of standards. 
The comparative ct method involves comparing ct values of the sample of 
interest with a control/calibrator (i.e. non-treated sample or RNA from normal 
tissue) and normalising the values of both calibrator and samples of interest to 
an appropriate endogenous housekeeping gene (Ma et al., 2006).  
 
167.  The different real time PCR approaches (or chemistries) include 
TaqMan Probes ®, Molecular Beacons, Scorpions ® and SYBR® Green. 
These chemistries allow detection of PCR products via the generation of a 
fluorescent signal. SYBR Green is considered the simplest and most 
economical format for detecting and quantifying PCR products in real time 
PCR. The SYBR Green dye binds to double stranded DNA but not to single-
stranded DNA and is frequently used in real-time PCR reactions. When bound 
to double stranded DNA SYBR Green strongly fluoresces. However, users are 
required to design gene specific primer sets to avoid co-amplification of non-
specific secondary products since SYBR Green can detect any double 
stranded DNA non-specifically.  
 
168. In general, reverse transcriptase PCR methods are limited by the fact 
that the extra reverse transcription step makes it less quantitative than PCR of 
DNA. However, northern blotting is not as popular a gene expression 
validation method, because it requires relatively large amounts of RNA, and 
provides only qualitative or semi-quantitative information of mRNA levels. 
Similarly, use of in-situ hybridisation is limited by the fact that it provides 
qualitative rather than quantitative information.  
 
169. Members previously queried whether studies were using alternative 
platforms to validate microarray data. Petit et al (2010) reports that most (60%) 
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HESI Committee survey respondents used RT-PCR to assess expression 
levels of specific genes and confirm array results. RT-PCR confirmed 60-89% 
of microarray data in most sectors. It was further suggested that the reliability 
of TGX technology is currently being miscommunicated at higher levels within 
organisation structures due to the varying responses among vice presidents 
and study directors as to the frequency with which confirmatory analyses 
supports primary microarray findings (e.g. vice presidents considered the 
confirmation rate to be 10% cf. 50% reported by study directors).  
 
(ii) Data interpretation 
 

170. As previously noted the result of high-level data analysis is the 
generation of a list of genes (or more precisely probes represented on an 
array) believed to be significantly regulated by the condition under scrutiny. 
However, this list is limited by the fact that it does not indicate the pathological 
or physiological processes that took place in the samples under consideration 
(Brors, 2005). The challenge, therefore, is to transform this list of DEGs, 
predictive or co-regulated genes into entities that are more quickly understood 
in terms of traditional biology. Consequently, an approach to validating the 
biological significance of regulated gene patterns is to interpret the results in 
relation to their regulation, function and biological relevance (Butte, 2002; 
Morgan et al., 2004). Such post analytical work is considered to be a rate 
limiting step and is represented by the following steps. Firstly, researchers 
must annotate the probes (genes) by collecting structural information on the 
probes regulated on the microarray (i.e. associate the probe with biological 
entities e.g. genes, transcripts or proteins). This is accomplished by surveying 
databases that provide information for example, on biological sequences to 
identify genes represented on microarrays. Next, the function of gene 
products must be defined in a systematic and consistent way i.e. mapping 
microarray probes onto protein databases providing information on protein 
functions e.g. via Gene Ontology System, and SwissProt keywords. The 
preceding steps represent structural and functional components of gene 
annotation i.e. the assignment of gene level information based on the 
probeset sequences whereby the name and symbol of the gene is 
interrogated as well as its general function. Finally, pathways or biological 
functions that are overrepresented in a given gene list can be identified 
(pathway analysis). It is therefore essential that gene annotations are regularly 
updated to enable systems biology modelling. 
 
1. Structural gene annotation   
 
171.  The structural annotation of genes with sequence, structure and locus 
information constitutes a significant challenge due to the fact that genome 
databases are either incomplete or faulty. Brors (2005) notes that the 
challenge of correctly identifying the intron-exon structure of genes is further 
aggravated by the fact that the coding sequence in humans is only three 
percent, which thereby results in many errors in genome databases. Other 
annotation issues highlighted in the literature relate to significantly regulated 
genes not being ascribed names (official gene name); the lack of detailed 
information e.g. predicted protein domains or gene ontology classification; and 
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incorrect probeset design (e.g. against wrong DNA strand/species or probe 
sequences may not be unique for a particular gene) (Butte, 2002). 
Furthermore, the trajectory of data generation is set to increase given that 
before 2003 only 6 animals species were completely sequenced and 
published which rose to 103 animal species from 2003 to date (Van den Berg 
et al 2010).  
 
172. Biological sequence databases exist to provide a repository for 
sequence information, further information on sequence domains and cross-
references to other databases and literature (Brors, 2005). Sequence 
information for both nucleic acids and proteins is available in, for example 
EMBL/GenBank/DDBJ (which represent the same information but in different 
formats), which enable users to deposit nucleic acid data directly into the 
database. However, as the responsibility to curate35/correct errors lies with the 
depositor, databases are often not regularly curated which may result in them 
containing hundreds of redundant entries and inconsistent descriptions. In 
contrast, protein sequence databases (e.g. SwissProt) are regularly curated. 
Other databases used to provide structural annotation include various domain 
databases e.g. Prosite, medical literature databases e.g. Pubmed, protein 
structure databases e.g. Structural Classification of Proteins (SCOP) and 
position in genome databases e.g. Locus Link. The NCBI GEO is cited as 
being the primary repository for structural annotations of most commercial and 
custom-made microarrays (Van den Berg et al 2010). 
 
173. Despite the above assurances, recent work suggests that gene 
annotations are still not regularly updated consistently after publication. For 
instance, Van den Berg et al (2010) found that although the FHCRC Chicken 
13K cDNA v.2.0 microarray was developed and structurally annotated in 2004 
and published in 2005 in GEO36, it has only received one updated since 2006, 
despite the assignment of new and/or corrected structural and functional 
annotations. However, it is thought that this situation is likely to change with 
the acquisition of new genomics data and development of annotation tools.  
 
2. Functional gene annotation  
 
174. Bioinformatics provides insight into gene function, interactions, 
biomarkers, networks and pathways (Ju et al, 2007). Therefore, functional 
gene annotation consists of attaching biological information to the regulated 
probesets (i.e. biochemical and biological functional information and the 
regulatory and interactive associations). Although the same above challenges 
apply to the databases used to provide functional annotation, more than half 
the probes on a given array can be mapped onto databases (depending on 
the organism under investigation) (Brors, 2005). Various databases are 
available e.g. KEGG for biological pathway information, Transfac for 
regulatory signal information and Transpath for signal transduction information.  
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a) Network analysis  
 
175. Not only the profile of genes associated with a specific biological 
process are tested but also functional interactions between genes in a profile 
(Vlaanderen et al 2010). Various unsupervised learning methods are used to 
find interactions between genes. These include Relevance networks (RN), 
Boolean networks, and Bayesian networks (the latter used to search for true 
genetic regulatory networks i.e. hypotheses that the expression of one gene 
correlates with expression of another) (Butte, 2002).  
 
176. Rho et al (2008) define a biological network as a composite of nodes 
(e.g. DNA, mRNAs, proteins and metabolites of cellular systems) and edges 
(e.g. the interactions between these nodes, which can be between genes, 
between gene and protein, between chemical and gene, etc). Such networks 
enable systems (defined as organs, tissues, cells and subcellular 
compartments) to function and they receive signals from these systems. 
Network modules describe a particular portion of a biological network 
activated to execute certain functions to offset perturbations caused by 
environmental or genetic events.  
 
177. RN is an unsupervised technique that builds networks from genes, 
phenotype and clinical measurements. RN searches pair of genes that are 
likely to be co-expressed and compares features with each other by 
calculating a correlation coefficient (or other similarity measure) and choosing 
a threshold value whereby only those features with a measure greater than 
threshold are kept (NB. Can be used as a dial to increase and decrease the 
number of connections shown). Use of RN is considered particularly 
advantageous as it enables more than one data type to be represented 
together e.g. linking systolic blood pressure and the expression of a particular 
gene. It also allows for the visualisation of a variable number of associations 
for a particular feature (with nodes representing genes/ phenotypical 
measurements and edges (between nodes) representing associations), 
including the visualisation of negative associations. RN is limited by the fact 
associations at low thresholds are rather complicated.  
 
178. Network approaches have been reported in the literature. Kulkarni et al 
(2008) propose a mathematical model entitled Toxicologic Prediction Network 
(TPN) as an approach to correlating gene expression changes caused by 
drug exposure to chronic toxicity. It is suggested that this approach avoids the 
difficulty associated with exposure to hepatotoxic drugs and the time 
consuming nature of animal experiments assessing their chronic toxicological 
impact.  
 
b) Pathway analysis 
 
179. Pathway analysis is an approach used to phenotypically anchor altered 
genes into biologically relevant pathways (Elashoff et al 2008). It detects 
pathways by identifying sets of genes with common characteristics and 
measures whether pathways are affected by compound either via an equation 
([No of genes in pathway regulated by compound/ No of genes in pathway]/ 
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[No of genes not in pathway that are regulated by compound/ No of genes not 
in pathway]) – which is limited by the fact that it assumes genes act 
independently; or by using a measure that accounts for the correlation 
between genes within a pathway. The procedure typically involves loading 
accession numbers and log-fold change values of DEGs into pathway 
analysis software e.g. Ingenuity Pathway Analysis (IPA) which then overlays/ 
integrates set of DEGs onto a knowledge database which provides a 
classification of gene products into molecular functions, biological proocesses 
and cellular components (Mei et al 2009). Pathway analysis can provide 
illustrations of linked transcripts but this is only speculative and further 
confirmatory investigations are needed. Therefore, once these data have 
been integrated, regulatory networks, functional analysis and canonical 
pathways altered in response to the chemical treatments can be explored. NB. 
Adjustment for multiple testing may be desirable although it is not easy to find 
appropriate method. Although there are currently large gaps in knowledge of 
biological pathways, each new study helps build the knowledge base 
(Vlaanderen et al 2010).  
 
c) Ontological approaches 
 
180. The Gene Ontology Database, conceived by the Gene Ontology 
Consortium describes a series of integrated publicly available tools that 
facilitate annotation by providing information on pathways, biological 
mechanisms and molecular functions. This ongoing Gene Ontology project 
provides ontologies of defined terms representing descriptions of gene 
products i.e. the non-overlapping domains of molecular and cellular biology 
(Ahmed, 2006b). This includes three independent categories for biological 
process (i.e. operations or sets of molecular events with a defined beginning 
and end, pertinent to the functioning of integrated living units: cells, tissues, 
organs, and organisms), molecular function (i.e. the elemental activities of a 
gene product at the molecular level, such as binding or catalysis) and cellular 
components (i.e. the parts of a cell or its extracellular environment). Gene sets 
identified in microarray experiments as DEGs are tested for their association 
with a profile in the GO library (Vlaanderen et al 2010). The GO project not 
only enables inferences to be made of biological roles but it also thereby 
provides a means of transferring annotation from one organism to another.  
 
181. Other ontological tools include Onto-Tools an annotation and integrated 
web accessible data mining suite (e.g. Onto-Express and Onto-Compare) that 
integrates data from sequence, gene, protein and annotation databases 
designed and implemented by the Intelligent Systems and Bioinformatics 
Laboratory (IBSL), Wayne State University, Detroit, USA. Onto-Express (OE) 
automatically translates lists of DEGs into functional profiles, which thereby 
help reveal biological mechanisms characterising effect of the treatment under 
study. OE also constructs function profiles for each of the GO categories and 
provides information on statistical significance of each pathway and 
categories used in the profiles to help users distinguish which mechanisms 
are significantly affected from those due to chance. Onto-Compare was 
developed to enable access to the biological significance of microarray data. 
Standards and Ontologies for Functional Genomics (SOFG) Mouse Ontology 
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Resources provides standards and ontologies for functional genomics (for 
mouse).  
 
182. Members previously highlighted that interpreting the functional 
significance of gene expression changes comprised a critical area. The 
approach used in functional genomic analysis was recently considered in a 
study by Van den Berg et al (2010) that sought to demonstrate the impact of 
structural and functional re-annotation on systems biology modelling of 
functional genomics data. The authors chose to structurally and functionally 
re-annotated a chicken functional genomics dataset as it exemplified rapidly 
evolving annotations. The authors re-analysed a previously published 
differentially expressed mRNA experimental dataset generated using the 
FHCRC Chicken 13K cDNA v.2.0 microarray (previously used as a tool in 
cancer research) and quantified the impact of re-annotation on (a) the array 
by comparing the quality of new annotations with that of prior annotations, and 
(b) on systems biology modelling. Their findings led to the conclusion that re-
annotation should be the standard first step when analysing functional 
genomics data as it not only provides more structural and functional-
annotations but also improves the power of functional genomics modelling. 
Furthermore, the authors considered that re-annotation can result in a 
different knowledge outcome derived from previous published research 
findings. This approach was considered especially valuable for those species 
in which data and resources are rapidly expanding (including those for which 
genomic sequence information is only recently available).  
 
183. Wu et al (2009) comments that although the breadth of available gene 
annotation resources benefits the TGX community, there is yet to be a single 
resource that completely describes everything a researcher might want to 
know about a gene‟s function. Many researchers ultimately visit different sites 
for each gene of interest to get as complete a picture as possible of gene 
function, which is considered highly inefficient and cumbersome for end users 
(since user interfaces vary dramatically to the extent that researchers must 
learn and remember how to navigate each site). A further drawback arises 
from the fact that new online resources are continually being developed and 
thus staying abreast of these tools and evaluating their utility is a time-
consuming and recurring task. Consequently, Wu et al (2009) developed 
BioGPS, a centralised gene annotation portal for aggregating distributed gene 
annotation resources. By embracing the principle of community intelligence, 
and enabling any user to easily and directly contribute to the BioGPS platform, 
the developers hope the BioGPS portal will overcome the above bottlenecks 
in functional genomic analysis.  
 
184. Other data interpretation issues discussed in the literature include 
consideration of factors complicating interpretation of DEGs in the liver, for 
example zonation of hepatic gene expression, nutritional status of animal 
subject and mixed cell population (Irwin et al, 2004). Morgan et al (2004) 
notes the value of having an understanding of mathematics to interpreting, 
comprehending and providing further analytical insight, particularly with 
regards to interpreting the temporal nature of gene changes and subsequent 
links with the mathematical discipline of dynamics.  
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185. An IPCS Workshop on TGX and Risk Assessment for the Protection of 
Human Health, organised by an international steering group37 was convened 
in Germany in 2003 to consider the different methods of evaluating TGX 
studies in risk assessment and identify and discuss gaps in knowledge, issues 
and challenges (IPCS, 2003). The overriding conclusion was the need to 
strengthen dialogue across disciplines i.e. between those generating TGX 
information, traditional toxicologists and risk assessors to foster development 
and application of TGX. The workshop also considered it particularly important 
that molecular epidemiologists and bioinformatics experts are included. 
Various initiatives have since developed and are discussed in the following 
section.  
 
C. DATABASE MANAGEMENT  
 
186. This short section focuses on the storage and processing of high 
throughput TGX data to enable further data analysis and comparison by other 
researchers.  
 
(i) Databases  
 
187. Various database systems and repositories have been developed that 
provide molecular expression datasets from omic technologies to facilitate 
information-sharing and pattern recognition, which also aids the predictive 
power of TGX (Morgan et al 2004; Hayes & Bradfield, 2005). These 
databases allow comparison of array files e.g. transcriptional profiles and 
conventional toxicological approaches with toxicological pathway and gene 
regulatory network information relevant to environmental toxicology and 
human disease (Ju et al., 2007; Zhou et al 2009). Databases commonly 
used/developed in Europe, Asia (Japan) and USA can be categorised as 
either local or public (Ahmed, 2006b; Ju et al 2007). Local databases can be 
locally installed and hold species-, genus-, topic-specific data.  
 
1. General genomic databases 
 
188. Public databases are available for either public query or submission of 
data. There have been a number of initiatives to address specific database 
issues e.g. the Microarray Gene Expression Data (MGED) Society was 
developed to enable efficient cross database communication via the 
formulation of a conceptual framework. This led to development of several 
databases based on international data communication standards (e.g. MIAME 
guidelines) developed by MGED Society (Morgan et al 2004). Databases also 
containing non-TGX data include (Hayes & Bradfield, 2005):  

(i) Gene Expression Omnibus (GEO) – the largest microarray 
repository worldwide, storing MIAME standard quality data and 
allows users to assess quality of data for themselves (Hayes & 
Bradfield 2005). Considered a powerful tool for data mining and 
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hypothesis generation although contains few data relevant to 
toxicologists.   

(ii) Array Express – The European Bioinformatics Institute (EBI) 
provides a suite of databases and applications which includes Array 
Express, considered the second largest international open source 
repository for microarray data (one of 3 repositories recommended 
by the MGED Society for storing data). Array Express provides 
public and password protected access to well-annotated raw and 
normalised submitted data. NB. MIAMExpress is a web-based 
MIAME supportive data-submission tool. Data can be submitted 
either directly from local databases or online and accession 
numbers are used to retrieve data queried on the basis of species, 
author or array platform. 

(iii) BioGPS  - a successor to Symatlas38 that currently focuses on 
annotation for human, mouse, and rat genes (Wu et al 2009). 
Based on a simple, unstructured plugin interface that allows for 
simple community extensibility. Also implements a powerful user 
interface that enables precise customisability .  

(iv) Centre for Information Biology gene Express database (CIBEX) – a 
Japanese developed repository for a wide range of high throughput 
gene expression data (e.g. microarray, SAGE) and MS proteomic 
data. CIBEX complies with MGED standards for microarray data 
and uses the open source database software MySQL. Although 
CIBEX is mainly used by East Asian scientists there are plans to 
collaborate with ArrayExpress and other Western systems.  

 
2. TGX-specific databases 
 
189. Morgan et al (2004) notes that a key database limitation is the fact that 
most are populated with rat toxicant-rich data, although other non-rat 
databases are in development. In 2004, the HESI Committee on the 
Application of Genomics considered the lack of publicly available 
toxicogenomic databases as one of several key hurdles (Petit, 2004). The 
development of public databases housing toxicologically relevant microarray 
data was considered necessary in order to accommodate the significant 
amount of TGX data, to help address the complexity of comparing different 
gene annotations and splice variants across platforms, to provide a resource 
for complex informatics analyses of traditional toxicology/ pathology and 
microarray data thus providing the scientific community with easy access to 
integrated data in a structured standard format (Corvi et al 2006). A list of 
publicly available TGX-databases is provided below:  

(i) Environment, Drugs and Gene Expression (EDGE) database – a 
publicly accessible microarray database devoted to TGX research. 
Developed by the Bradfield Laboratory, McArdle Lab for Cancer 
Research, Wisconsin USA. EDGE is considered unique in that it 
avoids the problems that afflict other databases (wrt data 
comparison) by operating under standardised microarray platforms. 
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Researchers can add their data to the database and compare their 
results with the large volume of data under similar conditions. The 
database also offers clustering tools for data mining. However 
EDGE is limited by the fact it contains only murine, hepatic-rich 
TGX data although efforts are underway to include other organs 
(Hayes et al (2005).  

(ii) ArrayTrack– an integrated software system for managing, mining 
and visualising microarray gene expression data was developed by 
the US National Center for Toxicological Research (NCTR) (Fang et 
al 2009). ArrayTrack stores a full range of information related to 
DNA microarrays and clinical and non-clinical studies as well as 
summarised data from proteomics and metabonomics experiments 
and has been used in routine reviews of genomic data submitted to 
the US FDA.  

(iii) Chemical Effects in Biological System (CEBS) Knowledge database 
– developed by the Toxciogenomics Research Consortium (TRC) 
for genomic, proteomic and metabonomic studies on chemicals 
(displays microarray data in the context of study design and assay 
measures such as clinical chemistry and histopathology) of the 
National Center for Toxicogenomics (NCT) ;  

(iv) Comparative Toxicology Database (CTD) – aims to develop a 
comparative database that links sequence information for genes 
that are relevant to toxicology ;  

(v) dbZach – an emerging database that houses microarray data 
relating to endocrine distruption and testicular toxicity; 

(vi) Toxicogenomics for Efficient Safety Test (TEST) database 
management system – an intelligent database system, capable of 
handling heterogeneous and complex data from many different 
experimental and information sources (Lee et al 2004).The 
intelligent query feature enables users to obtain relevant, useful 
information from complex data sets and conduct multiple 
comparisons. Information can be retrieved for compounds, animal 
experimental data, gene expression data and annotation. At the 
time of publication the system housed information for 16 
compounds, 45 microarrays, 190 animal experiments, and had a 
customised 4.8K rat clone set. Data can be accessed online via 
http://istech.info/TEST/ and users requiring gene level data can 
enter their query into the annotation database with the gene‟s name 
and ID no of the relevant database, and functional key words. 
Expression profile information is obtained via links to a microarray 
database.  

(vii) Profiles of Chemical Effects on Cells (pCEC) - a Japanese TGX 
(gene expression) database with a system of classifying chemicals 
that have effects on human health (Sone et al 2010). pCEC 
classifies chemicals according to specific tissues and cells they 
affect, the gene expression changes they induce and their toxicity 
and biological functions. The database also analyses the 
relationships between chemicals and the genes they affect in 
specific cells and tissues. The developers hope this database will 

http://istech.info/TEST/
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help support decision making within the context of environmental 
regulation.  

 
190. Despite progress in many areas, an EPA published article considers 
that the current state of the majority of public microarray databases is 
inadequate for supporting predictive toxicology and meta-analysis  (Williams-
Devane et al 2009). This is particularly with regard to chemical indexing, 
considered to be a first important step toward integrating chemical, 
toxicological and genomics data into predictive toxicology.  
 
(ii) Data comparison 
 
191. A good TGX database would enable easy comparison of the 
expression profiles of one compound with another to help contextualise the 
significance of the data. Elashoff (2008) notes the importance of the having 
comparable study and database samples and outlines an approach to 
comparing expression profiles of a study compound with that from database 
compound(s). Firstly, an assessment of the similarity of the type of vehicle 
controls, sex/strain of animals, sample and chip processing methods used is 
conducted, as these are known to alter the baseline expression level of genes 
but not expression regulation induced by compound. Next, within-study data 
normalisation is conducted as experience shows that comparing unnormalised 
data between groups is limited, whereas within-study normalisation removes 
much of the cross study differences while preserving the underlying biological 
responses. The comparability of the study and database samples is then 
assessed using the following methods: QC metrics, PCA (to determine 
whether study samples group with database samples on the first several 
principal components), and clustering (to determine whether those study 
samples grouping with database samples cluster with an acceptable level of 
correlation). Data exploration is performed to search for patterns i.e. grouping 
of compounds which may arise due to similar mechanisms of toxicity, 
induction of high level toxic effects (e.g. necrosis), similar non-toxic effects 
followed by gene level analysis (includes gene similarity analysis and pathway 
fold change).   
 
192. A recent attempt to enable researchers to compare in-house data with 
data contained in the Japanese TGX Project (TGP) database led to the 
development of the similar compounds searching system (SCSS) by 
Toyoshiba et al (2009). In practice, however, it is not easy to compare in-
house microarray data with those in a database. This is largely due to 
differences in the experimental conditions i.e. too much inter-laboratory 
variation, and too many strategies developed to annotate targets (although it 
is thought that annotation problems should resolve in time as more genomes 
undergo careful sequencing and curation (Mattes, 2004; Hayes & Bradfield, 
2005; Toyoshiba et al 2009). Furthermore, the ease and convenience of data 
accessibility and comparability is influenced by the type of system used for 
microarray data analysis. Web-based systems are highly regarded due to their 
ease of access from any computer on the internet, which thereby facilitates 
sharing of data (Ahmed, 2006b).  
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193. One approach to address inter-laboratory variability is to standardise 
the experimental protocols e.g. use common platforms, however, the range of 
platforms and protocols presents a significant challenge (Baker et al 2004; 
Mah et al 2004), although two methods for combining information across 
different versions of Affymetrix oligonucleotide arrays have been devised 
(Morris et al., 2006).  
 
(iii) Standardisation  
 
194. The standardisation of TGX protocols (and data) represents a 
significant contribution to enabling data comparability and subsequently 
ensuring reproducibility, which greatly impacts on the wider application and 
general acceptance of TGX as a risk assessment tool. Various 
standardisation initiatives exist, the most established arising from the MGED 
Society, an international organisation of scientists specialising in biology, 
computer science and data analysis that facilitate the sharing of large 
microarray datasets generated by high throughput functional genomics and 
proteomics experiments (http://mged.org).  
 
195. The MGED Society have established several standards for data quality, 
data management, data annotation, data exchange/communication, the most 
notable being the Minimum Information About a Microarray Experiment 
(MIAME) Guidelines from which modified offshoots arose. MIAME is 
discussed further in the next section, however those relating to database 
management include the MIAME/Tox described as an array based TGX 
standard developed by various organisations (ILSI-HESI, NIEHS, NCR, FDA 
NCTR and EBI) (Sansone et al 2005). MIAME/Tox principally aims to guide 
the development of TGX databases and data management software although 
it also provides a set of guidelines describing minimal information required to 
correctly interpret and replicate the experiments or retrieve and analyse 
microarray data of toxicological significance.  The MGED facilitates the 
creation of these and other tools including the MGED Ontology which aims to 
develop standard terms (ontologies) for annotating (describing) samples used 
in microarray experiments. The Society also participates in community 
development of ontologies supporting the Open Biological and Biomedical 
Ontologies (previously known as Global Open Biological Ontologies (Gobo)) 
and works with other standards organisations e.g. EBI and HESI to develop 
the Tox-MIAMExpress – an annotation and submission tool to ArrayExpress 
database.  
 
196. Sansone et al (2004) identifies a potential challenge to standardisation 
initiatives, in which different sector needs may complicate the development of 
a unified approach. For example, the main objective for the regulatory sector 
is regulatory submission of data and therefore standardisation initiatives 
should ideally accelerate the review process, facilitate proprietary data 
submission, and optimise data visualisation. In contrast to this, the research 
community is mainly concerned with discovering genes and identifying 
mechanisms and the need for databases and tools. As such, standardisation 
would ideally ease the deposition of data into public databases and facilitate 
data mining via the use of common annotation standards and ontologies. The 
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only way forward, it seems, is to focus on areas of overlap and commonality 
and the Reporting Structure for Biological Investigation (RSBI) is proposed as 
a the solution (Sansone et al 2006).  
 

197. The RSBI represents a working group under the MGED Society 
umbrella that brings together several communities including the TGX 
community. It aims to tackle the challenges associated with integrating data 
and representing complex biological investigations employing multiple omics 
technologies i.e. duplication and incompatibility (Sansone et al 2006). Such 
challenges are thought to arise because each community is developing 
databases and establishing their own data communication standards. In this 
era of functional genomics and systems biology such efforts cannot be 
developed in isolation, as failure to deliver will increase burden and cost of 
data management tasks. Therefore, the RSBI aims to provide a single point of 
focus for the various omic communities to synergise their insular approachs 
into one common solution. RSBI hopes to produce technology centred data 
communication standards that not only stand alone but also are able to 
function together.  
 
198.  Mattes (2008) accurately sums up the value of shared efforts to 
addressing the problems affecting the analysis of TGX data in the following 
abstract:  

“Public consortia provide a forum for addressing questions requiring 
more resources than one organization alone could bring to bear and 
engaging many sectors of the scientific community. They are particular 
well suited for tackling some of the questions encountered in the field of 
toxicogenomics, where the number of studies and microarray analyses 
would be prohibitively expensive for a single organization to carry out. 
Five consortia that stand out in the field of toxicogenomics are the 
Institutional Life Sciences Institute (ILSI) Health and Environmental 
Sciences Institute (HESI) Committee on the Application of Genomics to 
Mechanism Based Risk Assessment, the Toxicogenomics Research 
Consortium, the MicroArray Quality Control (MAQC) Consortium, the 
InnoMed PredTox effort, and the Predictive Safety Testing Consortium. 
Collectively, these consortia efforts have addressed issues such as 
reproducibility of microarray results, standard practice for assays and 
analysis, relevance of microarray results to conventional end points, 
and robustness of statistical models on diverse data sets. Their results 
demonstrate the impact that the pooling of resources, experience, 
expertise, and insight found in consortia can have.” 
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SECTION 4. QUALITY CONTROL OF TRANSCRIPTOMIC BASED 
STUDIES 
 
INTRODUCTION  
 
199. Quality control (QC) should comprise an integral part of any TGX study. 
The deployment of QC measures is vital to guaranteeing data quality and 
consistency and ensuring data accuracy and reproducibility (Hartmann, 2005). 
QC is principally concerned with data quality (i.e. approaches that help ensure 
the generation of optimal and accurate data at each technical procedural 
endpoint) and can, therefore, be deployed at each data generation and 
acquisition stage of a TGX study. A closely related term, validation, describes 
the process of ensuring that a test reliably measures and reports the 
determined endpoints. It can be applied at several levels e.g. the 
technological/ platform level, software/data analysis level, biological and 
generalisability level and regulatory level (NAS, 2007ab).  This section 
highlights the various QC measures and related approaches used to ensure 
the production and interpretation of accurate, reproducible and consistent 
data.  
 
A. QUALITY CONTROL MEASURES 
 
200. QC measures can be defined according to the stage at which they are 
applied e.g. pre-hyrbidisation QC measures assessing the quality/efficiency of 
RNA extraction and labelled probe sample preparation, and post-hybridisation 
QC measures which either assess quality/efficiency of (a) individual 
microarray spots or genes via filtering approaches (b) individual hybridisations 
or chips (c) whole batches of hybridisations (Hartmann, 2005).   
 
(i) Pre-hybridisation quality control measures:  
 
1. RNA Quality  
 
201. The quality of RNA derived from tissues and cell samples strongly 
influences the type of data produced in a TGX study. High quality RNA is 
necessary for reproducible and reliable data while low level RNA quality 
reduces the statistical power of a study (Thompson & Hackett 2008).  
 
202. Three different approaches are typically used to measure RNA Quality. 
The RNA Quality Index (RQI) considers both RNA purity and integrity. RNA 
can be contaminated by protein, genomic DNA and chemicals and an optical 
density ratio39 of 2 (260 cf 280 nm) is used to indicate RNA of sufficient purity. 
Because RNA is extremely sensitive to degradation by RNases, it is 
particularly important to confirm whether RNA degradation has occurred in 
samples or tissues for gene expression analysis, such as after long term 
storage. Although a moderate degree of RNA degradation does not preclude 
meaningful results for microarray analysis or RT-PCR, more extensive 

                                                 
39

 Quantified using spectrophotometers 
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degradation necessitates the exclusion of affected samples from further study 
(Sumida et al 2007).  
 
203. RNA integrity can be assessed via use of microfluidics platforms for 
nucleic acid analysis. The procedure involves RNA separation (via 
electrophoresis), followed by quantification (via fluorescence) and calculation 
of 28S/18S RNA ratio where intact RNA would have a value greater than 2 
although the value of this approach has been questioned i.e. the ratio is not 
predictive of sample quality and it not considered to be a useful indictor of 
sample integrity when total RNA is only partially purified (Thompson & Hackett 
2008). RNA degradation is typically indicated by incomplete full length cDNA. 
For certain protocols intact (undegraded) RNA is required, indicated by a 
greater than 3 value for the 3‟ to 5‟ probe ratio of universally expressed genes 
(e.g. GADPH).  
 
204. Other approaches used to measure RNA quality include 
electropherograms (graphic outputs of electrophoresis devices) which are 
considered to provide a more accurate assessment of RNA quality, and RNA 
yield, described as the expected yield calculated from a given weight of tissue, 
which essentially measures the effectiveness of the RNA isolation protocol.  
 
205. Copois et al (2007) compared the ability of four different RNA quality 
assessment methods to detect reliable RNA samples and found that the 
28S/18S ratio leads to a misleading categorisation, while two computer 
methods (RIN and degradometer) and an in-house RNA quality scale had 
similar capacities to detect reliable RNA samples. Furthermore, the authors 
developed a new approach based on clustering analysis of full chip 
expression that controls RNA quality after hybridisation experiments and 
found that monitoring RNA quality after hybridisation experiments in addition 
to before ensures reliable and reproducible microarray data.  
 
2) Target preparation  
 

206. Efficiency assessment of cDNA synthesis can be done by monitoring 
the yield and size of cRNA product (Thompson & Hackett 2008). Efficiency of 
cRNA fragmentation is similarly evaluated by monitoring the shift in size of 
product.  
 
207. External controls aim to monitor the performance of technical 
procedures and produce data that can be used to assess the overall quality of 
the starting RNA (sampling), labelling, hybridisation and grid alignment 
(microarray) and are also referred to as calibration standards. They are often 
commercially available non-mammalian RNA sequences that are not from the 
species being analysed (i.e. have no similarity to the genome of the species 
under study) and measure system performance independent of the quality of 
the RNA sample being analysed. These controls are either spiked into 
samples (hence also referred to as spiked-in targets which hybridise onto their 
corresponding sequences on arrays) or microarrays (aka exogenous spike-in 
controls that correspond to probes on the microarray surface). For example, in 
the labelling step, replicate arrays are run using reverse dye-incorporation 
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orientations for samples. Success of labelling can then be determined by 
spiking polyA RNAs into RNA samples (before the reverse transcription step). 
 
(ii) Post-hybridisation QC measures  
 
1. QC of individual microarray spots/genes  
 
208. Hartmann (2005) notes two possible options for quality control at the 
individual gene or spot level: quality measures based on general spot 
properties (e.g. spot size, shape, pixel distribution, intensity) or on spot 
replicates (within the chip or between technical replicates). Spot quality can 
vary especially for spotted cDNA microarrays. Image analysis software often 
offers spot quality assessment which requires intensive learning steps, in 
particular a set of spots with known quality status which can make it lab-
dependent and labour intensive. However, not all image analysis software 
offers meaningful quality measures and most spot properties are usually 
difficult to evaluate for genes expressed at low intensities. Consequently, use 
of quality control measures based on spot features should be carefully 
considered. Quality control measures for probes on Affymetrix GeneChips are 
not considered as critical, as there is little intra probe cell variation. Few probe 
set variability estimates have been used to eliminate individual, poorly 
measured probe sets since such measures are sequence-dependent and 
hence not comparable between probe sets.  
 
209. Spot intensities can also be used as a quality control measure for 
microarray platforms (Hartmann, 2005). Low intensity range spots result in 
poorer signal-to-noise ratios as it becomes difficult to distinguish the signal 
from background. Hence high intensity range spots are thought to be more 
reliable. However, investigators are advised against automatically eliminating 
low intensity spots by QC as this can result in loss of valuable information 
regarding the identity of non-regulated genes in particular samples, for 
example. Such genes can also be of value as controls for subsequent data 
analysis  
 
210. Quality control measures based on spot replicates depend on 
microarray platform used (Hartmann, 2005). For Affymetrix GeneChips, each 
gene is represented by a probeset (11 – 20 perfect matches and an equal 
number of mismatches). Robust methods are available that summarise the 
probe set into one signal intensity thereby precluding additional filtering. For 
cDNA spotted microarrays spot replicates are either non-existent or very 
limited (up to 2-3 per gene) on one chip. If a reasonable number of replicates 
are available, robust methods can be applied to deal with outliers.  
 
2. QC of individual hybridisations/chips  
 
211. These measures can be grouped into two categories, depending on 
whether they are based on a selection of quality control spots (e.g. 
housekeeping genes, hybridisation controls, empty spots) or on a measure 
derived from all spots on a chip (Hartmann, 2005).  
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a) Measures based on QC of a selection of spots (within chips) 
 
212. Corvi et al (2006) considers use of housekeeping genes and external 
RNA controls as the routine element of the approaches used to validate TGX 
platforms. They define „best practice‟ for the experimenter (or array 
manufacturer see below) to employ on a regular ongoing basis. It is thought 
that the use of these „biological standards‟ is required to address inherent 
technological and biological noise in these systems. When these control spots 
with their known concentrations in two channels are used (for calibrating an 
experiment) they improve normalisation and provide valuable information 
about experimental variation (Wang et al., 2007) 
 
~ External controls  
 
213. The success of the hybridisation step can be determined by adding an 
external control after the cDNA synthesis step. These in-vitro polyadenylated 
RNA transcripts each composed of random unique and non-mammalian 
sequences are spiked into RNA samples of interest (in either one or two 
channel RNA formats). They are considered to facilitate comparisons among 
laboratories and platforms and provide a way to assess the quality of 
experiments over time. However, there is concern that control spots usually 
lack the sensitivity for thorough post-hybridisation quality control, probably due 
to the limited number of available spots (a few hundred at most) (Hartmann, 
2005). The value of external controls is being assessed by a several groups 
including the External RNA Control Consortium (ERCC) who are developing 
better control RNAs. 
 
214. The ERCC40 have been developing external RNA controls to assess 
technical performance in gene expression assays. Their overall aim is to 
produce a standard set of 96 well-characterised, tested external RNA controls 
with demonstrated acceptable performance on major microarray platforms 
and with commonly used QRT-PCR methods (Baker et al, 2005; Thompson & 
Hackett, 2008). It is hoped these controls can be added into a test sample and 
tested in neutral background with probes for these sequences included in new 
commercial arrays. The scope and goals of the ERCC are discussed in a 
commentary by Warrington et al (2005) and readers should refer to Baker et 
al (2005) for a further description of the proposed experiments and informatics 
processes that will be followed to test and qualify individual controls.  
 
~ Housekeeping genes 
 
215. The use of housekeeping genes (or common reference RNA standards) 
as internal controls for real time RT-PCR and microarrays41, Northern analysis 
and RNAse protection assays is discussed elsewhere in this paper. A 
common misconception/assumption is that their expression is constant 
regardless of experimental conditions. However, the fact that their expression 

                                                 
40

 The ERCC is an adhoc group of approximately 70 members from private, public and academic 

organisations 
41

 In microarrays RNA standards are competitively hybridised with the sample of interest in two 

channel array formats.  
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can vary implies the possibility of an erroneous interpretation of the 
expression profile of a target gene. Arukwe (2006) suggestion of validating 
potential reference genes prior to their use provides a credible approach to 
addressing the possibility of variability in expression. Arukwe (2006) evaluated 
the suitability of the most commonly used housekeeping genes in toxicology 
to provide researchers with a summary of the key information needed to re-
evaluate housekeeping genes used. The expression pattern of beta-actin, 
beta-tubulin, 18S ribosomal RNA (18S rNA) and elongation factor-lalpha (EF-
lalpha) were found to be modulated on the basis of random exposure 
condition and time, in both in-vivo and in-vitro test systems of Atlantic salmon 
(Salmo salar). Although use of aquatic models potentially limits the value of 
the study in human risk assessment, the authors concluded that the choice of 
internal control gene should be determined empirically on the basis of the 
individual exposure condition and by the individual researcher.  
 
216. Commonly used housekeeping genes may vary in stability depending 
on the cell type or disease being studied. Therefore, Lee et al (2007) sought 
to identify additional housekeeping genes that show sample-independent 
stability. Statistical methods were used to search a large human microarray 
database for genes that were stably expressed in various tissues, disease 
states and cell lines. Those selected were expressed at different levels 
because the authors considered that reference and target genes should be 
present in similar copy numbers to achieve reliable quantitative results. Lee et 
al (2007) identified three new reference genes CGI-119, CTBP1 and GOLGAI 
alongside three well-known housekeeping genes that were more stably 
expressed in individual samples with similar ranges and concluded that 
statistical analysis of microarray data can be used to identify new candidate 
housekeeping genes showing consistent expression across tissues and 
diseases. The authors proposed that CGI-119, CTBP1 and GOLGAI 
represented novel candidate housekeeping genes that could prove useful for 
normalisation across a variety of RNA-based techniques.  
 
b) Whole (between) chip measures 
 
217. The inspection of the whole chip image is recommended as a post-
hybridisation quality control as it can instantly reveal a lot of information about 
background, foreground or spatial effects (Hartmann, 2005). Other useful 
quality control measures include total background, the ratio of total signal over 
total background to measure hybridisation efficiency, and signal or ratio 
distribution for one and two channel data respectively.  
 
218. A key conclusion reached at the 2003 IPCS Workshop on TGX and 
Risk Assessment for the Protection of Human Health was the need to develop 
data quality standards in order to ensure confidence in data generated from 
different sources and platforms.  Percent present calls (PPC) is used to 
assess data quality (discussed elsewhere), while the multi-array approach is 
used to identify poor quality arrays that should be removed from further 
consideration (Hartmann, 2005). The multi-array approach uses median 
normalised unscaled standard errors (NUSE) that provides a measure of 
relative chip quality i.e. for Affymetrix Genechips they measure the 
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heterogeneity within a probeset. Plotting the NUSE yields a summary of the 
quality of chips in a single figure whereby arrays with large NUSEs may be 
suspect and examined further by single array exploratory analysis.  
 
219. Another useful way to assess quality is to compare intensities and 
expression ratios across chips. Pairwise scatter plots or unsupervised 
clustering methods can help identify failing hybridisations because they 
produce intensities/ratios that deviate significantly from those of any other 
hybridisation and therefore show up as outliers. However, these methods do 
not necessarily distinguish between a quality outlier and a biological outlier 
and, therefore, the elimination of individual chips should not be based on such 
an assessment alone.  
 
220. Fluorescence standards are used to assess the limits of performance 
or range of scanning software (via fluorescence calibration slides a typical 
output range 0 – 65.5K relative fluorescence units per pixel), and distinguish 
hybridisation failure from scanner defect (via the use of software programmes). 
With regards to older models the photomultiplier tube is considered to be a 
source of variability and it is recommended that scanners undergo regular 
software-run inspections to identify artefacts (NAS, 2007b).  
 
3. QC of whole hybridisation batches  
 
a) Statistical Process control 
 
221. This robust PCA based approach proposed by Model et al (2002) 
describes a statistical example of a quality control that monitors the 
hybridisation process which typically arises in high throughput labs conducting 
experiments with several hundreds of chips (Hartmann, 2005). These 
hybridisation processes can take several weeks or months and are therefore 
particularly susceptible to systematic changes such as changes in scanner 
calibration, room temperature, ozone concentration or buffer solutions which 
can impact on measured spot intensity and chip quality. Systematic changes 
in the process are reflected by increases in the distance to chips from the 
initial stable process (historical data set). Plotting the distances wrt the 
process parameter under investigation enables easier visual detection thereby 
serving as early warnings for changes in the production process.   
 
222. In summary, although some of the methods described above serve as 
absolute measures of quality, most serve as controls that pinpoint spots/chips 
most likely to bias data, and deciding the correct cut-off for quality control 
measures is not always easy (Hartmann, 2005). Clearly, the value of quality 
control measures lies in its ability to reduce the random error term, however 
the application of too stringent criteria can reduce the power due to reduced 
sample size. Whether a quality control measure is applied at a particular level 
depends on the number of hybridisations performed and the availability of 
measurement replicates. For example, QC for individual hybridisations 
becomes necessary for experiments with small sample sizes (n<10-20) but for 
large experiments (with tens to hundreds of chips) process control becomes 
the priority. It is recommended that the filtering of chips should always be 
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carefully done with strong and explicit indications that the observed peculiarity 
is due to quality and not biology (Hartmann, 2005).  
 
B. VALIDATION OF TGX PLATFORMS  
 
223. In 2004, the HESI Committee on the Application of Genomics 
considered the lack of validation of available technologies one of several key 
hurdles (Pettit, 2004). Validation is necessary to identify and reduce 
technological artefacts and procedures used to control for microarray quality 
and instrumentation are the responsibility of array manufacturer/provider and 
have been defined as one-off validation (Corvi et al 2006). Routine validation 
allows for data comparability and encompasses QC aspects of critical 
experimental components. These include the random sequence verification of 
gene targets (to ensure no errors are introduced between batches), the use of 
biological standards (as discussed above), and quality assurance and good 
laboratory practice (GLP) (intended to promote proper documentation, quality 
and authenticity of data as is required for data acceptance by regulatory 
authorities). Corvi et al (2006) notes that most large scale TGX efforts were 
not (at the time) arising from GLP-complaint studies and suggests identifying 
procedural aspects of GLP compliance not currently captured in MIAME/Tox 
and incorporating them over time as a way forward (establishing best 
practices for TGX until formal procedures are adopted).  
 
224. Qin et al (2004) highlight the lack of realistic empirical validations of 
TGX data analysis methods (i.e. the fact it is impossible to know whether a 
given methodology is better at revealing the right answer). It is thought this is 
due to data analysis methods being introduced either by examining their 
performance in real microarray experiments (where the truth is unknown) or in 
simulated data (that rely on distributional assumptions /idealised models for 
the error structure). Therefore, a study was conducted to evaluate the relative 
effectiveness of two data transformations (i.e. intensity-based normalisation42 
and local background subtraction) and to assess the performance of six 
different ranking statistics for detecting DEGs, method (mean, median, t-
statistic, S-statistic (related to SAM software), B-statistic, and BL-statistic) and 
different image analysis programmes (GenePix ®, SPOT, ArraySuite, 
QuantArray). Qin et al (2004) tested the analytical methods using ten spike in 
dye swap experiments (in which the truth was known – analogous to the Latin 
Square dataset) conducted by six different laboratories within the TRC. The 
authors found that the most favourable conditions for identifying DEGs were to 
apply intensity normalisation without background adjustment (which they 
suggest may possibly be detrimental for effective detection of DEGs), and use 
robust alternatives to the t-statistic such as S-, B- or BL- statistic or the 
median. However, they note that the outcome from using robust statistics may 
be influenced by the fact only four technical replicates were used. The authors 
also concluded that the choice of image analysis software substantially 
influences experimental conclusions with SPOT offering some improvement 
over GenePix® in detecting DEGs.  
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 i.e. Intensity dependent selection whereby the threshold for selecting DEGs varies with spot 

intensities.  
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SECTION 5. SOURCES OF VARIATION IN TRANSCRIPTOMIC-BASED 
ANALYSES 
 
INTRODUCTION  
 
225. The multi-step nature of a TGX study protocol makes variation an 
unavoidable and expected phenomenon (Chen et al 2004). As a source of 
bias, sources of variation must be identified and characterised and its 
magnitude estimated to ensure cost-efficient microarray experiments are 
designed. Better characterisation of sources of variation would also enhance 
the use of gene expression profiling in clinical and laboratory settings. This 
section discusses the different types of variation and approaches used to 
identify, characterise and control them.  
 
A. BIOLOGICAL VARIATION 
 
226. Biological variation relates to individual factors that produce variation 
arising from the use of different animals, cell lines and tissues. Biological 
variation is intrinsic to all organisms and is influenced by genetic and/or 
environmental factors and by whether the samples were pooled or processed 
individually (Chen et al 2004). Examples of biological variation previously 
discussed include circadian rhythm regulation. Novak et al (2002) refers to 
biological variation as physiological variation which comprises one of three 
types of background variation (i.e. variation not directly related to the 
pathology or stimulus). Pooling is often used to minimise the effects of 
biological variability as previously discussed in section 1.  However, unlike 
other types of variation, biological variation may be of interest in its own right.  
 
B. TECHNICAL VARIATION 
 
227. Technical or experimental (non-biological) variability arises from use of 
the microarray system and is considered the most significant challenge of 
microarray data analysis. Microarray experiments are subject to additional 
sources of technical variability (in addition to those inherent in toxicology 
experiments) which can be categorised at each step of a microarray 
experiment (Ju et al, 2007). These fluctuations arise independently of the RNA 
source and are beyond the experimenter‟s control (Novak et al., 2002). The 
various sources of technical variation are listed in Table 3. NB. In addition to 
technical and physiological (biological) variation, Novak et al (2002) considers 
sampling variation as a third type of variation (background). Sample variations 
are defined as differences in sample characteristics arising from sampling 
adjacent or contaminating tissues, tissues with heterogeneous cell population, 
and gene expression differences resulting from animals having minor 
infections, or suffering environmental stress activity or feeding behaviour 
differences.  
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Table 3. A list of sources of technical variation encountered in TGX 
microarray studies 
Experimental stage Variable Notes 

 

Sample preparation Amounts of mRNA used Relates to tissue/mRNA extractions 

RNA purity   

RNA amplification method used Including RNA priming efficiency 
contributing to nonlinear amplification of 
expressed genes during probe 
synthesis 

cDNA preparation  

Labelling method 
Dye label incorporation  

 

 

Microarray construction Gene target type  

Amount target applied to slides  

Spot shape  

Pin geometry  

Gene target printing/deposition methods Impacts on fixation of spotted DNA onto 
slides 

Matrix quality   

Gene annotation across chips  

technical platform sensitivity  

 

Hybridisation/washing Manual vs automated protocol  

Reaction wash/buffer component NB. These can be controlled for via use 
of stock solutions/ master mixes 

Amount applied to slides  

Temperature  

 

Detection Reading   

Scanning parameter differences Influences signal-noise ratio, data 
resolution and reproducibility 

Scanner power  

Scanner artefacts Either visual or automated 

 

Data analysis Cross hybridisation (within gene families)  

Outshining from neighbouring spots  

Range of methods used  

Different technical settings on analytical 
equipment 

 

Between array variation Stochastic variation across replicate 
slides 

Statistical analysis Range of methods used  

Other Laboratory environmental conditions  E.g. room temperature, ozone (Aka 
time/block effects).  

Source: HESI-MINS of invitational meeting (2003); Lee et al (2005); Ju et al (2007); Yauk & Berndt 
(2007); Thompson & Hackett (2008) 

 
C. IDENTIFICATION/ESTIMATION  
 
228. Analysis of Variance (ANOVA) is typically used to characterise 
variation arising in TGX datasets. This statistical method models sources of 
variation by firstly considering all sources of variation (or variance components) 
that can arise in an experiment and summarising them into an equation (Chen 
et al, 2004). These can then be corrected for nuisance effects automatically. 
Use of ANOVA enables estimation of the magnitude of each variance 
component. Several studies have evaluated the impact of variation on 
subsequent gene expression and most report the need to better characterise 
variation arising from different sources. 
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(i) Studies investigating sources of variability 
 
229. One of the early studies to address the impact of variation on gene 
expression described an approach to estimating sources of variation and their 
relative contributions to the overall variation (Chen et al., 2004). The authors 
used ANOVA to identify and estimate variability in two data sets: 1) a TGX 
study that generated cisplatin-induced gene expression changes in rat kidney; 
and 2) a circadian study that evaluated circadian associated gene expression 
changes in the rat liver. A mixed-effects (ANOVA) variance component model 
was used to estimate technical variances in the TGX study and technical and 
residual43 variances in circadian study (with replicates used to investigate 
biological variance). The authors found that the greatest source of variation in 
the TGX study arose between arrays (due to batch to batch variation in array 
quality and manufacture and array to array hybridisation variance) while week-
to-week variance accounted for the greatest variance in the circadian study. 
The authors concluded that overall data variability was due to the 
performance of weekly procedures and more precise estimates of gene 
expression changes are generated with reduced week-to-week variance.  
 
230.  Novak et al (2002) sought to assess the relative importance of various 
sources of variation (described as background variation i.e. technical, 
physiological (biological) and sampling variation) via use of a novel method 
that estimates sample dispersion. To test for technical variability the authors 
compared expression profiles from replicates tests using the same RNA 
sample. Physiological (biological) variability was tested by comparing 
expression profiles generated on HuGeneFL Affymetrix GeneChips with RNA 
samples from replicate cultures of the same cell line i.e. SK-BR-3 breast 
carcinoma (or IMR90 diploid fibroblasts). To test for sampling variability the 
authors compared expression profiles generated on Mu11kSubA/B Affymetrix 
Gene chips (containing perfect match and mismatch oligonucleotides) with 
RNA samples obtained from tissue samples of different mice. A linear 
characteristic function was used to provide a measure of dispersion i.e. data 
points which deviate from the mean. This novel method incorporates SD of 
differences in gene expression, mean signal intensity and sample mean gene 
expression. It reportedly redresses the fact that most expression studies 
obtain inadequate measures of SDs for each gene detected (due to lack of 
appropriate number of replicates). The authors observed similar dispersion 
patterns between RNA samples used to test for technical and physiological 
variability, suggesting that under carefully controlled conditions the size of the 
basal physiological variability is similar to that solely attributable to technical 
aspects of microarray studies.  However, the authors reported higher levels of 
dispersion in genes playing a role in generalised stress response when testing 
for sample variability reflecting possible undetected infection, 
undernourishment or physical trauma before tissue sampling. This led the 
authors to conclude that when samples from different subjects were used 
variation induced by the stimulus may be masked by non-stimuli-related 
differences in the subjects biological state (since the fact that seemingly 
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 Residual variance is defined as a third type of variance relating to experimental unaccountable 

factors (Chen et al., 2004).  
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identical tissues from distinct animals may have difference gene expression 
profiles stresses the need for replica experiments in any comparative study). 
The authors further suggested that sample pooling when used as a means to 
reduce biological variation (as opposed to a means of obtaining sufficient RNA 
material) is of limited value.  
 
231. The lack of data on baseline fluctuations in gene expression presents a 
particular challenge and major efforts are underway to determine the level of 
background variation (biological) in control animals. The challenge presented 
by the lack of control animal microarray expression datasets is further 
compounded by the fact that these datasets are not in a form best served for 
data mining. Boedigheimer et al (2008) reported on the HESI Committee on 
the Application of Genomics to Mechanism-based Risk Assessment attempts 
to assemble datasets for control rat liver and kidney generated from more 
than 500 Affymetrix microarrays. The HESI Committee assessed biological 
and technical factors and identified gender, organ section, strain and fasting 
state as particular key sources of variability.  It was concluded that these and 
other factors should be included in MIAME study guidelines and that better 
characterisation of sources of variation in control animals would enhance TGX 
study design and data interpretation. 
 
232. Members should note that the HESI Committee‟s Baseline Animal 
Database currently holds microarray data from 536 Affymetrix arrays from rat 
liver and kidney samples of control groups used in TGX studies produced by 
16 different institutions (of which 48 where in-life studies). Their findings, 
published in BMC Genomics (2008) and in the book chapter Sources of 
Variance in Rat Liver and Kidney Baseline Gene Expression in a Large Multi-
Site Dataset. In: Batch Effects and Experimental Shift in Microarray Analysis: 
Sources and Solutions (2009), suggested that bias correction has minimal 
effect on results of analyses of major sources of variance and noted that the 
identification of genes associated with certain study factors was affected if 
significant smooth bias was present.  
 
233. The assessment of biological variability is also considered a worthwhile 
approach to validating TGX methods as described by Corvi et al (2006). 
Measuring the range of biological variability of gene responses for a given test 
system under baseline and toxicant-challenged conditions enables regulators 
to better discriminate biologically relevant responses from baseline 
homeostatic functions. This is considered an important TGX issue as studies 
conducted on cell culture populations reportedly demonstrate a wide range of 
biological variability in gene expression measurements for individual cells 
under both baseline and challenged conditions. To enable assessment of 
cross species differences that often hamper risk assessments only one 
species, tissue, and endpoint should be used at a time.  
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D. IMPLICATIONS FOR REPRODUCIBILITY 
 
234. As part of a series of ongoing research projects the Toxicogenomics 
Research Consortium (TRC), NIEHS are performing standardisation 
experiments to identify and address sources of technical variation in gene 
expression experiments across multiple technology platforms and research 
centres (TRC website). Through this Co-operative Research Program (CRP) 
will evaluate variation arising in different aspects of a microarray experiment, 
in particular RNA labelling and hybridisation, data analysis (bioinformatics), 
RNA extraction and animal husbandry. The proposed overall outcome is to 
develop research standards for scientist within the TRC and scientific 
community as a whole in the hope this will lead to high quality data that are 
reproducible and comparable and also lays the foundations for their Star 
Projects (collaborative toxicology research using gene expression profiling). 
Details of the first standardisation experiment were published by Bammler et 
al (2005). The study sought to identify sources of error and data variability 
between 7 laboratories and across 12 DNA microarray platforms (that were 
either spotted or commercial), and also explore methods to accommodate the 
above variabilities identified. An ANOVA random effects model was used to 
assess to relative contribution of different sources of technical variability in 
gene expression measurements. The authors found that more than half the 
variability observed in the data was attributable to the microarray platform, 
with commercial microarrays yielding results that were more comparable 
between laboratories (differences between different laboratories contributed 
less). The study also observed increased interlaboratory reproducibility after 
implementing standardised protocols for RNA labelling, hybridisiation, 
microarray processing, data acquisition and data normalisation. The authors 
concluded that comparability is highest when technical variables are 
standardised and microarray results can be compared across multiple labs 
when a common platform and set of procedures are used.  
 
235.  Members are reminded that the COT secretariat plans to discuss 
issues relating to the reproducibility of TGX data as a separate discussion 
paper at the next COT meeting in September 2010. These will include 
consideration of factors affecting reproducibility (i.e. specific aspects of TGX 
design and analysis that either enhance or reduce reproducibility); 
comparative studies (e.g. cross platform correlation studies); the MAQC 
Project (evaluation of inter and intra-platform reproducibility); and the findings 
from inter-laboratory studies.  
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ANNEX I 
 
Literature Search Strategy 
 
1.  An initial attempt to conduct a systematic review revealed the extensive 
amount of work published since 2004. For example, a search using basic 
general terms such as toxicogenomics, genomics and toxicity/toxicology, 
transcriptomics and toxicity/toxicology, for studies published between 2004 
and 2008 yielded over 2.5K references (minus duplicates).  
 
2. To reduce the amount of papers to a more manageable level, it was 
decided that [as an initial step] literature searches should be based on review 
papers that would provide the basis to identify key individual studies, which 
themselves would be summarised to update the review (NB. A similar 
approach was used to update the COM on the use of TGX in toxicology). 
 
3. Details of the literature search strategy used are as follows:- 

 Date of search:  25/11/08 

 Database:   Pubmed (via Endnote) 

 Limits:   Reviews; published between 2004-2008; English  

 Search terms : Basic and specific (see below) 
 
4. Basic search terms:  

 Toxicogenomics (TGX) 

 Genomics (GX) AND toxicity/toxicology  

 Transcriptomics (TRSX) AND toxicity/toxicology 

 Proteomics (PTX) AND toxicity/toxicology 

 Metabolomics (MTBLX) AND toxicity/toxicology AND risk assessment  

 Metabonomics (MTBNX) AND toxicity/toxicology AND risk assessment 
 
5. Specific search terms (based on abstracting key words from COT 
conclusions as documented in the 2004 Joint Statement on TGX). Those 
relating to categories discussed in this paper (a, d and e) are shown below: 

 Design AND TGX/GX/TRSX/PTX/MTBLX/MTBNX 

 Reproducib* AND TGX/GX/TRSX/PTX/MTBLX/MTBNX 

 Statistic* AND TGX/GX/TRSX/PTX/MTBLX/MTBNX 

 Gene expression AND TGX/GX/TRSX/PTX/MTBLX/MTBNX 

 Microarray AND TGX/GX/TRSX/PTX/MTBLX/MTBNX 
 
6. A total of 847 references were obtained with 144 references relevant to 
issues discussed in this paper. Review papers were selected on the basis that 
they address/update issues relevant to design, analysis and statistics Thirteen 
review articles were identified for further summary (see Annex III). Individual 
study papers cited in these reviews were identified and further expanded on 
the basis that they provide additional relevant information that could be used 
to build a balanced discussion paper for the Committee.  
 
7. Updated literature searches were also conducted using the above 
basic and specific search terms to identify relevant individual studies.  
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8. Note. Issues relating to risk assessment i.e. target organ toxicity, 
regulatory submission, systems biology, etc will be considered in a separate 
discussion paper – the overriding consideration being whether the application 
of TGX demonstrates added value to risk assessment and also whether it 
provides any mechanistic insights.  
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ANNEX II 
 
A schematic of a typical two-colour channel microarray experiment. 
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ANNEX III 
 
Narrative Summaries of Selected Review Papers  
 
 

Morgan et al 2004. Complementary roles for toxicologic pathology and mathematics in 
toxicogenomics with special reference to data interpretation and oscillatory dynamics. 
Toxicological Pathology, 32(Suppl 1):13-25 

Topic covered: This review considers the role of mathematics in toxicogenomics (TGX) and 
bioinformatical approaches. It takes a pathologists view of interpreting TGX data and 
highlights several study design issues for consideration. The role of statistics in TGX data 
analysis is briefly covered.  

Design: The authors briefly mention the process used to measure the state of the 
transcriptome. The liver (as an example) is homogenised and RNA extracted and hybridised 
onto a large scale gene expression array platform. Signal intensities derived from the array 
are then processed generating a table of normalised signal intensity data. This is achieved via 
use of statistical software such as NLR (Normalisation by Local Regression), Kepler et al 
2002) and requires considerable mathematical manipulation. Treatment related changes can 
then be determined. Whole organ experiments are limited by the fact that any gene 
expression changes merely represent an average of all cell types and locations within the 
organ. However, progress is being made to generate transcriptome data from single cells 
(Tietjen et al 2003).  
The authors note that in-vitro based studies have improved our mechanistic understanding of 
how the transcriptome responds to toxicants (Morgan et al 2002). They report a study by 
Boess et al (2003) which demonstrated marked differences in gene expression patterns in 
hepatocyte culture, liver slices and intact liver (temporal effects associated with the length of 
time in culture were also noted). The authors consider that this study informs on the design of 
gene expression based toxicology screens. Spatial and temporal issues of the liver are also 
discussed and should always be considered when designing/interpreting TGX studies. The 
authors recommend that liver studies document the lobe sampled as gene expression 
differences in hepatic lobes have been reported (Irwin et al 2003). Furthermore, zonal 
differences should also be considered in study designs, as decreased expression of a 
particular transcript/gene could be due to the absence of cells within that particular zone 
expressing the gene (e.g. the differential expression of glutamine synthetase and its 
restriction to a particular zone of hepatocytes). Temporal issues refer to the dynamicity of the 
liver in which the transcriptome activity of a living liver (as opposed to a static one) changes 
due to its dynamic nature and function. The authors also note how interactions between the 
liver and other organs can affect gene expression e.g. via action of chemical mediators, 
metabolites and hormones.  
The review discusses how biological oscillations such as circadian rhythms can potentially 
affect the design of TGX experiments. The authors report a study by Kita et al (2002) which 
examined the influence of circadian rhythms on gene expression in rat liver and kidney. Gene 
expression was affected by both time of day and feeding state. The authors refer to a branch 
of mathematics known as Fourier Analysis of Time Series, which considers dynamic 
responses. Through dense time series experiments, it is believed one acquires a better 
understanding of the structure and behaviour of a system following exposure to compounds 
(i.e. an understanding of background variation or toxic effects), which leads to better designed 
studies and ultimately more reliable data. The authors consider that such approaches give 
insight into the nature of the underlying control circuitry and note the value of framing 
biological systems as „complex integrated circuits‟. 

Analysis: The authors recommend that TGX studies consider the spatial and temporal 
contexts of any gene expression changes observed. The authors link the temporal aspects of 
how the activity of the transcriptome evolves to the mathematical discipline, Dynamics, which 
studies events as they unfold. The authors further emphasise the dependence of TGX data 
set interpretation to the application of mathematics in the following areas: eliminating noise 
via statistical procedures; detecting patterns of behaviour in the data in relation to treatment 
or their relevance to other endpoints; and [in particular] discovering regulatory/signalling 
networks and cascades controlling these events. A lack of comprehension of the underlying 
mathematics in bioinformatical procedures (i.e. approaches to data normalisation, pattern 
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recognition, singular value decomposition, principal component analysis, and clustering 
algorithms) is considered likely to generate a suboptimal interpretation.  The authors suggest 
the necessary mathematical skills required to ensure optimal interpretation of TGX 
(bioinformatical) data include geometry, algebra and statistics. It is thought such a skill set 
enables researchers to follow the narrative and gain further insight into the analysis.  
The authors describe the approach pathologists use to interpret/analyse TGX data i.e. via the 
application of statistics, assessment and sorting of data according to quality (aka data triage 
via use of bioinformatics tools), and use of an initial computer generated gene expression list 
to analyse genes one gene at a time (especially on well-characterised mRNA transcripts).  
Gene expression lists contain tens to thousands of transcripts that may be significantly 
up/down-regulated compared to reference population. These genes undergo further analysis 
to identify and understand their function. Identifying a gene‟s function is considered time 
consuming and tedious but software is available to help annotate them i.e. online 
bioinformatics databases and data-triage tools. Literature searches and textbooks are used to 
further understand the gene‟s function(s), and an automated method called Expression 
Analysis Systematic Explorer (EASE) is also available which searches bioinformatics 
databases simultaneously to produce triaged statistically relevant information that is pooled 
into a single spreadsheet with hyperlinks to selected databases. Further understanding of any 
associated physiological events can be achieved by integrating the information with other 
endpoints. Genes are categorised into functional classes (e.g. those involved in fatty acid 
metabolism, immune regulation, cell proliferation and apoptosis) to aid interpretation of 
changes (ranging from molecular to clinical). Identifying unaltered gene transcript expression 
within each functional class is considered worthwhile as it expands the overall understanding 
of the response. Diagrammatically linking transcripts in a pathway is thought to help illustrate 
the effects of gene transcript expression. However, the authors suggest the use of caution 
since these pathways are only speculative and would require further confirmatory 
investigations. The ability of TGX to predict the potential for toxic responses to chemicals is 
considered a valuable feature of this technology. This can be achieved through use of 
commercially available (and expensive) databases containing transcriptome expression 
patterns of well characterised treatments. It is noted that most of the data in these databases 
is generated using rat liver toxicants. However, other databases with data for other species 
and tissues are being developed.  

Statistics: The authors explain that statistics is applied to TGX data analysis to determine the 
probabilities that the intensities of gene transcript expression changes (observed in the 
treatment group) are truly different to those of the control group. With regard to gene 
expression changes, the authors consider that the statistical level of change is more relevant 
than fold change and suggest that use of fold-change cut-off approaches should be avoided.  

Comments: The authors consider that the effective application of TGX depends on the 
deployment of a range of skills derived from an understanding of molecular biology, 
biochemistry, toxicology, bioinformatics, statistics, mathematics and pathology – the latter two 
disciplines being particularly important. However, interdisciplinary communication issues 
associated with the use of different languages is thought to limit the rate of progress. The 
authors suggest that researchers become versed in the most essential areas and note that 
the Transnational College of LEX is attempting to address this issue.  
The authors also infer that a multidisciplinary contribution to TGX analysis can help identify 
important toxicologically relevant patterns of transcriptome expression that would otherwise 
be missed. This is because biochemists can identify important metabolic pathways, while 
toxicologic pathologists can provide important morphological links to regional and cell specific 
protein expression.  

 
Refs:  
 

1. Boess et al 2003. Gene expression in two hepatic cell lines, cultured primary 
hepatocytes, and liver slices compared to the in-vivo liver gene expression in rats: 
possible implications for toxicogenomics use of in-vitro systems. Toxicol Sci 73: 386-
402.  
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2. Irwin et al 2004
44

. Application of toxicogenomics to toxicology: basic concepts in the 
analysis of microarray data. Toxicol Pathol. 32(Suppl 1). 72-83. 

 
 
3. Kepler et al 2002. Normalization and analysis of DNA microarray data by self 

consistency and local regression. Genome Biol. 3. 1-12. 
 

Expanded summary: Normalisation by local regression (NLR) is a statistical 
software which works on the assumption that: (a) the expression levels for a 
majority of genes will not change appreciably from one treatment to the next, 
such that a stable background pattern of activity (or transcriptional core) exists. 
Consequently, the constituent genes of this transcriptional core can be identified 
statistically for each experiment (i.e. from the data itself and not in advance); (b) 
any differences in expression level vs. signal intensity are small but significant.  
The authors illustrate the use of NLR in a study comparing the expression profiles 
of rat mesothelioma cells exposed to a potent inducer of oxidative stress 
(potassium bromate) against control cells. Validation of expression changes were 
confirmed by quantitative PCR on a selected set of genes. The authors also 
conducted simulation studies (under various error models) to test the 
normalisation method and demonstrate the technique‟s satisfactory performance. 
  

4. Kita et al 2002. Implications of circadian gene expression in kidney, liver and the 
effects of fasting on pharmacogenomic studies. Pharmacogen. 12:55-65 

 
5. Morgan et al 2002. Application of cDNA microarray technology to in-vitro toxicology 

and the selection of genes for real time RT-PCR-based screen for oxidative stress in 
Hep-G2 Cells. Toxicol Pathol. 30. 435-51.  

 
Expanded summary: This study had two objectives. The first was to better 
understand how the transcriptome responds to toxicity, and secondly, to use the 
information obtained to develop a high throughput RT-PCR based assay to detect 
one or more selected mechanisms of toxicity (in which the genes act as a marker 
of single mechanism of action). The authors used cDNA microarrays to examine 
chemically induced alterations of gene expression in HepG2 cells exposed to a 
diverse group of toxicants. Equitoxic concentrations of the following agents where 
used: oubain, lauryl sulphate, dimethylsulfoxide, cyclohexamide, tolbutamide, 
sodium fluoride, diethyl maleate, buthionine sulfoximine, potassium bromate, 
sodium selenite, alloxan, adriamycin, hydrogen peroxide and heat stress. The 
authors found that gene expression patterns correlated with morphological and 
biochemical indicators of toxicity (i.e. the responses corresponded with cell cycle 
arrest, DNA damage, diminished protein synthesis and oxidative stress). Also, 
each treatment yielded characteristically different gene expression responses 
(although certain genes failed to respond in an expected consistent or meaningful 
manner following treatment). It was decided that oxidative stress be used in the 
second part of the study as it yielded the most promising data, and is also 
considered a particularly significant mechanism of toxicity.  The authors 
incorporated primers and probes for seven genes modified by oxidative stress 
into the design of a 7-gene plate for RT-PCR (5 genes were upregulated and 2 
downregulated). Linear regression and ranking (Pearson product) procedures 
were used to correlate a simple oxidative stress score (0-1) (which was based on 
the responses by the 7 genes on the  RT-PCR plate) with the GSH:GSSG ratio 
(which provides a measure of oxidative stress). The authors observed a good 
correlation between biochemical measures of oxidative stress (i.e. GSH:GSSG 
ratio) and transcriptional measures (i.e. oxidative stress score) – statistical 
analysis yielded correlation coefficients of 0.74 and 0.87 respectively). The 
authors conclude by highlighting the importance of measuring the mechanism of 
interest directly in the test system being used for any studies assessing the use of 
gene expression as a tool for toxicology, (as their findings show that selecting 

                                                 
44

 One of the reviews selected for summarising – see relevant narrative summary.  
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genes based on published literature is insufficient for marker gene selection, 
although it can provide an essential guide)..  
 

6. Tietjen et al 2003. Single cell transcriptional analysis of neuronal progenitors. Neuron 
38. 161-75. 

Expanded summary: This study sought to understand the mechanisms involved 
in neuronal differentiation and diversification, which is considered particularly 
challenging given the extraordinary cellular heterogeneity of the mammalian 
nervous system and the paucity of molecular data on the single-cellular level. The 
authors also note that the complexity of various tissues makes it difficult to detect 
highly specific precursor populations by simple homogenisation of whole 
tissue/organ areas to isolate RNA. The authors monitored expression profiles of 
individual neurons and progenitor cells of the highly heterogenous mammalian 
olfactory system, (i.e. specifically mature olfactory sensory neurons and olfactory 
progenitor cells – mitral cells of the olfactory bulb). The authors collected single 
cells from either dissociated tissue or from intact slices using laser capture 
mediated cell isolation (microdissection) techniques. Transcriptome data was 
generated by picking individual cells at random and seeding them into individual 
PCR tubes, DNA lysis and synthesis of first cDNA strand, followed by PCR 
amplification. cDNA samples were then hybridised to Affymetrix genechip probe 
arrays. NB. The authors also determined the identity and developmental stage of 
cell by PCR Southern blot analysis of the single cell cDNAs. The authors 
identified hundreds of transcriptional differences between olfactory progenitors 
and mature sensory neurons within the olfactory system, which further enabled 
them to define the large variety of signal pathways expressed by individual 
progenitors at a precise developmental stage. The authors conclude that their 
technique provides a sensitive and reproducible representation of the single cell 
transcriptome. Their findings suggest that a genome wide transcriptional analysis 
can be performed successfully at the single cell level. Furthermore, regional 
differences in gene expression can be predicted from transcriptional analysis of 
single neuronal precursors isolated by laser capture from defined areas of the 
developing brain.  
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Gant (2007). Novel and future applications of microarrays in toxicological research. Expert 
Opin. Drug Metab. Toxicol. 3(4):599-608 

Topic covered: This review explores alternative applications of microarray technology and its 
role in toxicity assessment/drug development. The paper summarises various design issues 
relating to the application of nucleic acid-based arrays and provides a personal commentary 
from the author in the final section. There is limited discussion of data analysis issues and 
statistical topics are not addressed.  

Design: The author notes that data generation microarray technologies have matured and 
become more robust, as demonstrated by studies conducted by the US FDA (Guo et al 
2006). These studies show that different microarray platforms are producing quantitatively 
similar data. The adaptability of the microarray technology format is considered to be a useful 
feature in all experimental applications involving hybridisation. While a major application of 
microarray technology is to determine mRNA levels for many genes simultaneously other 
alternative applications do exist. In genomics these include those applications providing 
information on events upstream of mRNA synthesis (e.g. Array Comparative Genome 
Hybridisation (ArrayCGH) – a technique which detects variations in genomic copy number, 
epigenetic analysis, Chromatin Immunoprecipitation (ChIP) analysis and transcription rate 
analysis) and applications providing information on events downstream of mRNA synthesis 
(e.g. mRNA translation assays).  
The first alternative application of microarray technology was determining gene changes 
(amplification and deletion) in the genome. Using microarray technology to determine 
chromosomal changes can be considered analogous to measuring mRNA transcript levels 
except that the probe is genomic DNA (gDNA). For a two-colour system the probes are 
hybridised onto the same microarray producing a red/green spot image after scanning. The 
ratio of the fluorescent dye indicates either an amplification or deletion in the genome. After 
plotting the data against the chromosomal location of the probe a map of the chromosomes is 
produced. The author provides an example of a single gene deletion in rats where gDNA in 
the test rat (bearing a mutation that leads to Wilson‟s disease) is hybridised against a control 
Fisher rat to reveal a deletion of cadherin 11 gene. The author considers that the area of 
genome assayed (and the resolution) is dependent on the targets present on the microarray 
(and the number of probes used).  
The significance of epigenetic modifications in inducing transmissible genomic changes is 
summarised below (see comments section). Cytosine methylation is described as a type of 
epigenetic modification, which can be assessed using microarrays and immunoprecipitation 
methods (Van Steensel, 2005).  
The methods used in ChIP analysis are considered to be similar to those used in epigenetic 
analysis. ChIP analysis involves the use of antibodies raised against a transcription factor of 
interest; therefore, any microarrays used must have target sequences from gene promoter 
regions. The author notes several chemical agents that regulate gene expression by 
influencing binding of transcription factors to promoter regions of genes. These include 
TCDD, phenobarbital and retinoic acid. ChIP analysis is considered a useful tool to 
understand mechanisms, which can ultimately inform risk assessment. ChIP analysis also 
shows binding of transcription factors to gene promoter regions under different conditions. For 
example, Rubins et al (2005) and Grass et al (2006) examined transcription factor binding 
sites (for HNF6) in liver samples and GAT complexes respectively. The author stresses that 
there is still a lack of microarrays (targets) with suitable promoter fragments, although 
companies are developing more appropriate microarrays to address this.  
The author considers transcription rate analysis as a compliment to the ChIP assay, which 
aids an increased mechanistic understanding of toxicants. Transcription rate analysis adopts 
a nuclear run-on assay and microarray to determine increased transcriptional rates of genes 
in certain circumstances (e.g. after chemical exposure). Gant et al (1991) observed increased 
transcriptional rate of ABCB1 gene in rat liver following chemical exposure. The author 
describes the key steps involved in microarray transcription rate analysis as follows: isolating 
nuclei from test and control samples; incorporating labelled nucleotide into RNA (during 
transcription); isolating the RNA and hybridising it onto microarray (containing gene coding 
regions); detecting differential gene transcription by increased hybridisation to relevant target 
sequence on microarray.  
The author explains that criticisms levied against use of mRNA levels as a measure of gene 
expression are based on two key issues. Firstly, proteins are thought to be the most relevant 



 100 

biomolecules with respect to mechanistic toxicological assessment of a compound. Secondly, 
there is no evidence that mRNA is translated into proteins (since increases in mRNA 
transcription do not necessarily follow with increases in protein levels). The author notes that 
although several attempts have been made to provide such evidence attempts are hindered 
by the technical limitations associated with 2D-gel resolution, quantification and other issues. 
Ultimately this makes its difficult or even impossible to quantitatively compare genomic and 
proteomics (PTX) data. The author states that the mRNA microarray translation assay aims to 
determine if mRNA is translated and if translation occurs differentially. The assay works by 
using density to separate the different types of mRNA i.e. those with ribosomes attached 
(heavier polysomal fraction) from whole RNA. mRNA with no ribosomes attached together 
with ribosomal RNA is known as the monosomal fraction. It is assumed that polysomal mRNA 
undergoes active translation in which the number of bound ribosomes is proportional to the 
amount of protein formed. By inhibiting mRNA species from translation and separating it onto 
a polysomal gradient a UV tracer can be used to illustrate the two separate monosomal and 
polysomal layers. The mRNA content can then be assessed via use of a microarray 
(containing consensus sequences for gene coding regions). Comparing the proportion of RNA 
in both layers can inform on whether the mRNA is translated. Measuring the ratio of RNA in 
the two layers informs whether the mRNA is differentially translated (Mazan-Mamczarc et al 
2005). Since fractionated RNA is used it is suggested that the above steps are performed with 
care. Therefore, during the hybridisation step, care should be taken with the amount of mRNA 
used. In the normalisation step, the authors recommend hybridising monosome fractions and 
polysome fractions separately onto different microarrays (i.e. test + control samples 
(monosomes) on one, and test + control samples (polysomes) on another). The author 
comments that although density RNA fractionation with microarrays is used in reproductive 
and cancer research, there is limited use of this method in toxicology. Some studies have 
examined the translational response to redox stress in yeast (Shenton et al 2006) and 
mammalian cells exposed to UV light (Mazan-Mamczarz et al 2005). 
MicroRNA (miRNA) are single stranded RNA molecules that control gene (mRNA) translation. 
They are transcribed from polycistronic regions of the genome via RNA polymerase II and III 
to produce immature transcripts. These transcripts are processed in the nucleus/cytoplasm to 
produce mature miRNA (21-23 nucleotides long). MiRNA regulates translation by interacting 
with a multiprotein complex called RNA-inducing silencing complex (RISC) which essentially 
represses translation. MiRNA store mRNA in P-bodies within the cytoplasm which are later 
retrieved for translation. Such actions can increase protein levels without new transcription. 
The author discusses the potential regulation of miRNA expression by chemicals. In these 
scenarios any alteration in miRNA expression could alter the cell protein complement and a 
cells subsequent response to chemical exposure. The author suggests that the pattern of 
miRNA expression (miRNA profiling) could be used to identify specific toxicities, although to 
date there has been no application of this technology in toxicology.  
MiRNA profiling is fraught with technical challenges associated with the short nature of 
mature miRNA species. The author suggests using the RNA tailing method for labelling and 
modified targets on microarrays (aka locked nucleic acid nucleotides) for hybridisation 
(Castoldi et al 2006).  
The author stresses that these alternative techniques are not a replacement but addendum 
for established expression profiling applications. These techniques provide additional 
information to further understand mechanisms of chemical toxicity at the gene level. This can 
lead to identifying gene expression biomarkers that are specific for certain xenobiotic types.  
To demonstrate any genomic changes arising from xenobiotic exposure the author suggests 
using ArrayCGH in the same biological samples used for transcriptomics (TRSX). MiRNA 
analysis could also be conducted on the same samples from short term exposure studies to 
detect any xenobiotic related translational effects and whether this resulted from differential 
miRNA expression.  
Variability in biological background is thought to affect the assessment of a chemical‟s toxicity 
and result in low dimension data sets. Such variability typically arises in in-vitro settings 
whereby cells become genetically unstable or are easily contaminated or responsive to 
environmental changes. Adopting in-vivo approaches e.g. using in-bred strains (to control for 
genetic background variability) could help reduce variability.  

Analysis: The author considers that interpreting microarray data is challenging. There does 
not appear to be much discussion of issues relating to data analysis. However, the author 
does note the value of comparing arrayCGH data with mRNA microarray data, which helps 
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determine whether genes were amplified whole and if the increased copy number is reflected 
in mRNA levels. An example is provided showing certain genes that were either amplified but 
not overexpressed or amplified and overexpressed (and vice versa).  

Statistics: This review does not discuss issues related to the statistical analysis of TGX data. 

Comments: The author suggests that genotoxicity assays need to improve their predictive 
power to make them more relevant to actual carcinogenicity and non-genotoxic 
carcinogenicity. This can be achieved by deployment of arrayCGH techniques which could 
inform on a chemical‟s genotoxic potential and identify where genotoxic effects occurs on the 
genome.  
The author notes the application of ArrayCGH in drug efficacy and safety and for 
characterising cells and animal strains for testing purposes. Quantitative assessment of cells 
affected by genotoxic agents is considered problematic.  
Epigenetic modifications are considered important mechanisms of toxicity due to the inherited 
nature of their effects. Recent sequencing of the human epigenome has aided understanding 
of the effects drugs/chemicals have on DNA methylation patterns and subsequent gene 
expression changes leading to toxicity (including transgenerational toxicity). Such changes 
are thought to account for differences in susceptibility and resistance to drugs and chemical 
agents. The author considers that although epigenetic modification has a clear role in cancer 
development this is not the case with chemically-mediated toxicity as there is little work 
conducted in this area. A better understanding of the relationship between epigenetic change 
and phenotype is suggested as a way forward.  
Transgenerational toxicology is defined as a genome alteration where the phenotype is 
present in progeny. It is distinct from reproductive toxicity which occurs when the fetus is 
directly exposed to a toxicant in-utero. Transgenerational toxicology involves germline 
transmission of mutations in exposed parents. These minisatellite mutations in germ cells are 
thought to arise from parental exposure to chemicals. The author uses diethylstilbestrol (DES) 
as an example of an agent that causes reproductive toxicity and subsequent 
transgenerational toxicity. DES is thought to act by DNA methylation.  

 
Refs  
 

1. Castoldi et al (2006). A sensitive array for microRNA expression profiling (miChip) 
based on locked nucleic acids (LNA). RNA. 12(5):913-20.  

 
2. Gant et al (1991). Regulation of 2-acetylaminofluorene and 3-methylcholanthrene-

mediated induction of multidrug resistance and cytochrome P4501A gene family 
expression in primary hepatocyte cultures and rat liver. Mol Carcinogen. 4(6):499-509.  

 
3. Grass et al (2006). Distinct functions of dispersed GATA factor complexes at an 

endogenous gene locus. Mol Cell Biol. 26(10):7056-67 
 

4. Guo et al (2006)
45

. Rat toxicogenomic study reveals analytical consistency across 
microarray platforms. Nat. Biotechnol. 24(9):1162-9.  

 
5. Mazan-Mamczarz et al (2005). En masse analysis of nascent translation using 

microarrays. Biotechniques. 39(1):61-7. 
 

Expanded summary: This paper describes the development of an approach 
for measuring en-masse changes in translation via cDNA microarrays. 
Human carcinoma cells were exposed to short wavelength UV light and the 
relative distribution of mRNAs were monitored along polysome gradients. 
Each gradient fraction was analysed via cDNA array analysis and regression 
analysis was used to quantify the mRNA translational status. The findings 
showed that steady state mRNA levels increased or remained unchanged 
while the translational status decreased (and vice versa). The authors report 
that the robust and predictive nature of their strategy enabled them to identify 
and verify a subset of 17 translationally induced mRNAs and 69 
translationally repressed mRNAs. The authors concluded that the 
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 Also cited by Yauk & Berndt (2007).  
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assessment of total mRNA levels provides an incomplete account of gene 
expression changes. Instead critical information regarding which genes are 
ultimately expressed into protein is obtained by determining the degree of 
translational engagement.  

 
6. Rubins et al (2005). Transcriptional networks in the liver: hepatocyte nuclear factor 6 

function is largely independent of foxa2. Mol Cell Biol. 25(16):7069-77 
 
7. Shenton et al (2006). Global translational responses to oxidative stress impact upon 

multiple levels of protein synthesis. J. Biol. Chem. 281(39):29011-29021.  
 

Expanded summary: This paper describes the analysis of protein synthesis 
regulation in response to oxidative stress. Yeast Saccharomyces cerevisiae 
were exposed to H2O2 followed by analysis of protein synthesis via 
incorporation of radiolabelled amino acids. Translational activity was 
analysed via measurement of the distribution of polysomes and ribosomal 
transit times. Polysome- and monosome-associated mRNA pools were then 
analysed using microarrays to identify mRNAs that are translationally 
regulated in response to oxidative stress conditions. The authors found that 
H2O2 inhibits translation initiation dependent on the protein kinase Gcn2 
(which phosphorylates and thereby inhibits the initiation factor eIF2-alpha). A 
Gcn2 independent inhibitory mechanism was also observed (arising via 
inhibition of ribosomal transit). Other changes induced by H2O2 include the 
slower rate of ribosomal run-off (consistent with an inhibitory effect on the 
elongation or termination stages of translation) and H202 concentration-
dependent effects on protein production, with low [H202] increasing protein 
production while high [H2O2] promoting polyribosome association without an 
automatic increase in protein production. The authors suggest the latter 
response may represent an mRNA store that can become rapidly activated 
following relief of the stress condition. The authors also found that oxidative 
stress increased the average mRNA transit time confirming post-initiation 
inhibition of translation. Global gene expression profiling revealed that certain 
mRNAs were translationally maintained following oxidative stress (i.e. 
increased in level in association with ribosomes) thereby indicating that 
translational control is a key component of the cellular response to oxidative 
stress. The authors concluded that oxidative stress elicits complex 
translational reprogramming that is fundamental for adaption to the stress.   

 
 

8. Van Steensel (2005). Mapping of genetic and epigenetic regulatory networks using 
microarrays. Nat. Genet. 37:518-24. Review.  
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Magglioli, J. et al (2006) Toxicogenomic Analysis Methods For Predictive Toxicology. Journal 
of Pharmacological and Toxicological Methods, Vol 53:31-7 

Topic covered: This paper focuses on the analysis of gene expression data i.e. the 
computational methods of class prediction, and the different steps that inform it (i.e. data 
preparation, class comparison, class discovery and evaluation). Statistical techniques used in 
each of these different steps are briefly discussed. Design issues are briefly addressed in 
relation to data preparation step.  

Design: See analysis section below. 

Analysis: The authors consider data preparation a necessary step to correct data sets for 
sources of variability arising from random and systematic error. To reduce random error the 
authors suggest generating many replicates and performing data analysis on the combined 
replicates. To reduce systematic error the application of background subtraction or 
normalisation is suggested. 
The authors describe class comparison as the method used to define a set of genes 
indicative of a particular class of toxicant (aka discriminatory gene set). These gene sets are 
defined by analysing prepared data from a training set. The authors describe the 
approach/procedure used to define a discriminatory gene set and cite Tsai et al (2005) as an 
example via the application of statistical methods such as ANOVA F-Test and One Versus All 
(OVA) test. As there are many variables the data set is often highly dimensional. Therefore, 
dimension reducing techniques such as Principal Component Analysis (PCA), 
Multidimensional Scaling (MDS) and wavelet transformation are applied (Yang et al 2004), 
although these techniques are themselves limited by the fact that producing a smaller number 
of weighted variables obscures information about which genes are extensively modified. A 
combination approach is proposed as a possible way forward i.e. use of ANOVA and wavelet 
transformation (Yang et al 2004).  
The authors define class discovery as the application of various techniques (e.g. clustering 
techniques) to visualise the similarity of gene expression present in a training set between 
individual treatments (of a chemical) or multiple treatments of chemicals from different 
toxicological classes. This approach is considered to be subjective as the results are 
influenced by selection of clustering algorithms and similarity metrics (Simon et al 2003). The 
authors highlight the two most common clustering algorithms used i.e. hierarchical algorithms 
(which results in a dendogram tree) and partitioning algorithms such as K-Means (that 
produces data bins based on a priori specified no. of clusters). Tsai et al (2005) examined the 
ability of hierarchical clustering algorithms to cluster datasets generated from rats treated with 
toxic metals. Clustering techniques where also used to examine how gene response varies 
with time (Hamadeh et al 2002). The use of K-Means is thought to be limited due to the bins 
preventing inferences being drawn on the relationships between each data points within a 
cluster. 
The authors define class prediction as the use of a toxin‟s gene expression signature to 
predict the toxicological class of an unknown toxicant (aka predictive 
toxicogenomics/toxicology). This is achieved by applying a classifier (or supervised learning 
method) to gene signatures of a training set, generating a mathematical model that can be 
used to predict the toxicological class of the unknown chemical. Class prediction is limited by 
the fact it can only indicate possible relationships between gene responses and phenotypes. 
The authors highlight various challenges for predictive toxicology for e.g. the cost of creating 
databases containing relevant gene expression data from studies of known toxicants (Luhe et 
al 2005; Van Delft et al 2005); dividing known toxins into toxicant classes distinguishable by 
their expression data, and comparing gene expression data collected using different 
technologies (Hayes et al 2005). The authors note that class prediction is preceded by class 
comparison and class discovery steps. The use of these steps to classify toxicants into 
particular groups has been documented in the published literature. Hamadeh et al (2002) 
used these steps to classify known hepatotoxins as either peroxisome proliferators or enzyme 
inducers; Thomas et al (2001) classified known toxins to one of five characterised 
toxicological classes; and Tsai et al (2005) classified toxic metals into seven or nine distinct 
groups. The authors describe the different types of classifiers/classification methods 
available, which include Linear Discriminant Analysis (LDA), Fisher‟s LDA (FLDA), Nearest 
Neighbour (NN), K-Nearest Neighbour (kNN) and Support Vector Machines (SVM). Tsai et al 
(2005) used FLDA and kNN to predict the class of gene signatures from the liver tissue of rats 
exposed to various toxic metals. These classification methods are limited by their tendency to 
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overfit the data in the training set, which limits their ability to predict profiles outside the 
training set. Filtering out gene expression profiles before applying classifiers is considered a 
useful way to deal with invariant gene expression profiles (Van Delft et al 2005). Different 
filtering methods are available and the authors note that their ability to influence the 
performance of classifiers has been investigated by Van Delft et al (2005).  
The final evaluation step involves evaluating the model produced from class prediction and 
estimating its ability to predict the toxicological class of unknown chemicals. The authors 
consider this acts as a validation step to characterise the ability of a classifier to predict the 
toxicological class of unknowns. This is done using individual and blinded samples from the 
training set.  

Statistics: The authors consider the statistical challenges for predictive toxicology, which 
include calculating significant differences for datasets with many variables, and the 
developing statistical techniques that can accommodate the complexity of a toxin‟s effect on 
gene expression. Use of statistical techniques in each of the above five steps presents a 
particular challenge since each step has its own set of statistical methods that do overlap and 
also studies differ in the method they use. The authors identify a need for developing 
statistical methods (in class prediction) that can address the limitations of 
classifiers/supervised learning methods.  

Comments: This review focuses on class prediction in relation to drug development. No other 
areas in TGX are discussed to any great length. The authors note their value as providers of 
commercial gene expression data analysis and management software for all relevant 
stakeholders in TGX. The authors conclude on the future of predictive TGX and suggest the 
computational methods used in steps that inform class prediction need to be standardised. 
This they propose can be achieved by narrowing the choice of classifier used or by 
conducting research comparing the merits and performance of different classifiers (Van Delft 
et al 2005).  

 
Refs 
 

1. Hamadeh et al (2002)
46

. Prediction of compound signature using high density gene 
expression profiling. Toxicological Sciences, 67:232-40 

 
2. Hayes et al (2005). EDGE: A centralised resource for the comparison, analysis, and 

distribution of toxicogenomic information. Molecular Pharmacology, 67:1360-68 
 

Expanded summary: This paper relates to the development of the Environment, 
Drugs and Gene Expression (EDGE) public database, which the authors created 
to address the challenges of comparing gene expression data collected via 
different technologies. The idea to develop a low cost centralised resource 
(where researchers can share TGX data generated on a common platform) arose 
from the observation that different types of platforms, protocols and informatics 
produce different data, which hinder meaningful comparisons of transcriptional 
profiling data across laboratories. A key objective of the EDGE database is to 
map transcriptional changes from chemical exposure for future use as a 
diagnostic "fingerprint" to predict toxicity and provide valuable insights into the 
basic molecular changes responsible. The authors describe the approach used to 
develop the database for the analysis of liver gene expression in the mouse. This 
involved creating a standardised set of microarray reagents and reproducible 
protocols i.e. a cDNA-based microarray enriched for responsive targets of 
hepatotoxicants (e.g. TCDD, cobalt chloride and phenobarbital) in the mouse 
model. This would enable researchers to compare transcriptional profiles arising 
from chemicals and other stimuli. The authors developed a pipeline to generate 
transcriptional profiles for a set of prototype chemicals and pathological states e.g. 
inflammatory cytokines, aryl hydrocarbon receptor agonists and peroxisome 
proliferators. At the time of writing 117 treatments, doses and timepoints were 
publically available. The authors anticipate an additional 400 treatments within a 
further 4 months. Platforms containing unique genes from mouse skin, lung, 
kidney, palate and tendon have been developed, and at the time of writing similar 
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platforms for thymus, heart and ureter were in development. Finally, the authors 
propose that EDGE would serve as a prototype resource for the sharing of TGX 
information. They implemented an online database containing tools enabling 
researchers to query and interpret large numbers of transcriptional profiles. Two 
modes of researcher interaction are described: (1) Investigators can query a 
database of toxicant induced transcriptional profiles generated from a common 
microarray protocol/platform (various informatic tools available to help via web 
interface available at http://edge.oncology.wis.edu/edge; (2) Investigators can 
submit RNA samples to develop novel toxicant-induced transcriptional profiles for 
inclusion in the database.  

 
3. Luhe et al (2005). Toxicogenomics in the pharmaceutical industry: Hollow promises 

or real benefit? Mutation Research, 575(1-2):102-115. Review 
 

The following selected references cited in the above paper are further 
summarised 
 
Butte (2002). The use and analysis of microarray data. Nat Rev. Drug. Discov. 1: 
951-60. 
 

[Append] 
 
Chen et al (2004). Analysis of variance components in gene expression data. 
Bioinformatics. 20:1436-46 
 

This paper presents an approach to estimating sources of variation and their 
relative contributions (magnitude) to the overall variation in microarray studies. 
The authors note that variability in microarray data is unavoidable and 
expected and that many potential sources of variation exist due to the 
multistep nature of the system. Identifying and estimating different sources of 
variation is essential for designing cost-efficient microarray experiments.  
Three types of variation are considered: biological, technical and residual 
variation. Biological variation is defined as variation arising from the use of 
different animals, cell lines or tissues i.e. variation from different RNA sources 
that reflect differences in host characteristics. Technical variation arises from 
use of the microarray system and the authors list the different sources that 
arise at each step of a microarray experiment i.e: sample preparation 
procedures (e.g. RNA extraction and purification, cDNA synthesis, and 
incorporation extent of dyes/specific batch of dyes used); microarray 
construction procedures (e.g. amount of probe applied to the slide, spot 
shape, pin geometry and fixation of the spotted DNA to the slides); 
hybridisation and washing procedures (e.g. amount of labelled cDNA applied 
to the slides, and hybridisation temperatures); detection method (e.g. scanner 
setting parameters); cross hybridisation within gene families; outshining from 
neighbouring spot; laboratory environmental conditions (aka time/block effect 
e.g. room temperature); and other sources such as concentrations of 
reaction/wash buffer components (can be effectively controlled using stock 
solutions and master mixes). Residual variance refers to sampling or other 
experimental unaccountable factors. The authors note that all three types of 
variation are mutually independent and their summation is the variation in a 
measured fluorescent intensity.  
 
The paper states that variation is identified and estimated using the statistical 
technique analysis of variance (ANOVA) which models sources of variation 
and provides an automatic correction for the nuisance effects in estimating 
the relative expression of genes across experimental samples. ANOVA 
considers all sources of variation in an experiment and summarises them into 
one equation. Although initially developed to analyse differences between 
means, ANOVA was later adapted into a model capable of explicitly 
estimating the magnitude of the sources of variation and variance 

http://edge.oncology.wis.edu/edge
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components. Analysis of variance components of a data set involves 
attributing variability to various factors (e.g. treatment, dye, animal or array). 
Each factor has a different level of effect that impacts on the measurement of 
interest. These effects are considered as being either fixed or random. Fixed 
effects for dye or treatment factors relate to the fact the dye is either red or 
green and that treatment groups are either exposed or unexposed. Random 
effects are attributed to animal and array factors as they are randomly chosen 
from an infinite population. The authors note that analysis of variance 
components involves estimating the variance of random effects that requires 
separating the variance of random components (animal, array) from 
treatment (fixed) effects. This can be achieved by use of a variance 
component model of a repeated dye-flip experiment (see below).  
 
The authors note that replication also contributes to sources of variation 
assessments and forms one of three basic concepts of experimental design 
(the other two being randomisation and blocking – see below). Since the 
number of replications integrated into an experiment determines the quality of 
the statistical method used to analyse variation, it is important to carefully 
design an experiment with appropriate replications to provide a sound basis 
for statistical analysis, This will help towards generating more accurate and 
reliable data, and thus enabling better understanding and interpretation of the 
significance of the observed changes for thousands of genes. Replication is 
incorporated at different levels of an experiment e.g. wrt sample (using a 
replicate number of tissues or cell types), array (using a replicate no of arrays) 
or spot (using a replicate number of spots of the same gene). The number of 
replicates necessary depends on the noise level of the system. The greater 
the number of replicates used the greater the ability to detect very small 
differences and distinguish differentially expressed genes from noise. Two 
types of replications are described. Technical replication involves the use of 
replicates where the mRNA is from the same pool (same extraction). 
Technical replicates are used to reduce experimental variabilities such as 
those arising from measurements. Biological replication refers to 
hybridisations that involve mRNA from different extractions i.e. different 
biological samples that reflect variability in the population of interest. 
Biological replicates are used to obtain averages of independent data (and to 
validate generalisations of conclusions). Experiments that pool biological 
samples minimise biological variation without affecting variation of the 
technical or residual component.  
 
The authors note that the type of replicate used is dependant on the aim of 
the experiment which will thereby determine the statistical test used to assess 
variability in the data. For example, consider an experiment that aims to 
determine the effects of treatment on different biological populations, to 
detect if the variability in the data obtained is statistically significant, since 
biological replicates (different biological samples) were used the statistical 
test would need to be based on biological replicate samples. If an experiment 
aims to detect the variation within a particular experimental group, since the 
same sample is used any variations would be due to technical procedures 
and so tests used to determine the statistical significance of these variations 
would need to be based on technical replicate samples.  A widely used 
technical replicate (used in two colour spotted array analysis) is the dye 
reversal or dye flip design. This process aims to compensate for dye bias (i.e. 
all biases occurring during labelling or hybridisation or due to the physical 
properties of the dyes themselves e.g. heat and light sensitivity or half life). 
Dye flip uses two arrays with treated samples labelled with a Cy5 red dye and 
control samples labelled with a Cy3 green dye and both hybridised onto one 
array. On the second array the reverse labelling of samples occurs. A 
schematic is provided which illustrates the design of a replicated dye-flip 
experiment.  
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The authors investigated variation in two data sets. The first data set was 
retrieved from a toxicogenomic (TGX) study that measured gene expression 
changes of kidney samples from rats dosed with 5 mg/kg cisplatin (a known 
kidney toxin). The array used consisted of a 700 gene cDNA rat chip from 
Phase-1 Molecular Toxicology. Plant and bacterial genes were also spotted 
on the array as replicates to monitor non-specific background binding of 
labelled cDNA. Each gene had four replicate values on each of the six arrays 
used (labelled A1-A6). To estimate only technical and residual variances 
samples were pooled for either treated or control RNA thereby minimising the 
effect of biological variation. Treated samples were derived from kidneys of 5 
rats, 7 days after treatment. Both labelling and hybridisation were performed 
on one date with each replicate sample labelled independently. A dye flip 
design was used to minimise dye bias. A1-A3 arrays had control samples 
assigned to the green (Cy3) dye and treated samples to the red (Cy5) dye. 
A4-A6 arrays had the reverse labelling assignment. Fluorescence intensity 
was assessed by subtracting the local background intensity from each raw 
fluorescent value using the GenePix software package (Axon instruments Inc, 
1999).  
 
The authors estimated the following technical variances: between-array and 
within-array (i.e. between-section and within-section variances). This was 
done using a mixed effects (ANOVA) variance-component model. Between-
array variance relates to variation from one array batch to another (e.g. 
variance in quality and homogeneity in manufacturing an array including gene 
sequence variance) or variance in hybridisation from one array to another 
(e.g. due to sample preparation being performed on different dates). Between 
array variance can observed can be due to either biological or technical 
factors. To assess between-array variance due to technical factors replicates 
based on mRNA samples from the same extraction were used in more than 
one array. (NB. Between-array variance due to biological factors arises due 
to use of mRNA samples from different biological samples hybridised onto 
different arrays, however, this was not investigated in this paper). Within-
array variance is defined as variation originating from either array-specific 
spot effects (e.g. scratches or dust on surface of an array or due to printing, 
washing or image extraction) or systematic effects (e.g. differences in 
labelling efficiency, intensity or spatial dependency biases). Within –array 
variance was assessed using replicates derived from mRNA samples from 
the same extraction at different locations on each array. To investigate the 
distribution of variance components across genes the authors consider a 
mixed effects model for gene by gene analysis.  
 
The second data set was obtained from a study investigating circadian 
changes in gene expression in liver samples from rats. The study design was 
as follows: rats were fed an ad libitum NIH-31 diet with a 12 hr light/dark cycle; 
4 rats were sacrificed at 52 weeks of age at 4 different time points; total RNA 
was extracted from the livers generating 16 samples; reference RNA was 
produced by mixing equal amounts of 16 samples; RNA samples were 
divided into 4 experimental blocks, each block containing a sample from each 
of the 4 sacrifice times and each sample within each block labelled and 
hybridised on a single day (dye flip reversal labelling/hybridisation was also 
performed on the next consecutive day); each block was run on 4 different 
weeks. The authors note that the key effect of interest was detecting 
differences in gene expression among the 4 sacrifice times. Biological, 
technical and residual variance were investigated. Animal-to-animal 
(between-rat variation) was estimated via use of biological replicates in the 
test samples for five housekeeping genes (i.e. genes that are not expected to 
change with time among rats). Since the reference samples came from the 
same pool there was no biological effect to detect. A mixed effects model is 
used to estimate the following variance components: block (week to week), 
between-day, between-array, within-array and residual variance.  
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Findings from the toxicogenomics data set showed that between array 
variance was larger than the between-section (within array) variance which 
itself was larger than within-section (within array) variance. For the circadian 
data set in the reference sample ANOVA analysis and the variance 
components estimates showed that the week-week variance was larger than 
the between array variance which was larger than the within section variance. 
For the test sample ANOVA analysis and variance component estimates 
revealed that the week by week (block) variance was larger than the animal-
animal (biological) variation which itself was greater than the two technical 
variations (between-array and within array). Gene by gene analysis of the five 
housekeeping genes revealed that the technical variation (between array) 
was larger than the biological variation (animal to animal) for 4/5 genes.  
 
The authors concluded that the week-to-week effect (week by week 
variations) were the largest i.e. the overall variability in the data was largely 
due to the performance of procedures from one week run (block) to the next. 
The authors suggest that reducing this variability would increase the precision 
of the estimates of gene expression changes. Also animal-to-animal variation 
was considered a key source of variability that can be effectively reduced by 
replicating biological samples.  
 
Additional noteworthy points 
 
The authors consider randomisation, blocking and replication as basic 
principles of experimental design. The purpose of randomisation is to reduce 
the likelihood of systematic biases caused by selection or assignment. This 
would involve randomising biological samples to a treatment to equally 
represent underlying characteristics of subjects or randomising dye 
assignments in technical replicates. The authors define blocking or a block as 
a subset of experimental units that are more homogenous than the entire 
experimental itself. Blocking is often incorporated into a study to increase the 
precision of estimates made.  
 
The authors consider a microarray experiment as a comparative experiment 
that compares relative expression levels among samples rather than 
determining absolute intensity measures of each sample. 

 
Chu et al 2004. Cross-site comparison of gene expression data reveals high 
similarity. EHP.112:449-55 
 

This study was conducted to evaluate data quality and statistical models that 
facilitate comparison of high-density gene expression data sets at the probe 
level. The authors consider data quality and choice of statistical models as 
one of several factors that influence the consistency and coherence of gene 
expression data across multiple test sites. The authors note that the 
Hepatotoxicity Working Group of the ILSI HESI consortium on the application 
of genomics to mechanism-based risk assessment is investigating these and 
other factors: [The Consortium‟s investigation involved comparing high-
density gene expression data sets generated on two sets of RNA obtained 
from two independent in-vivo rat experiments conducted at seven different 
laboratory sites (pharmaceutical companies). The hepatotoxicant 
methapyrilene (MP) was administered by gavage to male Sprague Dawley 
rats for 1, 3 or 7 days at doses of 0, 10, 100 mg/kg/day. A single platform 
(Affymetrix Rat Genome U34A GeneChip) was used for transcript profiling]. 
The authors present methods for exploring and quantitatively assessing 
differences in the above data to generate lists of site insensitive genes (i.e. 
genes that are invariant across sites) that are responsive to low and high 
doses of MP. To increase the power of statistical inferences, the authors 
pooled data sets across all test sites, however, this is known to compromise 
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the comparability of the data, which the authors state can be rectified by 
adopting a robust normalisation method and they subsequently describe 
three possible approaches. The authors highlight the advantages of using 
interquartile range normalisation, which not only makes data comparable 
across sites but also preserves a certain level of site effects when combining 
the data. Other approaches summarised include using a universal reference 
sample or an invariant portion of data across arrays. The authors found that 
using both numerical and graphical techniques reveals important patterns 
and partitions of variability in the data (including the magnitude of site effects 
i.e. effects/differences in datasets due to study being conducted at a 
particular site e.g. platform differences, environmental conditions, data 
quality). The authors report that these site effects were primarily additive, and 
can be adjusted in the statistical calculations in a way that does not bias 
conclusions regarding treatment differences. The authors used a mixed 
model approach, which they concluded provides a flexible method to adjust 
site effects and use different array variations between sites. The authors also 
note that each site tends to generate similar lists of significantly differentially 
expressed genes.  

 
Additional noteworthy points 

 
The authors note that a common scenario in microarray design is having 
large “p” (number of genes) and small “n” (number of arrays aka. sample 
size), which is associated with low statistical inference power. To overcome 
this and minimise both false positive and false negative rates investigators 
can increase sample size, although this can be costly. To help alleviate the 
cost investigators incorporate data sets generated at disparate sites and 
times but such an approach raises questions over the consistency of data 
generated across multiple sites and whether the same or similar conclusions 
be drawn.  

 
Novak et al (2002). Characterisation of variability in large-scale gene expression 
data: implications for study design. Genomics. 79:104-113 

 
Rihl et al (2004). Technical validation of cDNA based microarray as screening 
technique to identify candidate genes in synovial tissue biopsy specimens from 
patients with spondyloarthropathy. Ann. Rheum. Dis. 63. 498-507.  
 

This study sought to validate the use of cDNA-based microarrays on synovial 
biopsies by analysing the technical sources of experimental variability. 
Previous work in the field has typically used peripheral blood and synovial 
fluid mononuclear cells from patients with active spondyloarthropathy (SpA), 
a prototype of chronic inflammatory arthritis. However, as the synovium is the 
primary site of inflammation of the arthritic joint the authors considered that 
this tissue would be the relevant target structure. Such an approach raises a 
number of technical questions in relation to the reproducibility of methods, 
sample heterogeneity, use of statistical analysis with thresholds of an 
arbitrary nature, and the quality and quantity of RNA/cDNA (which may 
require amplification, and thereby potentially introduce further bias and 
distortion of gene expression profiles). The authors hoped that the study 
would enable them to better characterise the mRNA transcripts mediating 
active SpA (i.e. identify candidate genes in synovial tissue) to increase their 
understanding of the mechanisms of this particular disease.  
 
The authors analysed the reproducibility of this screening technique in three 
ways. Firstly, they compared the effect of two different amplification 
approaches (exponential and linear RNA amplification) since the type of 
amplification approach used can introduce variability due to associated 
technical limitations. Exponential amplification was performed using the 
Switch Mechanism At the 5‟ end of the RNA Template (SMART PCR), which 
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allows reverse transcription of small amounts of total RNA and subsequent 
amplification of the entire cDNA. Linear amplification (an in-vitro transcription 
(IVT) based approach), is typically based on T7 RNA polymerase IVT. 
Secondly, the authors studied the variability between two different cDNA 
based nylon membrane microarray systems (Atlas [1126 genes] and 
GeneFilters (GF211) [4K genes]) on peripheral blood mononuclear cells 
(PBMC) (with duplicate experiments conducted). Their final analysis of 
reproducibility involved studying the run-to-run variability on synovial tissue 
biopsies (i.e. variability arising from different runs of the microarray 
procedures).  
 
The effect of sample heterogeneity on the microarray results was assessed 
by analysing the gene expression profiles of the SpA synovium (with the total 
RNA sampled from 3 SpA patients) and comparing this with two control 
groups specimens: the oestoarthritis (OA) synovium – which is phenotypically 
quite heterogenous (total RNA sampled from 3 OA patients), and PBMCs – 
which is phenotypically quite homogeneous (total RNA sampled from 4 
healthy controls). The authors identified the genes expressed and compared 
the microarray results for the two sets of arthritic patients with their 
histological findings (to evaluate correlation between histology and gene 
expression).  

 
Finally, the authors examined whether use of the classic statistical methods 
(Analysis of Variance and Students t test with Bonferroni adjustment) 
represented a valid approach to analyse the data i.e. whether these methods 
could reliably identify statistically significant differences between samples. To 
analyse the appropriateness of the chosen thresholds, permutation tests of 
the SpA and OA synovium tissue data were conducted. The authors hoped 
this would show that their analysis produces a low number of false positives 
thereby confirming that the results obtained reflect gene expression and were 
not a random result due to multiple comparisons. It was also hoped that this 
would emphasize the need to use stringent thresholds to avoid increasing the 
number of false positive genes detected.  
 
The authors found that 86 per cent of the cytokine/chemokine genes 
identified were expressed in both microarrays and both RNA amplification 
systems. Furthermore, in one microarray system the expressed genes were 
78-95% concordant in duplicate experiments. Cluster analysis revealed a 
higher degree of similarity between gene expression profiles of SPA 
synovium than between PBMCs (more homogeneous) or OA synovium 
despite the fact that the synovial samples had clear histopathological 
differences. The authors suggested that tissue heterogeneity did not bias the 
results since comparisons made between the SpA synovium and OA 
synovium and with PBMCs yielded 11 and 18 expressed transcripts 
respectively, (of which six were shared in both comparisons) and 
permutations of SpA and OA samples yielded only one expressed gene in 19 
comparisons.  

 
The authors concluded that microarrays can be used for the analysis of 
synovial tissue biopsies with high reproducibility and low variability of the 
generated gene expression profiles. 

 
Lee et al (2004). The intelligent data management system for toxicogenomics. J 
Vet. Med. Sci. 66:1335-38.  
 

This is essentially an information paper that presents the TEST 
(Toxicogenomics for Efficient Safety Test) database management system 
(DBM). The authors consider that this represents an intelligent database 
system, capable of handling heterogeneous and complex data from many 
different experimental and information sources. The intelligent query feature 
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enables users to obtain relevant useful information from complex data sets 
and conduct multiple comparisons. Information can be retrieved for the 
following: (i) compounds, which are classed into either anti-cancer, antibiotic, 
hypertension and gastric ulcer groups; (ii) animal experimental data, such as 
food consumption, histopathology, statistical analysis results and 
pathologist‟s comments; (iii) gene expression data , e.g. annotation and 
expression information for each clone, statistical data, data quality of each 
slide and differentially expressed gene lists (with 6 array data sets per 
compound); and (iv) annotation. The authors note that at the time of 
publication the system housed information for 16 compounds, 45 microarrays, 
190 animal experiments, and had a customised 4.8K rat clone set. Data can 
be accessed online via http://istech.info/TEST/ and users requiring gene level 
data can enter their query into the annotation database with the gene‟s name 
and ID nos of relevant database, and functional key words. Expression profile 
information is obtained via links to a microarray database. The authors also 
describe the design of a toxicogenomic (TGX) array (to demonstrate the 
application/value of the DBM system) which involved screening candidate 
toxin related genes from several public databases (via searches of genes that 
are functionally related to known toxins genes (based on Gene Ontology)), 
annotating the selected genes and dividing them into their respective grade 
sets (A-D) based on their confidence intervals; grades A and B representing 
the major clone sets for toxicity testing.  

 
In conclusion, the authors consider that the TEST database represents a 
useful information source for studying toxicology mechanisms on a genome-
wide level, which can also be applied to the design of microarrays for toxicity 
testing. 

 
Zhang & Gant (2004). A statistical framework for the design of microarray 
experiments and effective detection of differential gene expression. 
Bioinformatics. 20: 2821-28.  
 

This paper describes the development of an approach to measure the 
success rate of differential gene expression (DGE). The authors consider that 
the unsatisfactory detection rate of DGE together with the large number of 
false positives represent significant challenges for microarray studies, and 
that these challenges arise due to the large data sets and the intrinsic 
variability of the system. Two sets of variation associated with gene 
expression experiments are described. Biological variation is defined as inter-
individual differences between members of a population while technical 
variation refers to errors arising from the experimental procedure. The 
authors also describe approaches used to account for these variations, for 
example, the effect of biological variation can be reduced by using sufficient 
number of biological individuals. However, reducing the effects of technical 
variation is more complicated as it depends on whether the variability arises 
from random error (whose effects can be reduced by making multiple 
measurements) or systematic bias (which requires the deployment of correct 
experimental designs to reduce their effects). A significant source of 
systematic bias considered throughout this paper is imbalances in the 
measured fluorescence intensities (for microarray experiments using dual 
label hybridisations). The authors note that normalisation procedures are 
often applied to remove systematic biases before statistical analysis of 
microarray data and describe two types used to adjust the measured 
fluorescence levels: globalisation normalisation and an alternative intensity-
dependent normalisation method.  
 
The authors propose a mathematical model to help investigators alter 
experimental design (i.e. to help select an appropriate number of microarrays 
for an experiment which can then provide the desired detection power of 
DGE) and in doing so thereby account for fluorescent label bias. (NB. The 

http://istech.info/TEST/
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model also takes into account other major variables associated with 
microarray data). The model is applied to measured data in microarray 
experiments and works under the following assumptions i.e. is designed for 
experiments where: there are two sample groups (treated vs. control); each 
gene is spotted only once on each microarray; the following factors contribute 
to the log intensity fluorescence for a feature (single spot): the amount of 
corresponding mRNA in biological sample, the effect of quality of the feature 
spot, the effect from the labelling fluorchrome and random measurement 
error). These parameters are incorporated into an equation enabling 
calculation of magnitude of differential expression. The authors note that this 
model can be used for developing a t-based statistical procedure to 
determine DGE (per gene printed on the microarray). The t-test compares 
expression in the treated vs. control group with the null hypothesis being that 
the gene has same expression level in two groups.  
 
The authors derive a formula to determine the success rate of DGE detection 
(i.e. the rate at which DGE is correctly identified (either up or downregulated)). 
The formula assists in the design of microarray experiments and takes into 
account the number of microarrays and genes, the magnitude of DGE and 
the variance from biological and technical sources. The authors note that a 
look-up table based on the above formula is used to help investigators 
determine the percentage of true DGEs which can be detected by the 
experimental design used. A software link for investigators wishing to 
calculate the success rate of DGE detection is provided 
http://www.le.ac.uk/mrctox/microarray_lab/Microarray_Softwares/Microarray_
Softwares.htm [doesnt work].  
 
Finally the authors propose an adhoc method for estimating the fraction of 
non-differentially expressed (null) genes within a set of genes being tested 
(No/N). This method increases the power of DGE detection and is based on 
an equation which can be used independently from the specific form of 
statistical tests being used. However, since it makes a number of 
assumptions the authors note that the method should serve as an 
approximation for estimating the fraction of null statistics.  
 
Overall the authors propose that this measure could be routinely used in the 
design of microarray experiments (or post-experiment assessment).  
 
Additional noteworthy points 

 
In this paper „a desired number of experiments‟ refers to the number of 
forward and reverse labelled microarrays required to achieve a desired power 
of DGE detection with control on the number of false DGE calls.  

   
The authors note that global normalisation seeks to adjust the effect of global 
factors that could generally affect the fluorescence. Such factors include the 
difference between overall concentrations of two mRNAs and the difference 
of photoamplifier voltages used between two fluorescent channels when the 
microarray image is scanned. Global normalisation globally (uniformly) 
adjusts fluorescence levels of all the features. However, this can introduce 
possible local feature specific bias, which is accounted for by reverse 
labelling and statistical testing (see below). Despite this, global normalisation 
is limited by its inability to account for different magnitudes of imbalances 
from feature to feature. In contrast, an alternative (intensity-dependent) 
normalisation method adjusts fluorescence level according to local properties 
of the feature spot and fits measured data to a smooth non-linear curve. 
Although this approach is unlikely to correct for all features, this can be 
rectified by removing systematic bias via experimental means i.e. using 
reverse labelling dyes when hybridising some microarrays (dye swapping) 
and using ANOVA methods. 

http://www.le.ac.uk/mrctox/microarray_lab/Microarray_Softwares/Microarray_Softwares.htm
http://www.le.ac.uk/mrctox/microarray_lab/Microarray_Softwares/Microarray_Softwares.htm
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Steiner et al (2004). Discriminating different classes of toxicants by transcript 
profiling. EHP. 112. 1236-48.  
 

This study sought to determine whether biological samples from rats treated 
with various compounds could be classified into different classes of 
hepatotoxicant based on gene expression profiles. The study also aimed to 
see whether the mode of toxicity could be predicted i.e. cholestasis, steatosis, 
direct-acting and peroxisome proliferator-activated receptor-α. Wistar rats  
were exposed to high doses of 28 hepatotoxicants (that were either already 
established or pre-clinically tested) and 3 non-hepatoxicants with their 
corresponding time-matched controls. NB. Sprague-Dawley rats were also 
used (see below). High doses were used to ensure conventional endpoints 
could assess the toxicity produced. Hepatic gene expression profiles were 
analysed via Support Vector Machines (SVM), a supervised learning method 
that generates classification rules. To enhance its classification performance 
SVM is used in combination with another method (recursive feature 
elimination) creating sets of informative genes. The authors note that SVM is 
particularly well suited for the analysis of microarray expression as it can 
recognise informative gene patterns in input data and make generalisations 
on previously unseen samples. However, a training set of examples must be 
provided i.e. a database of model compounds that produce a particular 
toxicological endpoint. The authors tested two different SVM algorithms to 
produce predictive models, which underwent compound based external cross 
validation. To assess toxicity the authors performed a complete serum 
chemistry profile on each animal, and liver and kidney histopathology. As 
different strains are widely used in toxicology and known to vary in their 
susceptibilities to toxicants, the authors investigated the effect of strain 
differences of Wistar and Sprague-Dawley rats for classification based on the 
transcript profiles. The authors generated a SVM algorithm using Wistar rat 
data and assessed whether the model would correctly classify individual 
animals from another strain by using the vehicle control and WY14643 (a 
peroxisome proliferator)-treated Sprague-Dawley livers. Transcript profiles for 
SVMs were then assessed. Finally, the authors tested the hypothesis that 
unknown blinded compounds can be accurately classified based solely on 
gene expression profiles using compounds with mechanisms of toxicity not 
represented in their training set (e.g. liposaccharide, phenobarbital and 
indomethacin). The authors found that combined use of recursive feature 
elimination enabled them to identify a compact subset of probe sets with 
potential use as biomarkers. Furthermore, the SVM models were able to 
predict toxicity as well as the mode of toxicity, enabling discrimination of 
hepatotoxic and nonhepatoxic compounds and correct prediction of the 
toxicants class. Finally, the authors found that the predictive model (built on 
transcripts from one rat strain) could successfully classify profiles from 
another rat strain. In conclusion, their findings confirmed the hypothesis that 
compound classification based on gene expression data is feasible and that 
toxicogenomics is a powerful tool for classifying compounds according to 
their toxicity mechanism (assuming a well-designed database is combined 
with appropriate bioinformatic tools). 

 
4. Simon et al (2003). Pitfalls in the use of DNA microarray data for diagnostic and 

prognostic classification. Journal of the National Cancer Institute, 95:14-18. 
Commentary. 

 
5. Thomas et al (2001)

1
. Identification of toxicologically predictive gene sets using cDNA 

microarrays. Molecular Pharmacology, 60:1189-94 
 

Expanded summary: The authors developed an approach to test the hypothesis 
that toxicants can be classified according to how they affect mRNA transcript 
profiles. This centres on the ongoing requirement for alternative approaches for 
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the safety testing of chemicals as current methods cannot be applied to all 
chemicals of concern. The authors exposed male C57BL/6J mice to 24 known 
(model) treatments (toxins) that fall into the following 5 toxicological classes: non-
coplanar PCBs (e.g. PCB-153, Arocolor-1260, Phenobarbital); Peroxisome 
proliferators (e.g. Cipro, Wy-16,463); Inflammatory agents (TNF-a, LPS, IL-6); 
Hypoxia-inducing agents (e.g Cobalt, Phenylhydrazine); and Aryl Hydrocarbon 
Receptor agonists (e.g. TCDD, BNF). The authors also examined changes in 
expression of genes obtained from liver samples. The authors were able to 
classify toxicants with up to 70% accuracy (after analysing 1200 transcripts). 
They also identified a diagnostic set of 12 transcripts that allow for an estimated 
100% predictive accuracy for the toxicological classes chosen in the study. The 
authors concluded that their findings support the accurate classification of toxic 
chemicals based on their transcript expression profiles (i.e where transcript 
expression is an endpoint), which as an alternative testing strategy would provide  
huge savings in terms of cost, animals, time. Furthermore, the authors 
considered that once a diagnostic gene set of indicator transcripts are identified, 
large arrays with thousands of transcripts are unnecessary to make these 
classifications.  

 
6. Tsai et al (2005). Multi-class clustering and prediction in the analysis of microarray 

data. Mathematical Biosciences, 193:79-100. 
 
7. Van Delft et al (2005). Comparison of supervised clustering methods to discriminate 

genotoxic from non-genotoxic carcinogens by gene expression profiling. Mutation 
Research, 575:1-3 

 
8. Yang et al (2004). Toxicogenomics in drug discovery: From preclinical studies to 

clinical trials. Chemico-Biological Interactions, 150:71-85. Review 
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Hayes, K.R. & Bradfield, C.A. (2005). Advances In Toxicogenomics. Chemical Research In 
Toxicology. Vol 18, No. 3:403-14 

Topic covered: This paper provides a general overview of the application and interpretation of 
transcriptional profiling. Design issues are considered in relation to microarray fluorescence 
and the experimental design of microarray studies. The analysis of raw microarray data are 
briefly described in relation to clustering techniques. Statistical approaches are not discussed 
to any great extent, except in relation to hierarchical clustering and as approaches to 
classifying chemicals based on their transcriptional profiles. 

Design: The authors note two microarray approaches used in transcriptional profiling: single 
and double fluor protocols. Single fluor protocols define approaches where control and 
experimental samples are hybridised against separate microarrays. Expression ratios are 
calculated from each microarray to relate the data. Double fluor protocols define approaches 
where both control and experimental samples are hybridised against the same microarray. 
Fluorescent tags with different excitation and emission spectra are used and the expression 
ratio is calculated for the two samples at the same location. The data generated is then 
presented as a heat map.  
The authors acknowledge the significance of experimental design in terms of its ability to 
affect the information that can be obtained from a microarray (particularly for two colour 
hybridisations). Three common types of design for microarray experiments are described. 
Direct design involves hybridisation of the control sample directly against the experimental 
sample (thus requiring the use of different fluors to label each sample). Reference design 
involves hybridising both control and experimental samples directly against a common 
reference sample. Loop design involves hybridising biological replicates (from multiple 
groups) against each other to connect all samples. The authors consider that the aim of an 
experiment will ultimately determine which design is appropriate (Churchill (2002); Yang & 
Speed (2002); Kerr (2003)). The direct design is most sensitive and thus appropriate for 
studies seeking to identify a list of differentially expressed targets at a particular time (i.e. 
identity of target is important). This is done by comparing each time point to a time-matched 
control. Loop design is considered most appropriate for studies seeking to understand how 
targets change over time (i.e. where the temporal nature of the target is important). Loop 
design is thought to provide better information on the influence of time on a particular target. 
However, comparing each time point against the preceding and subsequent time points 
compromises the sensitivity of detecting changes in transcriptional profiling. Reference design 
is deemed most appropriate for studies seeking to determine both the identity of targets and 
temporal nature of their changes. Reference design provides information on both the 
magnitude of the change and temporal relationship, although at the expense of reducing 
statistical power for detecting both.  

Analysis: The authors define clustering as an unsupervised approach to presenting 
microarray data that is often used to organise global expression profiles. Three types of 
clustering techniques are briefly described. Hierarchical clustering (HC) groups targets based 
on their similarity of expression and can be applied to treatments also. HC generates a 
dendogram (via statistical approaches – see below). To fully visualise the data the 
dendogram is positioned together with the heat map. K-Means clustering groups targets 
based on a preset number of cluster groups (i.e. number of clusters are defined a priori). 
Principal Component Analysis (PCA) is used to analyse data with multiple values. Data from 
matrices of gene expression data are collapsed into eigenvectors and plotted to give relative 
locations of profiles. The distance between profiles correlates with similarity.  

Statistics: The authors note that to create a hierarchical tree / dendogram in hierarchical 
clustering the Euclidian distance (correlation coefficient) must be calculated to rank 
similarities of gene expression profiles. The following statistical approaches identified from 
published literature illustrate the ability of transcriptional profiling to classify chemicals i.e. 
Bayesian probability (Thomas et al 2001) and Linear Discriminant Analysis (LDA), genetic 
algorithm (GA)/ K-Nearest Neighbours (KNN) (Hamadeh et al 2002). The authors suggest 
that a robust method is required that is capable of incorporating and predicting toxicity using 
much larger data sets.  

Comments: Other areas addressed include an explanation of how chemicals can invoke 
similar transcriptional profiles e.g. inducing cognate adaptive metabolic pathways, and the 
benefit microarray technology brings to the process of classifying chemicals.   
The authors comment on the value of toxicogenomic (TGX) repositories of online 
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transcriptional profiles and highlight the significance of information sharing and the impact 
Minimum Information About Microarray Experiment (MIAME) guidelines have made to TGX 
studies. Comparing gene expression data is considered problematic due to extensive 
interlaboratory variation and the existence of multiple strategies to annotate targets (Mattes 
2004). The authors suggest that possible solutions include standardisation of protocols 
(Thompson et al 2004) – although the large number of platforms and protocols is a limitation 
(Baker et al 2004; Mah et al 2004) – and careful sequencing and curation of genomes. 
 
The review summarises the various TGX transcriptional profiling resources (i.e. National 
Center for Toxicogenomics (NCT), Environment, Drugs and Gene Expression (EDGE), 
Pharmacogenomics Knowledge Base (PharmGKB), dbZach and Comparative Toxicology 
Database (CTD)) and basic (non-TGX specific/general) transcriptional profiling resources (i.e. 
GEO, ArrayExpress and Symatlas). Comparative and computational genomics and systems 
biology/pathway mapping are also summarised. A brief comment is given regarding the value 
of TGX in drug development and the regulation of environmental/industrial chemicals. The 
authors state that the use of TGX data in predicting the toxicity of environmental/industrial 
chemicals is a grey area, although TGX will be particular useful in verifying the toxicities of 
compounds regulated under one rubric e.g. Toxic Equivalency Factor (TEF) for dioxins, 
dibenzofurans and PCBs. In conclusion, the following areas are identified as problematic: 
platform and data compatibility; completeness of information; assimilation into usable 
databases and statistical power.  

 
Refs 
 

1. Baker et al (2004). Clofibrate-induced gene expression changes in the rat liver: A 
cross laboratory analysis using membrane cDNA arrays. Env Health Perspect, 
112:428-38;  

 
[Abstract]: Microarrays have the potential to significantly impact our ability to 
identify toxic hazards by the identification of mechanistically relevant markers of 
toxicity. To be useful for risk assessment, however, microarray data must be 
challenged to determine reliability and interlaboratory reproducibility. As part of a 
series of studies conducted by the International Life Sciences Institute Health and 
Environmental Science Institute Technical Committee on the Application of 
Genomics to Mechanism-Based Risk Assessment, the biological response in rats 
to the hepatotoxin clofibrate was investigated. Animals were treated with high 
(250 mg/kg/day) or low (25 mg/kg/day) doses for 1, 3, or 7 days in two 
laboratories. Clinical chemistry parameters were measured, livers removed for 
histopathological assessment, and gene expression analysis was conducted 
using cDNA arrays. Expression changes in genes involved in fatty acid 
metabolism (e.g. acyl-CoA oxidase), cell proliferation (e.g. topoisomerase II-a), 
fatty acid oxidation (e.g. cytochrome P450 4A1), consistent with the mechanism 
of clofibrate hepatoxicity, were detected. Observed differences in gene 
expression levels correlated with the level of biological response induced in the 
two in vivo studies. Generally, there was a high level of concordance between the 
gene expression profiles generated from pooled and individual RNA samples. 
Quantitative real-time polymerase chain reaction was used to confirm 
modulations for a number of peroxisome proliferator marker genes. Though the 
results indicate some variability in the quantitative nature of the microarray data, 
this appears due largely to differences in experimental and data analysis 
procedures used within each laboratory. In summary, this study demonstrates the 
potential for gene expression profiling to identify toxic hazards by the 
identification of mechanistically relevant markers of toxicity..  
 

2. Churchill (2002). Fundamentals for experimental design for cDNA microarrays. Nat. 
Genet. 32:490-5. Review 

 
3. Hamadeh et al (2002). Prediction of compound signature using high density gene 

expression profiling. Toxicological Sciences, 67:232-40 
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4. Kerr (2003). Design considerations for efficient and effective microarray studies. 
Biometrics. 59:822-8. Review 

 
5. Mah et al (2004). A comparison of oligonucleotide and cDNA-based microarray 

systems. Physiol. Genomics 16:361-70. 
 

[Concluding paragraph]: The results of this study indicate that oligonucleotide-
based arrays, such as those produced by Affymetrix, and full-length clone-based 
arrays may be too different in experimental design to be expected to give global 
expression results that can be directly correlated. This suggests that microarray 
technologies should not be used as an absolute quantitation method and that 
pooling of global expression profiles from different microarray platforms for the 
purposes of large-scale data mining should be undertaken with caution. The 
observation that there is only moderate overlap and no correlation in the 
expression data warrants the simultaneous use of complementary approaches to 
obtain a complete expression profile in complex tissue 
 

6. Mattes (2004). Annotation and cross-indexing of array elements on multiple platforms. 
Env Health Perspect, 112:506-10 

 
7. Thomas et al (2001). Identification of toxicologically predictive gene sets using cDNA 

microarrays. Molecular Pharmacology, 60:1189-94 
 

[Abstract]: The authors developed an approach to classify toxicants based upon 
their influence on profiles of mRNA transcripts. Changes in liver gene expression 
were examined after exposure of mice to 24 model treatments that fall into five 
well-studied toxicological categories: peroxisome proliferators, aryl hydrocarbon 
receptor agonists, non-coplanar polychlorinated biphenyls, inflammatory agents, 
and hypoxia-inducing agents. Analysis of 1200 transcripts using both a 
correlation-based approach and a probabilistic approach resulted in a 
classification accuracy of between 50 and 70%. However, with the use of a 
forward parameter selection scheme, a diagnostic set of 12 transcripts was 
identified that provided an estimated 100% predictive accuracy based on leave-
one-out cross validation. Expansion of this approach to additional chemicals of 
regulatory concern could serve as an important screening step in a new era of 
toxicological testing. 
 

8. Thompson et al (2004). Identification of platform-independent gene expression 
markers of cisplatin nephrotoxicity. Env Health Perspect, 112:488-94 

 
9. Yang & Speed (2002). Design issues for cDNA microarray experiments. Nat. Rev. 

Genet. 3. 579-88. Review 
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Irwin, R.D., et al. (2004). Application of Toxicogenomics to Toxicology: Basic Concepts in the 
Analysis of Microarray Data. Toxicologic Pathway, Vol 32(Suppl. 1):72-83 

Topic covered: This review addresses issues relating to microarray design, analysis and to a 
lesser extent statistics. The paper provides general guidelines about the design and analysis 
of microarray data using the liver as an example.  

Design: The authors explain the main steps involved in a typical 2 colour microarray 
experiment. These are fluorescent labelling (which involves labelling treatment and control 
group mRNA samples with red (cy5) or green (cy3) dyes respectively), hybridisation (the 
authors note the competitive nature of the process and the variable nature of the type of 
probe/element (gene) used i.e. cDNA or an oligonucleotide), measuring gene expression (in 
terms of the significance of increases or decreases in red or green transcripts; scanning the 
fluorescence signal and calculating the expression ratio) and the evaluation of raw data (via 
image analysis software to correct for background fluorescence/eliminate poor 
measurements, and standard transformations such as normalisation and logarithm 
transformation – see below). Other platforms (aside from DNA microarrays) used in 
transcriptional profiling are summarised e.g. nylon cDNA arrays (described as an early form of 
microarray that uses radioactive rather than fluorescent labels although limited by the high 
rate of false positives) and high density synthetic oligonucleotide arrays (e.g. Affymetrix 
arrays whereby each gene (element/probe) is represented by a set of oligonucleotide probe 
pairs to ensure specificity; labelling is achieved via use of an antisense copy of RNA with 
biotinylated nucleotides; after hybridisation gene expression is measured by treating the chip 
with streptavidin-labelled with phycoerthyrin dye and scanned; hybridisation intensities are 
then calculated). These alternative microarray platforms are considered challenging 
particularly in relation to gene annotation, the location of gene on a chip and programmes 
generating gene lists. However, it is believed these problems could be resolved by 
considering the biological plausibility of the results and using quantitative PCR to confirm a 
subset of genes identified.  
The authors discuss the significance of biological and technical replicates. Biological 
replicates refer to the number of animals used per treatment/control group. Technical 
replicates refer to the number of measurements made with each sample from one animal. 
Biological replicates allow investigators to determine the extent to which individual animal 
responses vary between treated and control groups. Technical replicates enable assessment 
of experimental variation associated with sample handling. This is done via use of the „fluor-
flip‟ or „dye reversal‟ method (swapping dyes used to label treated and control groups). 
Technical replicates ultimately help reveal bias in the labelling reaction or in the fluorescence 
yield. The National Center for Toxicology National Institute of Environmental Health Sciences 
(NCT NIEHS) recommends that 3 animals should be used per group with a dye reversal run 
for each animal.    
The authors demonstrate the application of transcriptional profiling via an in-vivo rat study that 
examined gene expression in the liver of animals treated with acetaminophen. The authors 
consider the liver a useful target organ for gene expression profiling experiments due to the 
ease of sample removal and preparing high quality RNA from liver tissue. Their first study 
objective was to exam gene expression patterns in rat liver associated with varying acute 
acetaminophen exposures and correlate specific toxic phenotypes/ histological changes with 
signature patterns of gene expression. Male F344 rats were exposed to 1500 and 2000 mg/kg 
acetaminophen via oral (gavage) (no information was provided re: number of rats used). 
Histological sections of liver were obtained at 6, 24 and 48 hours after dosing. The study also 
aimed to extract information about the mechanism of toxicity and categorise the genes 
involved (see below). To reduce variability and improve interpretation of microarray 
experiments the authors suggest that toxicogenomics (TGX) study designs should consider 
zonation of the liver (or kidney) sample selected and whether the toxicant is a zone specific 
hepatotoxicant (see below). Other recommendations include monitoring the test animal‟s food 
and water consumption rate as this can be affected by treatment; any resulting reduced body 
weight can influence the pattern of gene expression in the liver and confound findings.  

Analysis: The authors acknowledge the inability of microarrays to provide strict 
measurements of the magnitude of change for genes identified as being differentially 
expressed. This is because microarrays provide only semi-quantitative information about 
changes in gene expression. The authors suggest that quantitative PCR can help verify the 
expression levels of a representative sample of identified genes.  
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The authors describe two necessary standard transformations conducted on raw data to 
prepare it for statistical and biological analysis. Normalisation adjusts data for possible 
differences arising from technical aspects of the experiment (i.e. those associated with 
sensitivity and efficiency). Log transformation is performed to numerically equilibrate similar 
magnitudes of increases and decreases. This involves converting raw data to logarithm base 
2 (log(2)) of the ratio of treated to control for each array element. Image analysis software is 
also used on raw microarray data to correct for background fluorescence and eliminate poor 
measurement quality data.  
The authors define cluster analysis as a general term used to describe a group of statistical 
methods for ordering/organising/visualising data into groups or clusters. It is considered 
particularly useful for grouping genes sharing similar patterns of expression where there are 
no a priori hypotheses about how the data should be grouped (provides an initial 
unsupervised ordering). Several types of clustering algorithms exist (Dougherty et al 2002) 
and the authors note the use of hierarchical clustering especially in tumour biology.   
Two-dimensional hierarchical clustering analysis of gene expression data (generated from the 
in-vivo acetaminophen-exposed rat liver study described earlier) revealed dose-related 
differences in gene expression pattern (i.e. 2000 vs. 1500mg/kg). Within each dose, gene 
expression patterns differed with time after exposure (e.g. at the 1500mg/kg dose both up- 
and downregulated genes occurred 6hrs after dosing compared to the 2000mg/kg dose 
resulting in a large group of upregulated genes (red) in the middle of the cluster, which were 
highest at 24 and 48 hrs after dosing). Histological sections taken at different time points 
suggest these changes may reflect hepatocellular injury (a spectrum of adverse changes 
occurred 24 hrs after dosing at both dose groups; there was little change 6hrs after dosing). 
This indicated a possible correlation between the molecular events occurring in the liver and 
histological observations at corresponding times and doses.  The authors noted that there 
was no systematic way of extracting mechanistic toxicology information aside from directly 
examining single nodes in the clustergram and inspecting individual genes that have 
clustered together.  Examination of nodes in the 2000 mg/kg clustergram showed 
downregulation of genes coding for two enzymes of lipid biosynthesis. The authors 
recognised that commercially available software products are available to assign/categorise 
genes into metabolic or signal transduction pathways but considered most limited by their 
inability to provide comprehensive information. The global nature of gene expression is 
considered a particular challenge for categorising genes. Although gene expression reflects 
the state of most of the genome all pathways must still be fitted into a biologically meaningful 
result. From their experience the authors suggest that work should be conducted at the level 
of the individual differentially expressed genes.  
Key issues relating to the analysis of liver-specific gene expression data are also discussed 
following the unexpected variation in severity of necrosis observed in the in-vivo rat liver 
study. Zonation of hepatic gene expression, the nutritional status of and the mixed cell 
population in liver are all factors believed to complicate interpretation of differential hepatic 
gene expression. The authors suggest that studies acknowledge the contribution different 
liver cell types may have to subsequent analyses of samples. Different cell types may present 
different targets for toxicants and play different roles in certain pathologies. 

Statistics: The authors extol the superiority of statistical over threshold-based approaches for 
identifying genes whose expression is altered by treatment with the agent under study.  
Approaches based on relative changes occurring above a threshold (as determined by spot 
intensities) are considered limited given the arbitrary nature of thresholds and their inability to 
provide any level of confidence about statistical significance. Statistical approaches provide 
the most reliable and unbiased way of selecting differentially expressed genes. They enable 
precise measurement of genes exhibiting even a small fold increase or decrease in 
expression (to which many important genes fall into this category). Two types of statistical 
methods are defined: a simple calculation of mean and standard deviation of distribution of 
log(2) intensity ratios, and selecting differentially expressed genes that fall outside the 95% 
confidence interval; Analysis of variance (ANOVA) (used to determine the statistical 
significance of increases/decreases in gene expression) is thought to provide a solid 
statistical basis for identifying differentially expressed genes (based on p-values).  

Comments: Genomics and transcriptional profiling are the main focus of the review. Concepts 
are discussed from a non-specialist perspective. Other areas discussed (not highlighted 
above) include a brief account of the origins of transcriptional profiling and a comparison of 
the two main transcriptional profiling methods used i.e. Reverse Transcriptase Polymerase 
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Chain Reaction and microarray. The review concludes with the statement that transcriptional 
profiling using microarrays is only a tool and so will only provide useful information when 
properly applied.  
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KM Lee et al. (2005). Design issues in toxicogenomics using DNA microarray experiment. 
Toxicology and Applied Pharmacology: 207 S200-08 

Topic covered: This review focuses on design of microarray studies. Data analysis and use of 
statistics are only briefly mentioned. Background and definitions for key topic areas are 
provided when possible.  

Design: The authors comment on the importance of addressing design issues to ensure 
toxicogenomic (TGX) data is correctly interpreted, which should aid greater use of TGX and 
assert its value in toxicology. The authors identify the following five areas as significant to 
design:  
(a) Experimental objectives: Poorly designed studies are particularly challenging and 
researchers are advised to state their objectives in advance in terms of what they hope to get 
from their microarray study;  
(b) Selection of genes for microarray: The authors describe the selection criteria used which 
is based on whether or not the toxicants mechanism of action is known. The authors also 
explain how selected genes are categorised on the basis of their biochemical/pathological 
roles i.e. xenobiotic metabolism, DNA repair, etc. The resources used to categorise these 
genes i.e.GeneCards/Weizmann Institute; Kyoto encyclopedia of genes and genomes 
(KEGG) are also noted.  
(c) Selection of microarray platform: The authors describe the procedures used to conduct a 
cDNA microarray. This involves obtaining the relevant tissues, isolating RNA/mRNA, 
producing labelled cDNA probes, hybridising probes to arrays, analysing the data by 
measuring signal intensity and determining the ratio of signals between samples. The 
different types of DNA microarray platforms available are also considered i.e. cDNA, spotted 
oligonucleotide and Affymetrix arrays (TABPWG, 2004) – including the advantages and 
disadvantages of using each;  
(d) Design of DNA microarray: The authors list possible sources of variation in microarray 
experiments (i.e. animals/subjects, tissue/mRNA extraction, cDNA preparation and labelling, 
hybridisation, washing, reading, DNA spot, between array variation, nuisance variables and 
matrix quality). The Minimum Information About A Microarray Experiment (MIAME) guidelines 
and its significance are also introduced in relation to information on experimental design and 
protocol. This section is further subdivided into the following five areas: (i) Experimental 
design – which identifies the following as particular design challenges: cost of labelling and 
hybridising mRNA; the amount of RNA available and the number of slides to use; deciding 
whether to use a direct, reference or loop design (Kerr and Churchill, 2001) and 
incorporating dose response and time course parameters into the experiment. (ii) Species 
and sample types – which advises Investigators to select the most appropriate species and 
samples to maximise the likelihood of true positives and minimise false negatives (Ezendam 
et al 2004). (iii) Replicates – which describes the significance of using replicates and the 
numbers and different types used (Lee et al 2000). States that the most common approach 
for using replicates involves putting replicates of the same spot (cDNA probe) on each slide. 
Replicates put between slides are categorised as either technical or biological. Defines 
technical replicates as target mRNA taken from the same extraction or pool, which produces 
less variation in measurements. Defines biological replicates as target mRNA from different 
extractions (e.g. different samples of cells from a particular cell line or tissue), which is often 
referred to as the sample size. Dye sway (dye-flip) replications, (that involves reversing the 
dye assignment in one of two hybridisations using two mRNA samples from the same 
extraction) is considered to reduce systematic bias. (iv) Sample sizes – which comments on 
the confusion caused by the various definitions of „sample size‟ in relation to a microarray 
experiment; also notes the complexity of the methods used to calculate sample size (Wei et 
al 2004), to which at least four components exist/must be considered: 1) the variance of 
individual measurements, 2) the magnitude of the effect to be detected, 3) the acceptable 
false positive rate, and 4) the desired power (i.e. probability of detecting an effect of the 
specified (or greater) magnitude.  The authors note that large false positive rates are a 
possible consequence of multiple tests and suggests adjustment (according to the study‟s 
objectives) via use of Bonferroni correction. Practically up to 10 inbred mice are required per 
treatment group and for human samples a large number of individuals are needed per 
exposure group (Lampe et al 2004), which can be very expensive. The authors recommend 
pooling tissue samples from individuals in the same treatment group. (v) Data analysis and 
interpretation – the authors define normalisation as the process of removing systematic 
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variation in microarray data. They describe the approaches used, how the resulting gene 
expression matrices are analysed, and the methods used to determine gene regulation and 
function (i.e. via bioinformatic approaches such as clustering, classification and pattern 
discovery);  
(e) Design issues in epidemiological studies: This is further subdivided into two areas: (i) Bias 
and confounding – which describes the causes of selection and information bias and 
confounding (and how it is controlled). (ii) Sample size – which comments on the appropriate 
sample sizes required for population studies investigating the effect of genetic variation in 
specific diseases. 

Analysis: See design section above, part (d), (v) 

Statistics: Issues relating to statistics are not specified (exception: wrt use of Bonferroni 
correction in relation to adjusting large false positive rates – see design section)   

Comments: There is a strong descriptive element to the review. The paper focuses on 
explaining the basic issues than suggesting possible remedies/ways forward. The authors 
conclude that there is a lack of data on baseline gene expression in human samples, and 
consider the detection of environmental chemical-induced TGX expression changes 
comprises a significant challenge. This they feel is due to the wide variability of baseline gene 
expression among individuals. Subsequently, this may make it impossible to detect changes 
due to environmental chemical exposure.  

 
Refs 
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[Abstract]: Functional biological markers of environmental exposures are 
important in epidemiological studies of diseases risk. Such markers not only 
provide a measure of the exposure, they also reflect the degree of physiological 
and biochemical response to the exposure. In an observational study, using DNA 
microarrays, the authors report that it is possible to distinguish between 85 
individuals exposed and unexposed to tobacco smoke on the basis of mRNA 
expression in peripheral leukocytes. Furthermore, the authors report that active 
exposure to tobacco smoke is associated with a biologically relevant mRNA 
expression signature. The authors conclude that these findings suggest that 
expression patterns can be used to identify a complex environmental exposure in 
humans.  
 

4. Lee, MT et al (2000). Importance of replication in microarray gene expression studies: 
statistical methods and evidence from repetitive cDNA hybridizations. Proc. Natl. 
Acad. Sci. USA 97: 9834-9 

 
[Abstract]: The authors present statistical methods for analysing replicated cDNA 
microarray expression data and report the results of a controlled experiment. The 
study was conducted to investigate inherent variability in gene expression data 
and the extent to which replication in an experiment produces more consistent 
and reliable findings. The authors introduced a statistical model to describe the 
probability that mRNA is contained in the target sample tissue, converted to 
probe, and ultimately detected on the slide. The authors also introduce a method 
to analyse the combined data from all replicates. Of the 288 genes considered in 
this controlled experiment, 32 would be expected to produce strong hybridisation 
signals because of the known presence of repetitive sequences within them. The 
authors report that the results based on individual replicates, however, show that 
there are 55, 36, and 58 highly expressed genes in replicates 1, 2, and 3 
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respectively. On the other hand, an analysis by using the combined data from all 
3 replicates reveal that only 2 of the 288 genes are incorrectly classified as 
expressed. The authors consider that the experiment shows that any single 
microarray output is subject to substantial variability and pooling data from 
replicates makes it possible to provide a more reliable analysis of gene 
expression data. Therefore, the authors conclude that designing experiments with 
replications will greatly reduce misclassification rates. The authors recommend 
that at least three replicates be used in designing experiments by using cDNA 
microarrays, particularly when gene expression data from single specimens are 
being analysed.  
 

5. (TABPWG, 2004). The Tumor Analysis Best Practices Working Group, 2004. 
Expression profiling – best practices for data generation and interpretation in clinical 
trials. Nature Reviews Genetics. 5:229-237.  

 
6. Wei, et al (2004). Sample size for detecting differentially expressed genes in 

microarray experiments. BMC Genomics 5 (1). 87 
 
[Abstract]: The authors conclude that factors affecting power and sample size 
calculations include variability of the population, the desired detectable 
differences, the power to detect differences, and an acceptable error rate. In 
addition, experimental design, technical variability and data pre-processing play a 
role in the power of the statistical tests in microarrays. The authors show that the 
number of samples required for detecting a 2-fold change with 90% probability 
and a p-value of 0.01 in humans is much larger than the number of samples 
commonly used in present day studies, and that far fewer individuals are needed 
for the same statistical power when using inbred animals rather than unrelated 
human subjects.  
 
 

7. Yang YH & Speed T (2002). Design issues for cDNA microarray experiments. Nat. 
Rev. Genet. 3: 579-88  
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Yauk & Berndt (2007). Review of the Literature Examining the Correlation Among DNA 
Microarray Technologies. Environmental & Molecular Mutagenesis 48:380-94 

Topic covered: This review summarises cross platform studies and discusses possible 
reasons for the discrepancies reported in earlier comparative studies and the subsequent 
methodological changes that led to improved correlations. Issues relating to design, 
reproducibility and correlation of toxicogenomic (TGX) microarray studies are addressed. 
Data analyses topics are only briefly covered. This paper does not review issues relating to 
the statistical analyses of TGX data.  

Design: The authors consider that Affymetrix chips restrict users to Affymetrix-based 
technologies (i.e. from the choice of scanner to image analysis). The construction of 
Affymetrix chips (via oligonucleotide synthesis and photolithography) is described whereby 
specific oligonucleotide probes are positioned onto the array in a predetermined spatial 
orientation. Single genes are represented by a series of probes that span the coding region. 
Each probe is paired with a mismatch probe in which the central base in the sequence is 
changed. This renders adherence to manufacturer‟s recommendations necessary.  
Spotted microarrays using glass microscopic slides are also considered. The authors suggest 
that the range of choices available for these arrays contribute to the variation in data acquired 
and they briefly discuss sources of technical variation for each stage of a microarray 
experiment. Variation linked to probes arises due to the different types of probes available, 
and different methods for probe printing and deposition onto glass slides. Variation in target 
preparation arises due to the variable amounts of starting RNA that can be used and the 
different amplification and labelling methods that exist. The different designs available in two 
colour labelling procedures and the fact hybridisation can either be manual or automated also 
contributes to variation. The scanner power used also varies, with different settings that can 
be adjusted to maximise the linear dynamic range. The authors cite a review by Ahmed 
(2006a) which provides comprehensive information relating to design issues. 
The authors separate the studies reviewed into two time periods: those conducted pre-2004 
(between 2000-2003) and post-2004 (between 2004-2007). Comparative studies conducted 
pre-2004 were considered to be of little value as they compared only 2-3 technologies, used 
small sample sizes and focussed on cDNA microarrays. The authors also report that issues 
related to the platform, protocol and the type of experimental design used contributed to the 
discrepancies in these early cross platform comparison studies. For example, many cDNA 
platforms were contaminated or probes were incorrectly annotated. Probes on Affymetrix 
platforms were also subject to annotation errors (e.g. lack of correspondence to appropriate 
mRNA reference sequence (which impacts on signal intensity)). There were also inaccurate 
probe set definitions, probes hybridising to multiple splice variants or showing cross 
hybridisation to other genes in the same family and probes hybridising to non-specific probes. 
Furthermore, early studies (which matched genes based on the manufacturers annotation) 
largely examined incorrectly matched gene sets. Probe annotation remains a concern 
primarily because it continues to be an issue. The authors suggest the way forward would be 
to improve annotation via curation, validation, and annotation of more sequence information, 
and less reliance on manufacturer‟s gene identification. Probe sequence information is now 
widely available and Minimum Information about Microarray Experiment (MIAME) guidelines 
require submission of probe sequences for each spot on a microarray. Users can also cross 
check probe sequence annotation to validate expression changes. Other platform issues 
noted include suboptimal printing, labelling, hybridising and washing methods; the lack of 
technical expertise in one of the platforms being compared (leading to poor quality data); 
environmental influences such as ozone which affects fluorescent chemicals (although this 
can be controlled for); and improvements in printing quality of cDNA and oligonucleotide 
microarrays. Design issues thought to contribute to the discrepancies of early studies include 
the fact that data were generated in different labs, at different times using different samples. 
Small sample sizes were often used and studies failed to use both biological and technical 
replicates. The authors recommend that the same RNA sample should be used for all 
experiments. The authors consider that addressing the above issues will decrease technical 
variability and increase performance and thus improve the subsequent correlation among 
technologies.  
Studies conducted post-2004 improved with the use of larger sample sizes and more 
microarray platforms were included. Studies also examined the relationships among 
laboratories and employed sophisticated bioinformatics approaches. Annotation-driven and 
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sequence driven matching are highlighted as the two different approaches used in post 2004 
comparative studies to analyse data from different platforms. However, annotation driven 
approaches are limited by the effect that any errors can have on subsequent analyses. In 
comparison, sequence-driven approaches are reportedly able to eliminate errors introduced 
by mis-annotation and also ensure probe pairs examine similar gene regions i.e. within the 
same axon. Re-examination using sequence-driven probe matching is therefore considered a 
worthwhile approach and is reported to improve correlation among technologies (Kuo et al 
2002).  

Analysis: The authors note that the final critical steps of a microarray experiment are filtering, 
data quality assessment, normalisation and data analysis. Filtering is defined as an important 
pre-processing step designed to remove unreliable data from experiments prior to analysis. It 
eliminates noise and cleans signals within the background range resulting in stronger signals. 
Indeed comparative studies conducted post-2004 reported greater correlation for probes with 
strong expression signals (Kuo et al 2006). Commercial image acquisition programmes are 
used to rid image data of poor quality, saturated and low signal spots. The authors state that 
failure to conduct appropriate/stringent filtering methods would result in an inaccurate 
representation of gene expression, a flaw of most early cross platform studies. NB. Using 
relative ratios of gene expression rather than signal intensity constituted another flaw of these 
early studies.  
The authors consider that the different filtering methods available are a possible source of 
technical variation. Sources of technical variation arising in data analysis steps are briefly 
discussed and the authors note that variation can arise in data acquisition from images due to 
the different algorithms available from different commercial packages. The authors cite a 
review by Ahmed (2006b) which provides comprehensive information relating to data 
analytical issues. 
The authors consider that studies should apply appropriate „statistical‟ tools such as clustering 
and normalisation (applied both within and between technologies). Furthermore, to identify 
differentially expressed genes, studies should use correct tools such as fold change ranking 
as opposed to other methods which may not result in reproducible and thus comparable gene 
lists. However, further research is needed to develop more accurate and reproducible 
methods for deriving lists of differentially expressed genes from different technologies. The 
authors suggest that studies should not compare the absolute magnitude of gene expression 
changes across platforms as microarrays are not precise or accurate wrt quantifying gene 
expression changes. Rather, approaches should focus on the direction of change i.e. whether 
expression has increased or decreased. Tissue heterogeneity and biological variation are 
also considered as sources of variation between datasets.  

Statistics: This review does not consider issues relating to statistical analyses of TGX data.  

Comments: The authors note that standards for microarray experiments developed as a 
consequence of the range of microarray technologies and methods of data analysis, which 
raised concern over the impact different approaches would have for data comparability 
(Kawasaki et al 2006). Various projects embarked on developing standards which include 
the MIAME guidelines, External RNA Controls Consortium (ERCC) and Microarray Quality 
Control (MAQC). The authors note how these standards have helped improve the evaluation 
of microarray data quality and reproducibility of results obtained by different labs and/or 
platforms. Furthermore, adherence to established standards are a requirement of microarray 
databases/repositories, as well as proven reproducibility and correlation between (and within) 
datasets produced by different microarray technologies.  
The authors consider that research exploring correlation and reproducibility among 
microarrays helps validate micoarrays as robust, sensitive and accurate detectors of gene 
expression. They report that 40 studies have investigated the subject to determine the extent 
to which data produced by different microarray technologies correlate. Reviews examining 
factors influencing accuracy and reproducibility across time, laboratories and platforms are 
also highlighted (Reimers 2005; Brietling, 2006), which essentially flagged up the 
importance of procedures such as normalisation and the detection of differential gene 
expression.   
The authors noted the different rationale used to conduct comparative studies i.e. to 
determine the best platform to use (which is dependant on the type of experiment being 
conducted); which platforms generate comparable/reproducible data; how commercially made 
and in-house microarrays differ in terms of their accuracy (proximity to true value), sensitivity 
(ability to detect changes at low concentrations) and specificity (ability to hybridise to the 
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correct gene) (Draghici et al 2006).  
The authors question the validity of some early studies conducted between 2000-2003 which 
produced results supporting the reproducibility and concordance of data across microarray 
technologies. However, these studies are thought to have helped identify potential sources of 
discrepancies between microarray datasets. Given the notable discrepancies in the published 
literature, the authors decided to perform their own cross platform study to evaluate gene 
expression in the following way: using replicates of three different RNA sources (mouse whole 
lung, lung cell line, reference RNA –Strategene Universal); using technologies encompassing 
different reporter systems/probes (short/long oligonucleotides, cDNA) with different labelling 
techniques and hybridisation protocols; applying rigorous filtering and normalisations; and 
using an adequate sample size. Their findings showed that top performing platforms had an 
increased ability to detect differential expression due to low levels of technical variability. 
Biological rather than technological differences are thought to account for the most of the 
variation in the data.  
The authors noted that 32 studies examined correlation among microarray technologies post 
2004. Three of these studies concluded poor correlation between microarray platforms (Mah 
et al 2004; Severgnini et al 2006; Gwinn et al 2005). Potential study author errors are 
thought to account for these conclusions as well as the use of expression intensities as 
opposed to examining log ratios (Park et al 2004). The remaining 29 studies generated 
results showing moderate to high degree of correlation among microarray technologies. The 
approaches used varied with the most comprehensive employing many platforms, one or two 
colours, different probes spotted both inhouse and commercially, and using data from the 
same samples analysed via different labs. These studies helped identify methods that 
produce high correlation among labs and platforms.  
Generating reproducing data requires optimisation and standardisation of protocols which is 
achieved by performing intra-platform reproducibility tests prior to inter-platform reproducibility 
tests. The best performing laboratories were noted for their use of optimised protocols and 
technical expertise (which would occur in labs that routinely use a technology), and increased 
standardisation (i.e. using/developing commercially available microarrays rather than in house 
microarrays). The authors consider that more relatable data will come with improved 
methods, and developments in quality control standards and references, and implementation 
of standards for data analysis. 
Various examples of comprehensive studies evaluating microarray performance are provided 
(Irizarry et al 2005; Kuo et al 2006; Wang et al 2006). The Toxicogenomic Research 
Consortium (TRC) examined data produced by seven laboratories and 12 microarray 
platforms. Each laboratory was supplied with two samples of RNA (taken from the liver and 
other tissues). Although poor correlation across platforms and laboratories (and between raw 
intensity values) were reported, reproducibility increased after implementing standardised 
protocols for RNA labelling, hybridisation, filtering, processing, data acquisition and 
normalisation. The highest levels of reproducibility were achieved in laboratories using 
commercial arrays and applying standard protocols (correlation coefficients ranged from 0.87-
0.92). The study concluded that microarray platform contributes significantly to variability in 
data and standardisation is necessary for achieving reproducible data across laboratories. 
Furthermore, high reproducibility among platforms were achieved when analyses were 
conducted on biological categories identified by gene ontology analysis. Another 
comprehensive comparative study - Microarray Quality Control (MAQC) - led by the US FDA 
and involving 137 participants from 51 organisations, evaluated inter- and intra-platform 
reproducibility via a series of scientific papers (e.g. Shi et al 2006 and Guo et al 2006). The 
findings supported inter-platform consistency and reproducibility and the use of microarray 
platforms for quantitative characterisation of gene expression.  
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microarray platforms. Nat Biotechnol. 24:1162-1169. 

 
[Abstract]: To validate and extend the findings of the MicroArray Quality Control 
(MAQC) project, the authors generated a biologically relevant toxicogenomics 
data set using 36 RNA samples from rats treated with three chemicals 
(aristolochic acid, riddelliine and comfrey) and each sample was hybridised to 
four microarray platforms. The MAQC project assessed concordance in intersite 
and cross-platform comparisons and the impact of gene selection methods on the 
reproducibility of profiling data in terms of differentially expressed genes using 
distinct reference RNA samples. The authors consider that the real-world 
toxicogenomic data set reported here showed high concordance in intersite and 
cross-platform comparisons. Furthermore, the authors consider that the gene lists 
generated by fold-change ranking were more reproducible than those obtained by 
t-test P value or Significance Analysis of Microarrays. Finally, the authors report 
that the gene lists generated by fold-change ranking with a nonstringent P-value 
cutfoff showed increased consistency in Gene Ontology terms and pathways, and 
thereby conclude that the biological impact of chemical exposure could be reliably 
deduced from all platforms analysed.  
 
 

6. Gwinn et al 2005. Transcriptional signatures of normal human mammary epithelial 
cells in response to benzo[a]pyrene exposure: A comparison of three microarray 
platforms. Omics 9: 334-50. 

 
[Abstract]: Microarrays are used to study gene expression in a variety of 
biological systems. A number of different platforms have been developed, but few 
studies exist that have directly compared the performance of one platform with 
another. The goal of this study was to determine array variation by analysing the 
same RNA samples with three different array platforms. Using gene expression 
responses to benzo[a]pyrene exposure in normal human mammary epithelial 
cells (NHMECs), the authors compared the results of gene expression profiling 
using three microarray platforms: pholithographic oligonucleotide arrays 
(Affymetrix), spotted oligonucleotide arrays (Amersham) and spotted cDNA 
arrays (NCI). While most previous reports comparing micorarrays have analysed 
pre-existing data from different platforms, this comparison study used the same 
sample assayed on all three platforms, allowing for analysis of variation from 
each array platform. The authors report that in general, poor correlation was 
found with corresponding measurements from each platform. Each platform 
yielded different gene expression profiles, which lead the authors to suggest that 
while microarray analysis is a useful discovery tool, further validation is needed to 
extrapolate results for broad use of the data. The authors also consider that 
microarray variability needs to be taken into consideration, not only in the data 
analysis but also in specific probe selection for each array type.  

 
7. Irizarry et al 2005. Multiple laboratory comparison of microarray platform. Nat 

Methods 2:345-50. 
 
[Abstract]: Microarray technology is a powerful tool for measuring RNA 
expression for thousands of genes at once. Various studies have been published 
comparing competing platforms with mixed results: some find agreement, others 
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do not. As the number of researchers starting to use microarrays and the number 
of cross-platform meta-analysis studies rapidly increases, appropriate platform 
assessments become more important. The authors present results from a 
comparison study that they consider offers important improvements over those 
previously described in the literature. In particular, the authors report that none of 
the previously published papers consider differences between labs. For this study, 
a consortium of ten laboratories from the Washington, DC-Baltimore, USA area 
was formed to compare data obtained from three widely used platforms using 
identical RNA samples. The authors report use of appropriate statistical analysis 
to demonstrate that there are relatively large differences in data obtained in labs 
using the same platform, but that the results from the best-performing labs agree 
rather well.  

 
8. Kawasaki et al 2006. The end of the microarray tower of babel: Will universal 

standards lead the way? J Biomol Tech 17:200-06. Review. 
 

9. Kuo et al 2002. Analysis of matched mRNA measurements from two different 
microarray technologies. Bioinformatics 18: 405-12.  

 
10. Park et al 2004. Current issues for DNA microarrays: Platform comparison, double 

linear amplification, and universal RNA reference. J Biotechnol 112:225-45. 
 
[Abstract]: DNA microarray technology has been widely used to simultaneously 
determine the expression levels of thousands of genes. A variety of approaches 
have been used, both in the implementation of this technology and in the analysis 
of the large amount of expression data. However, several practical issues still 
have not been resolved in a satisfactory manner, and among the most critical is 
the lack of agreement in the results obtained in different array platforms. In this 
study, the authors present a comparison of several microarray platforms 
[Affymetrix oligonucleotide arrays, custom complementary DNA (cDNA) arrays, 
and custom oligo arrays printed with oligonucleotides from three different sources] 
as well as analysis of various methods used for microarray target preparation and 
the reference design. The authors report that the results indicate that the pairwise 
correlations of expression levels between platforms are relatively low overall but 
that the log ratios of the highly expressed genes are strongly correlated, 
especially between Affymetrix and cDNA arrays. The microarray measurements 
were compared with quantitative real-time-polymerase chain reaction (QRT-PCR) 
results for 23 genes, and the varying degrees of agreement for each platform 
were characterised. The authors also developed and tested a double 
amplification method which reportedly allows the use of smaller amounts of 
starting material. The authors note that the added round of amplification produced 
reproducible results as compared to the arrays hybridised with single round 
amplified targets. Finally, the authors tested the reliability of using a universal 
RNA reference for two-channel microarrays and report that the results suggest 
that comparisons of multiple experimental conditions using the same control can 
be accurate.  

 
11. Reimers 2005. Statistical analysis of microarray data. Addict Biol 10: 23-35. (Review) 
 
12. Severgnini et al 2006. Strategies for comparing gene expression profiles from 

different microarray platforms: Application to a case control experiment. Anal 
Biochem. 353: 43-56. 

 
[Abstract]. Meta-analysis of microarray data is increasingly important, considering 
both the availability of multiple platforms using disparate technologies and the 
accumulation in public repositories of data sets from different laboratories. The 
authors addressed the issue of comparing gene expression profiles from two 
microarray platforms by devising a standardised investigative strategy. The 
authors tested the procedure by studying MDA-MB-231 cells, which undergo 
apoptosis on treatment with resveratrol. Gene expression profiles were obtained 
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using high density, short oligonucleotide, single-colour microarray platforms: 
GeneChip (Affymetrix) and CodeLink (Amersham). Interplatform analyses were 
carried out on 8414 common transcripts represented on both platforms, as 
identified by LocusLink ID, representing 70.8% and 88.6% of annotated 
GeneChip and CodeLink features, respectively. The authors identified 105 
differentially expressed genes (DEGs) on CodeLink and 42 DEGs on GeneChip. 
Among them, only 9 DEGs were commonly identified by both platforms. Multiple 
analyses (BLAST alignment of probes with target sequences, gene ontology, 
literature mining and quantitative real-time PCR) permitted the authors to 
investigate the factors contributing to the generation of platform-dependent 
results in single colour microarray experiments. The authors conclude that an 
effective approach to cross-platform comparison involves microarrays of similar 
technologies, samples prepared by identical methods, and a standardised battery 
of bioinformatic and statistical analyses.  
 

 
13. Shi et al 2006. The MicroArray Quality Control (MAQC) project shows inter and 

intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 
24:1151-1161. 

 
14. Wang et al 2006. Large scale real-time PCR validation on gene expression 

measurements from two commercial long-oligonucleotide microarrays. BMC 
Genomics. 7:59. 
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Ju, z., et al. (2007). DNA microarray technology in toxicogenomics of aquatic models: 
Methods and applications. Comparative biology and physiology, Part c 145: 5-14 

Topic covered: This review describes the use of gene expression profiling in relation to its 
application to aquatic model research. Although the paper leans toward the application of 
microarray technology to aquatic toxicogenomics (ecotoxicogenomics) and environmental 
safety assessment, the authors provide a general discussion of the fundamental principles of 
microarray research in relation to study design, data and statistical analysis.  

Design: The authors describe the design aspects of microarray construction and the two 
different types of microarray platforms typically used: Affymetrix GeneChip and customised 
(spotted) cDNA microarrays. Affymetrix chips are commercially produced and use short 
oligonucleotide probes (approx 25-mers) that are directly synthesised onto a silicon chip. 
Many different types of species ranging from prokaryotes to humans have been tested on 
Affymetrix chips including the zebrafish (Danio rerio). Although Affymetrix chips are ready-
made and cover a wide number of genes, their use is limited by their high cost. Furthermore, 
probe synthesis for zebrafish genechip is considered uneconomical as the species is not 
commonly used. In comparison, spotted cDNA microarrays are considered to be more cost-
effective and have less background as they use longer probes which give stronger signals 
that enable more stringent washing conditions. Spotted arrays use glass slides or nylon 
membranes and two different types of probes/subplatforms i.e. cDNA fragments and synthetic 
oligonucleotides. cDNA fragments are amplified via PCR, therefore, their arrays are also 
referred to as amplicon arrays. Synthetic oligonucleotides are much longer (50-70 mer) than 
cDNA fragments and are referred to as long oligonucleotide microarray (LOM). Their design is 
based on expressed sequence tags (EST). The density of spots in spotted arrays range from 
low (i.e. 100s of transcripts) to mid-high (1000s of transcripts). The two subplatforms are 
noted for their differences although LOMs are considered more advantageous as they 
produce expression data that correlates better with quantitative real time PCR (QRT-PCR) (cf. 
full length amplicon arrays). Furthermore, LOM data is thought to be more concordant with 
that produced by Affymetrix Genechips. Spotted arrays are limited by the significant set up 
time required, for example, amplicons must be produced, followed by design and purchase of 
oligonucleotides from vendors, and quality control of slides, membrane printing, etc. Also, if 
the cDNA sequences are not readily available then the cDNA must be constructed, and the 
EST sequenced and annotated. The authors note that several aquatic species have been 
tested using spotted arrays including zebrafish (van der Ven et al 2005).  
The construction of LOM is described. EST sequences are randomly selected from cDNA 
libraries and collected. Unigene sequences are then determined allowing probes to be 
designed in a batch manner via open source or commercial software (Array Designer). The 
authors note that synthesis of LOM requires consideration of the following quality assurance 
parameters, which impact on both reproducibility and reliability of fabricated arrays: (a) 
oligonucleotide length – which affects probe uniqueness and thus the possibility of cross 
hybridisation, (where the longer the probe the greater the specificity); (b) location of probes 
within each mRNA sequence – which affects downstream signal intensity (probes derived 
from 3‟ ends of mRNA are considered better than those derived from 5‟ ends (Brentani et al 
2005)); (c) simple repeats – which affects signal intensity (a maximum of 6 bases of repeats 
should be designed); (d) cross homology determination to evaluate the potential of cross 
hybridisation – this can be done by aligning probe sequences with EST databases and 
conducting BLAST search of each probe sequence against DNA sequences of target aquatic 
and other species.  
Design of microarray slides requires high quality intact RNA. The authors note that this can be 
obtained by using validated sample handling and RNA extraction procedures. Two types of 
target preparation protocols are described. The standard method uses more RNA (10ug total 
RNA), while the amplification method starts with smaller amounts of RNA (i.e. 0.01-2ug total 
RNA) and is typically used when RNA isolation is insufficient for standard array protocol (i.e. 
when isolating RNA from small samples such as fish organs). The amplification method 
adopts two types of in-vitro transcription methods: single rounds (IVT) – where RNA is used to 
produce double stranded cDNA and eventually cRNA; and double rounds (dIVT) – where the 
cRNA is used to initiate another round of cRNA synthesis. cRNA is then labelled to hybridise 
with the array. The authors note that RNA can be amplified by about 250 times via the IVT 
protocol. However, the amplification method is limited by its reduced sensitivity and 
introduction of minor biases (Schindler et al 2005). Two types of dye labelling are 
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highlighted: direct labelling, which arises when the dye (Cy) is anchored directly onto the 
nucleotide; and indirect labelling that involves incorporating an aminoallyl labelled nucleotide 
into the target during reverse transcription (which then is coupled with the dye). Indirect 
labelling is considered to yield more reproducible data (Yu et al 2002).  

Analysis: The authors define image analysis as a necessary procedure that considers various 
factors such as, irregularities of spot position and shape, quantitative quality control, signal 
variability, grid segmentation and image reconstruction. Open source software e.g. 
Automated Microarray Image Analysis (AMIA) is available for researchers.  
The authors consider the following non-biological sources of variation to be the most 
significant challenges of microarray data analysis: selective incorporation of Cy dyes; variable 
amounts of mRNA used; differences in scanning parameters; stochastic variation occurring 
across replicate slides; hybridisation conditions and human error. Normalisation is always 
performed before statistical hypothesis tests are conducted. It is considered an important 
component of data analysis as it removes or minimises the influence of non-biological effects, 
which thus makes it easier to detect biological differences. However, it is limited by the fact 
that the final results are influenced by the type of algorithm used. The authors suggest  
different analytical methods should be used with the same data sets to determine which best 
suit the experimental design. Normalisation methods include trimmed mean and global mean, 
local mean, Bayesian analysis and locally weighted scatter plot smoothing (LOWESS). 
LOWESS is noted for its ability to normalise intensity dependent dye bias arising in 
experiments that use two-colour microarray platforms. Intensity dependent dye bias occurs 
when fluorescent dye chemicals (Cy3 and Cy5) emit unequal light resulting in low correlation 
of signals between Cy dyes.  
The authors consider cluster analysis as a statistical tool i.e. a more sophisticated statistical 
analytical method. Cluster analysis provides a way of grouping objects that are similar and is 
therefore an ideal data exploration method to look for patterns or structure in data of interest. 
Cluster analysis is conducted after data normalisation and hypothesis testing (see below). It is 
used to extract gene expression patterns and define relationships between gene expression 
profiles across different experiments and data points. The authors also note its ability to 
depict co-regulated clusters of genes. Two types of clustering mechanisms are described: 
those for clustering genes or samples. Gene clustering approaches identify gene expression 
patterns across multiple timepoints or tissues. This allows similar gene expression patterns to 
be established, and suggestions made on genes with similar responses or gene sharing 
regulatory circuits. Sample clustering approaches are conducted to obtain gene expression 
profiles which when clustered themselves can indicate samples that have a biological 
relationship. The authors briefly highlight the three methods used in clustering analysis i.e. 
hierarchical clustering, self organising maps and principal component analysis (PCA). Three 
essential steps for cluster analysis are described: (a) Eulicidean distance provides a measure 
of the similarity between genes or samples; (b) average linkage distance measures 
dissimilarity between clusters; (c) selection of clustering method type e.g. hierarchical 
clustering tree or self organising maps. Correlation tests are also performed to compare gene 
expression patterns in the same or other experiments/conditions.  
Intrinsic sources of variability in gene expression levels such as physiological stages, sex, 
age, natural genetic polymorphisms in populations are considered as key challenges in 
microarray research. The authors suggest that in order to generate reliable biological 
conclusions experimental individuals should be carefully selected and straightforward 
normalisation algorithms used. Other challenges include the cost and time consumption 
associated with developing the microarray and analysing the data.  
The authors provide a schematic representation of microarray data analysis as follows: (1). 
Scan Genechip or array slides; (2). Save the image and text data in a local or public 
database; (3). Discard poor quality images and clean data to filter out extremes (by flowing 
files through image evaluation software); (4). Conduct further analyses of qualified data e.g: 
normalisation/statistical analyses (to compare classes and identify differentially expressed 
genes – these are validated either statistically or via biological procedure); bioinformatical 
data mining (to identify potential biomarkers, gene signature and biological pathways - via 
annotation, gene ontology grouping and pathway analysis (using public databases and 
software tools)). Further validation/investigation will help establish significance in clinical 
practice and safety assessment.  

Statistics: The authors state that statistical analysis/hypothesis testing aims to identify 
significant differences in the gene expression under different conditions. However, it is noted 
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that there is no single statistical tool or method capable of adequately meeting all the needs of 
microarray researchers. As with normalisation methods, the outcome of these statistical tests 
can be dependent on the algorithm used. Therefore, different analytical methods should be 
used with the same data sets to determine which best suit the experimental design. Three 
standard methods are described: Analysis of Variance (ANOVA) is used to determine 
significance effects of both biological and non-biological variation and can distinguish signal 
from noise; T-test detects the significance of biological effects and since it is a parametric test 
is used to determine p-values when the assumption of normality holds true (if it does not hold 
true then a permutation t-test is used); significant analysis of microarray (SAM) is a non-
parametric test that detects significance of biological effects. The authors consider p-values, 
fold changes and gene expression patterns as necessary statistics that help make sense of 
data in terms of their biological relevance.  

Comments: The authors note that fundamental questions still exist in microarray research, 
particularly in relation to environmental gene regulation, cell-specific gene expression level 
differences, and gene function. Only by high throughput assessment of genes and proteins 
can these questions be addressed. Traditional approaches which are necessary to validate 
interesting gene regulatory circuits are limited by their inability to sufficiently reveal functional 
genomics of intact organisms under various experimental conditions. Use of high throughput 
technologies such as DNA microarrays is considered a way forward.   
An essential requirement for data management is the database/repository that is used to 
store array files and track information related to genes and experiments. Two different types 
exist: local (stores specific data based either on species, genus, topic, etc); and public 
(examples include open source Gene Expression Omnibus (GEO) and ArrayExpress).  
The authors highlight the benefits of bioinformatics in terms of its ability to predict possible 
gene function, hallmark potential gene interactions, identify biomarkers and targets and 
elucidate molecular networks and pathways. Bioinformatical data mining aims to reveal 
further biological meaning of microarray data and pinpoints the best gene candidate to focus 
on thereby providing time and cost savings.  
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Thompson & Hackett (2008). Quality Control of Microarray Assays for Toxicogenomic and In 
Vitro Diagnostic Applications. From: Methods in Molecular Biology, vol. 460: Essential 
Concepts in Toxicogenomics. Edited by: D.L. Mendrick and W.B. Mattes © Humana Press, 
Totowa, NJ.  

Topic covered: This review focuses on quality control (QC) measures for samples generated 
from rats. The authors provide a detailed discussion of design-related QC issues and briefly 
consider QC issues related to the analysis of raw toxicogenomic (TGX) data. There is no 
discussion in relation to the statistical analysis of TGX data.  

Design: The role of QC in TGX is described. QC ensures results are reproducible and 
accurate. It is essential that QC operates via standards, metrics and methods to produce high 
quality reliable data to aid open access to TGX knowledge base. The authors schematically 
illustrate the application of QC at each of the following steps involved in generating TGX 
samples i.e. study design, animal tissue handling, RNA isolation, microarray sample 
processing, sample hybridisation, microarray scanning and data analysis. It is noted that 
since 2003 microarray design has evolved and led to an increased and improved annotation 
of the rat genome and optimisation in methods.  
The authors suggest that experiments are designed to avoid introducing bias in data due to 
non-randomised processing of treatment groups. However, most studies vary in their study 
protocol (e.g. diet, vehicle type, vehicle route of administration, dosing frequency, method of 
sacrifice, use of anaesthetics during study), and the authors note that variation in study 
design can affect gene expression. More research is therefore needed to determine the 
possible effects of these variables. The Health & Environmental Sciences Institute‟s (HESI) 
Technical Committee on Genomics are reportedly producing a resource for 
identifying/analysing baseline fluctuations in gene expression due to biological/technical 
replicates (HESI, 2004).  
Bias can be introduced either via biological variance (caused by for e.g. circadian cycle 
regulation (Boorman et al 2005), fasting (Morgan et al 2005), vehicle/anaesthesia (control 
animals) (Takashima et al 2006, Sakamoto et al 2005) and individual animal variability) or 
through differences in tissue handling. Individual animal variability is considered to be low for 
rodents but for other species such as dogs and monkeys, it is recommended that the baseline 
level is predetermined to ensure appropriate group sizes and to also establish a clear 
understanding of the limits of statistical power. A study by Whitney et al (2003) reported on 
the confounding effects of variation in humans and observed differential gene expression 
associated with gender, age, time of day at which sample (blood) was taken and other 
factors. Tissue handling introduces bias in data when different regions of a tissue are 
sampled between or among control and test animals. Bias also arises when only a particular 
region known to be sensitive to injury is sampled e.g. liver. The authors cite studies observing 
differential gene expression in different lobes of rodent livers treated with toxicants i.e. 
acetaminophen (Irwin et al 2005) and furan (Hamadeh et al 2004). This emphasises the 
importance of conducting TGX and histopathological analyses on the same lobe.  
Preserving tissues for RNA isolation (via use of liquid nitrogen or immersion in appropriate 
solutions) is considered problematic due to RNA‟s degradation liability. The authors report 
that although archival tissue is useful in retrospective analyses of gene expression, tissue 
fixative and processing methods compromise RNA integrity. The authors cite a review by 
Lewis et al (2001) which suggests methods to extract and use RNA from formalin fixed 
paraffin-embedded tissue. Laser capture microscopy (LCM) is used to isolate RNA from 
specific regions of tissue for microarray analysis. However, several limitations have been 
observed with this method, and a study by Michel et al (2003) examined whether the LCM 
procedure affected detection of gene expression changes induced by clofibrate. The study 
found that LCM muted the lower-fold changes. It is suggested that loss of sensitivity should 
be a matter of judgment weighed against increased sensitivity of analysing only the tissue 
region associated with toxicity. The review also discusses issues relating to the use of 
peripheral blood as the tissue source of RNA. There are concerns over the adequacy of 
sample preservation for RNA extraction because prolonged storage is thought to reduce 
sample comparability. Use of total blood could potentially decrease sensitivity due to the 
predominance of globin mRNA. The removal of blood components is known to interfere with 
microarray results and use of fractionated blood for peripheral blood mononuclear cells 
(PMBCs) is thought to constitute a potential source of bias. Various techniques are used to 
prepare blood for gene expression analysis. Examples include PAXgene, QIAamp and Ficoll-
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Hypaque method. The authors note that the overnight storage of blood significantly affects 
gene expression compared to blood processed immediately. Debey et al (2004) compared 
the effects of different blood isolation techniques on the quality of results produced on 
Affymetrix GeneChip arrays. Differences in expression profiles were observed and it was 
thought this was due to differential isolation of blood cell populations. The study authors also 
reported improvements in the quality of Affymetrix assay results in protocols that reduce 
levels of globin mRNA in whole blood samples. The importance of collecting blood, storing 
and isolating RNA under standardised conditions was noted as a way to help integrate data 
across laboratories.  
RNA quality is considered a critical factor in achieving useful data. High quality RNA helps 
achieve reproducibility and interpretable results on microarrays, while low level RNA quality 
reduces statistical power of a study (due to increased measurement error). The RNA Quality 
Index (RQI) considers the purity and integrity of RNA, which is often contaminated by protein, 
genomic DNA or chemicals. Pure RNA should have an optical density ratio of 2 at 260 and 
280 nm (quantified using spectrophotometers). RNA integrity is assessed via microfluidics-
based platforms for nucleic acid analysis. This involves separating RNA (via electrophoresis) 
and quantifying it (via fluorescence). Calculation of the 28s/182 RNA ratio provides a measure 
of RNA integrity with intact RNA usually of a value > 2. There are concerns over the 
usefulness of this calculation and the authors note that electropherograms (a graphical output 
of electrophoresis devices) provide a more complete picture of RNA quality. An additional 
RNA quality check involves calculating the expected RNA yield from a given weight of tissue 
(guidance is available to improve quality/yield for different tissue types). This approach 
essentially measures the effectiveness of an RNA isolation protocol. RNA degradation is 
indicated when cDNA‟s are not of full length. For certain protocols, RNA is considered to be 
undegraded if the 3‟ to 5‟ ratio‟s of probes derived from universally expressed genes such as  
GADPH are > 3.  
The authors suggest that when comparing microarray data, only those protocols using 
optimised protocols and reagents should be used. Technical proficiency can be assessed via 
use of internal/external controls or sample metrics.  
Several processing steps are involved in hybridising RNA to arrays and these can serve as 
checkpoints for monitoring the entire process. The efficiency of the cDNA 
synthesis/amplification step can be determined by monitoring the yield and size of cRNA 
product (good quality products range from 500-3000bp). The efficiency of the cRNA 
fragmentation step can be determined by monitoring the shift in size of products e.g. from 50-
200 nucleotides.  
The authors consider that the two-colour labelling step is liable to introduce bias for several 
reasons. This can be due to the different rates at which dyes are incorporated into a sample, 
or differences in quantum efficiency between two dyes, or the differential sensitivity of Cy5 
and Cy3 dyes to quenching, photobleaching and degradation. A potential control would be to 
run replicate arrays where the orientation of dye incorporation is switched between treated 
and control samples.  
External controls for process monitoring are used to assess the quality of different aspects of 
the technical performance of sampling, labelling, hybridisation, grid alignment, etc. These 
controls tend to be non-mammalian sequences (selected from prokaryotic/plant gene 
sequences) that are spiked into samples (hence aka spike-in targets) which hybridise onto 
corresponding probe sequences on their arrays. External controls are commercially available 
for use on in-house spotted arrays. The authors note that external controls have been 
evaluated in 4 different commercially available arrays (Tong et al 2006), and the External 
RNA Control Consortium (ERCC) are developing better control RNAs. Labelling controls are 
also available and involve spiking polyA RNAs into RNA samples before the reverse 
transcription step. External controls are often added after synthesis to assess the success of 
the hybridisation and staining steps.  
Microarray scanners must also undergo quality control assessment and fluorescence 
standards are used to assess their limits of performance. Various software programmes are 
used to discriminate between hybridisation failures and scanner defects. The range of a 
scanner is evaluated using fluorescence calibration slides. For a typical array scanner the 
output range is between 0 and 65,535 relative fluorescence units per pixel. However, the 
extent of fold-change differences that can be observed between two samples is limited. It is 
noted that the HESI Genomics Committee Study identified the photomultiplier tube (PMT) 
setting as a source of variability (for Affymetrix assays). However, this is not considered 
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problematic as newer models are available, although this does not apply to investigators 
using data generated from older models as it would be difficult to compare archival data with 
recent data. The authors suggest that scanners undergo regular inspections (e.g. after 
scanning an array) to identify artefacts which can be automated or visual. A software program 
is available to do this.  

Analysis: Microarray data also undergoes quality assessment and various procedures are 
described. Comparing the intensities of signal data from a sample array with that from 
technical or biological replicates is one approach. Another approach involves applying 
principal component analysis (PCA) to signal data, which essentially provides a measure of 
the quality of data precision (it visualises the similarity of samples within and between 
groups). Percent present calls (PPC) is a quality index that compares the no. of probes that 
fall above a threshold on a hybridised (Affymetrix) array with results typically obtained from 
similar RNA sources. PPC is based on a statistical algorithm that uses perfect match and 
mismatch pairs. As a guide, the authors note that variation should be less than 10% between 
samples in the same project. Negative probes are used to estimate global or local 
background on a microarray. These probes flag up signals that are not significantly above 
background using feature extraction software. The number of non-significant signals can be 
used as a strategy to exclude poor quality data. Outliers in groups of microarrays can also be 
identified using dChip Bioconductor packages.  

Statistics: This review does not address issues related to the statistical analysis of TGX data. 

Comments: Standards and metrics must be applied to TGX data generation (and analysis) to 
ensure microarray data is of high quality and to also assess the performance of microarray 
assays. However, establishing and translating standards and metrics to omic technologies is 
considered quite a challenge owing to the large no of measurable endpoints in a single omics 
assay, and the platforms, instruments, reagents and protocols used to generate TGX data. 
Various papers published between 2003-4 describe best practice for conducting microarray 
assays, and the National Institute of Standards and Technology (NIST) is working with the 
FDA to address this issue. Since 2003 data comparability and reproducibility have been 
enhanced largely due to the increased availability/use of reagent kits and automated systems 
to process samples/ arrays. High overall levels of reproducibility can be achieved by carefully 
mapping probes to curated cDNA sequence databases and using standardised protocols to 
generate data in high performing labs. Two studies compared the reproducibility of data 
derived from commercial vs. in-house spotted arrays (Bammler et al 2005, Shi et al 2006). 
Their findings showed that data from commercial arrays were more reproducible and it was 
thought this was possibly due to a more consistent use of manufacturing practices and the 
application of advanced levels of quality assessments. Various consortia are designing RNA 
reference materials to assess performance on microarrays across platforms to establish limits 
of accuracy, precision and linear range. The US FDA Center for Drug Evaluation and 
Research are also collaborating with government agencies and industry to design and test a 
reagent for use in several performance assessments on rat whole genome expression 
microarrays. It is vital that regulatory as well as scientific requirements are met for the 
commercialisation of in-vitro diagnostic devices (IVDs) arising from the marketing of gene sets 
associated with a toxic outcome. Regulation is required in particular with regards to assessing 
the risk from use of the medical devices to patients being tested. The FDA provide guidance 
documents on how to prepare medical device submissions. The authors conclude that the 
establishment of universal standards are an important goal to help improve lab performance, 
protocol optimisation and methods standardisation. They suggest further research should 
focus on the effect of variations in animal study protocols on gene expression level variance.  

 
Refs:  
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[Abstract]: To facilitate collaborative research efforts between multi-investigator 
teams using DNA microarrays, the authors identified sources of error and data 
variability between laboratories and across microarray platforms, and methods to 
accommodate this variability. RNA expression data were generated in seven 
laboratories, which compared two standard RNA samples using 12 microarray 
platforms. At least two standard microarray types (one spotted, one commercial) 



 136 

were used by all laboratories. The authors report that reproducibility for most 
platforms within any laboratory was typically good, but reproducibility between 
platforms and across laboratories was generally poor. Reproducibility between 
laboratories reportedly increased markedly when standardised protocols were 
implemented for RNA labelling, hybridisation, microarray processing, data 
acquisition and data normalisation. Reproducibility was noted to be highest when 
analysis was based on biological themes defined by enriched Gene Ontology 
(GO) categories. The authors conclude that these findings indicate that 
microarray results can be comparable across laboratories, especially when a 
common platform and set of procedures are used.  
 

2. Boorman et al 2005. Hepatic gene expression changes throughout the day in the 
Fischer Rat: Implications for toxicogenomics experiments. Toxicol. Sci. 86:185-93.  

 
[Abstract]: There is increasing use of transcriptional profiling in hepatotoxicity 
studies in the rat. Understanding hepatic gene expression changes over time is 
critical, since tissue collection may occur throughout the day. Furthermore, when 
comparing results from different data sets, times of dosing and tissue collection 
may vary. Circadian effects on the mouse hepatic transcriptome have been well 
documented. However, limited reports exist for the rat. In one study 
approximately 7% of the hepatic genes showed a diurnal expression pattern in a 
comparison of rat liver samples collected during the day versus livers collected at 
night. The results of a second study comparing liver samples collected at multiple 
time points over a circadian day suggest only minimal variation of the hepatic 
transcriptome. The authors of this paper studied temporal hepatic gene 
expression in 48 untreated F344/N rats using both approaches employed in the 
above previous studies. Statistical analysis of microarray (SAM) identified 
differential expression in day/night comparisons, but was less sensitive for liver 
samples collected at multiple times of day. However, a Fourier analysis identified 
numerous periodically expressed genes in these samples including period genes, 
clock genes, clock-controlled genes, and genes involved in metabolic pathways. 
Furthermore, rhythms in gene expression were identified for several circadian 
genes not previously reported in the rat liver. Transcript levels for twenty genes 
involved in circadian and metabolic pathways were confirmed using quantitative 
RT-PCR. The authors conclude that the results of this study demonstrate a 
prominent circadian rhythm in gene expression in the rat that is a critical factor in 
planning toxicogenomic experiments.  
 

3. Debey et al 2004. Comparison of different isolation techniques prior gene expression 
profiling of blood derived cells: impact on physiological responses, on overall 
expression and role of different cell types. Pharmacogenomics J. 4:193-207.  

 
[Abstract]: Owing to its clinical accessibility, peripheral blood is probably the best 
source for the assessment of differences or changes in gene expression 
associated with disease or drug response and therapy. Gene expression patterns 
in peripheral blood cells greatly depend on temporal and interindividual variations. 
However, technical aspects of blood sampling, isolation of cellular components, 
RNA isolation techniques and clinical aspects such as time to analysis and 
temperature during processing have been suggested to affect gene expression 
patterns. The authors therefore assessed gene expression patterns in peripheral 
blood from 29 healthy individuals by using Affymetrix microarrays. When RNA 
isolation was delayed for 20-24 h – a typical situation in clinical studies – gene 
signatures related to hypoxia were observed, and down regulation of genes 
associated with metabolism, cell cycle or apoptosis became dominant preventing 
the assessment of gene signatures of interindividual variation. Similarly, gene 
expression patterns were strongly dependent on choice of cell and RNA isolation 
and preparation techniques. The authors conclude that for large clinical studies, it 
is crucial to reduce maximally the time to RNA isolation. Furthermore, prior to 
study initiation, the cell type of interest should already be defined. The authors 
consider that their data will therefore help to optimise clinical studies applying 
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gene expression analysis of peripheral blood to exploit drug responses and to 
better understand changes associated with disease. 
 

4. Hamadeh et al 2004. Integration of clinical and gene expression endpoints to explore 
furan-mediated hepatotoxicity. Mutat Res. 549:169-183.  

 
5. HESI (2004)

47
. Committee on the Application of Genomics in Mechanism-Based Risk 

Assessment, Baseline Animal Data Working Group. 
http://www.hesiglobal.org/Committees/TechnicalCommittees/Genomics/default.htm 
Related paper: Boedigheimer et al (2008). Sources of variation in baseline gene 
expression levels from toxicogenomics study control animals across multiple 
laboratories. BMC Genomics. (9):285-300.  

 
[Abstract]: Background. The use of gene expression profiling in both clinical and 
laboratory settings would be enhanced by better characterisation of variance due 
to individual, environmental and technical factors. Meta-analysis of microarray 
data from untreated or vehicle-treated animals within the control arm of 
toxicogenomics studies could yield useful information on baseline fluctuations in 
gene expression, although control animal data has not been available on a scale 
and in a form best served for data-mining. Results. A dataset of control animal 
microarray expression data was assembled by a working group of the Health and 
Environmental Sciences Institute‟s Technical Committee on the Application of 
Genomics in baseline gene expression. Data from over 500 Affymetrix 
microarrays from control rat liver and kidney were collected from 16 different 
institutions. Thirty-five biological and technical factors were obtained for each 
animal, describing a wide range of study characteristics, and a subset were 
evaluated in detail for their contribution to total variability using multi-variate 
statistical and graphical techniques. Conclusion. The authors note that the study 
factors that emerged as key sources of variability included gender, organ section, 
strain, and fasting state. These and other study factors were identified as key 
descriptors which the authors consider should be included in the minimal 
information about a toxicogenomics study needed for interpretation of results by 
an independent source. Genes that are most and least variable, gender selective, 
or altered by fasting were also identified and functionally categorised. The 
authors conclude that better characterisation of gene expression variability in 
control animals will aid in the design of toxicogenomics studies and in the 
interpretation of their results.  
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11. Shi et al 2006
48

. The MicroArray Quality Control (MAQC) project shows inter- and 
intra-platform reproducibility of gene expression measurements. Nat Biotechnol. 
24:1151-1161. 

 
12. Takashima et al 2006. Effect of differences in vehicles on gene expression in the rat 

liver – analysis of the control data in the Toxicogenomics Project Database. Life Sci. 
78:2787-96.  

 
[Abstract]: The Toxicogenomics Project is a 5-year collaborative project by the 
Japanese government and pharmaceutical companies in 2002. Its aim is to 
construct a large-scale toxicology database of 150 compounds orally 
administered to rats. The test consists of a single administration test (3, 6, 9 and 
24 h) and a repeated administration test (3, 7, 14 and 28 days), and the 
conventional toxicology data together with the gene expression data in liver as 
analysed by using Affymetrix GeneChip are being accumulated. In the project, 
either methylcellulose or corn oil is employed as vehicle. The authors examined 
whether the vehicle itself affects the analysis of gene expression and found that 
corn oil alone affected the food consumption and biochemical parameters mainly 
related to lipid metabolism, and this accompanied typical changes in the gene 
expression. Most of the genes modulated by corn oil  were related to cholesterol 
or fatty acid metabolism (e.g. CYP7A1, CYP8B1, 3-hydroxy-3-methylglutaryl-
Coenzyme A reductase, squalene epoxidase, angiopoietin-like protein 4, fatty 
acid synthase, fatty acid binding proteins), suggesting that the response was 
physiologic to the oil intake. The authors note that many of the lipid-related genes 
showed circadian rhythm within a day, but the expression pattern of general clock 
genes (e.g. period 2, arylhydrocarbon nuclear receptor translocator-like, D site 
albumin promoter binding protein) were unaffected by corn oil, and suggest that 
the effects are specific for lipid metabolism. The authors consider that these 
results would be useful for usage of the database especially when drugs with 
different vehicle control are compared.  

 
13. Tong et al 2006. Evaluation of external RNA controls for the assessment of 

microarray performance. Nat. Biotechnol. 24: 1132-9.  
 
14. Whitney et al 2003. Individuality and variation in gene expression patterns in human 

blood. Proc. Natl. Acad. Sci. U.S.A. 100, 1896-1901.  
 
[Abstract]: The nature and extent of inter-individual and temporal variation in gene 
expression patterns in specific cells and tissues is an important and relatively 
unexplored issue in human biology. The authors surveyed variation in gene 
expression patterns in peripheral blood from 75 healthy volunteers by using 
cDNA microarrays. Characterisation of the variation in gene expression in healthy 
tissue is an essential foundation for the recognition and interpretation of the 
changes in these patterns associated with infections and other diseases, and 
peripheral blood was selected because it is a uniquely accessible tissue in which 
to examine this variation in patients or healthy volunteers in a clinical setting. The 
authors report that specific features of inter-individual variation in gene 
expression patterns in peripheral blood could be traced to variation in the relative 
proportions of specific blood cell subsets; other features were correlated with 
gender, age, and the time of day at which the sample was taken. An analysis of 
multiple sequential samples from the same individuals allowed the authors to 
discern donor specific patterns of gene expression. The authors conclude that 
these data help to define human individuality and provide a database with which 
disease-associated gene expression patterns can be compared.  
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Merrick A. (2008). The plasma proteome, adductome and idiosyncratic toxicity in 
toxicoproteomics research. Briefings in Functional Genomics and Proteomics. Vol 7(1):35-49 

Topic covered: This review discusses toxicoproteomics (TPX), a new discipline defined as 
proteomics applied to toxicology. The paper considers the different proteomic platforms 
available to TPX research and various approaches designed to elucidate how specific 
chemical exposures alter protein expression, behaviour and host response leading to injury 
and disease. The paper considers the different strategic approaches used to generate TPX 
data but does not address evaluation of raw TPX data (wrt data analyses or statistics).  

Design: The authors note that two tiers of TPX research exist: Tier 1 involves identifying and 
quantifying proteins and their cellular location; Tier 2 involves the detailed investigation of a 
proteins function, its interaction with other proteins/macromolecules, its 3D structure and any 
specific post-translational modifications. The different types of PTX platforms used in TPX 
studies are also considered (e.g. gel affinity and chromatography). Chromatography is further 
subdivided into adsorptive, liquid and SELDI (surface enhanced laser desorption ionisation). 
The authors note that the type of platform used can depend on whether the PTX analyses is 
part of a larger „omic‟ investigation, as this would influence the amount of sample ultimately 
available. Many TPX studies are considered to have served as proof of principle experiments 
that examine a well characterised toxicant and associate proteomics data output with known 
toxicological endpoints (i.e. serum and urine chemistries and histopathology). However, these 
studies report the following as particular challenges: the lack of dose response relationships 
and time course (in early experiments), the lack of confirmation analysis of differential protein 
expressions (i.e. via ELISA, western blot, immunohistochemistry, etc), a lack of validation 
studies of proposed biomarkers, lack of organising, integrating and communicating data within 
organisations and across laboratories. The following study design modifications are 
recommended as worthwhile: use of multiple doses, several time points, positive and negative 
control compounds, use of non-toxic chemical isomers, single and multiple dosing, 
confirmation of results, and validation in blind studies. Factors preventing the inclusion of 
some or all of these elements include limited resources, realities of incremental research 
objectives and the nature of TPX (wrt long data analysis times for interpreting mass spectra 
and the large data volumes generated per experiment).  
Biomarker development is considered a specific TPX research objective. The authors note 
that although the proteomic analysis of blood is a common approach, a more ideal approach 
would be analysing target tissue. Several advantages for analysing the blood proteome are 
highlighted however a significant challenge arises with the masking of proteins of interest by 
more abundant proteins in the blood (often by 10 orders of magnitude). Other potential 
biomarkers include microparticles and the adductome. Microparticles are intact vesicles 
derived from cell membranes formed from various events such as apoptosis or membrane 
activation processes. Microparticles have physiological roles in coagulation, angiogenesis and 
inflammation and as such change in response to chemical exposure and injury. The 
adductome refers to proteins/specific amino acid residues covalently bound to reactive 
chemicals/intermediates. The adductome is considered a useful measure of protein adduction 
and thus bioactivation of xenobiotics. Current approaches to measuring protein adduction 
include the use of radiolabelled compounds to track protein adduct formation in liver 
microsomes. New approaches include the application of high resolution mass spectrometry 
(MS) instruments using biotin-tagged model electrophiles (Shin et al 2007). This approach 
allows for the identification of adducted proteins with the exact structure of adducted chemical 
groups/amino-acids identified. 

Analysis: The different types of PTX analyses that exist reflect the complexity of the different 
properties and structures of proteins. Global protein analysis enumerates all proteins 
identifiable within a sample while TPX analysis enumerates only those proteins that change in 
accordance with exposure to a particular toxic agent. Protein change is determined by 
measuring fold or absolute change in protein expression. The authors consider whole 
proteome analyses a particular challenge as often only portions of a proteome in a sample 
are analysed. Other key areas of TPX research identified include the analysis of the blood 
proteome, the interference of abundant proteins in plasma/serum analysis, the presence of 
soluble microparticles and combining PTX and TRSX analysis of blood. The authors report 
that many immunosubtraction matrices/devices are commercially available to remove 
abundant proteins and increased numbers of detectable/identifiable proteins were observed in 
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a study by Pieper et al 2003.  

Statistics: The authors do not discuss statistical analysis of TPX data. 

Comments: The findings of several TPX reviews published since 2004 are also considered. 
Many of the reviews covered issues relating to development of serum protein pattern 
diagnostics, biomarkers and toxicological signatures, and the achievements and limitations 
associated with biomarker development. The ability of PTX analyses to delineate the potential 
role of protein adduction in the toxicity of various chemical and drug exposures is reported via 
illustrated examples i.e. for bromobenzene, acetaminophen, monocrotaline, acrylamide and 
small molecule electrophiles such as acrolein and nitrative oxidants.  

  
Refs: 
 

1. Shin et al 2007. Protein targets of reactive electrophiles in human liver microsomes. 
Chem Res Toxicol; 20:859-67.  

 

2. Pieper et al 2003. The human serum proteome: display of nearly 3700 
chromatographically separated protein spots on two dimensional electrophoresis gels 
and identification of 325 distinct proteins. Proteomics;3:311-26.  
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Elashoff., M (2008). Role of Statistics in Toxicogenomics. From: Methods in Molecular 
Biology, vol. 460: Essential Concepts in Toxicogenomics. Edited by: D.L. Mendrick and W.B. 
Mattes © Humana Press, Totowa, NJ.  

Topic covered: Although this review aims to address the application of statistics in 
toxicogenomics (TGX), the term statistics also applies to the various methods used to identify 
and evaluate toxicologically relevant gene pattern changes, and not just approaches that 
evaluate the statistical significance of changes/differences in gene expression data. The 
review considers issues related to the assessment of data quality, data exploration and gene 
analysis (and predictive modelling) under two main sections: individual TGX studies and TGX 
databases. Design issues are discussed as a separate section.  

Design: The authors note that a typical TGX study will include several time points and doses 
(3-6 animals per control or dose group) with a single RNA sample run for each animal. 
Studies employ 3-4 time points as there is no clear answer on which single timepoint is best 
to use. From a statistical point of view the more doses used the better as this enables dose 
response to be analysed in relation to the overall toxicity, as well as on an individual gene and 
pathway level. Sample size calculations are conducted to work out the best way of 
maximising scientific information at minimal cost. This involves making assumptions in 
relation to the degree of gene regulation and biological variability between samples. Authors 
provide an illustrative example. Biological rather than technical replicates are preferred 
because an average response to treatment is more informative for drawing conclusions than 
individual responses (also biological variation in gene expression tends to be 2-4-fold higher 
than technical variation). Technical replicates are preferred when the gene expression profile 
of an individual is the target (as occurs in diagnostic situations). Intermediate approaches are 
possibly required when multiple measurements are taken for each animal if biological 
variability increases. Thus the design is dependent on the ratio of biological vs. technical 
variability.  
A key aim of the study requires information on the average response, and how this response 
varies across a set of individuals. Pooled samples provide information on the average 
response but such samples do not inform on the variation in that response which precludes a 
meaningful analysis of the study data. The authors note that studies using only technical 
replicates do not provide information on the average response. 

Analysis: [Individual TGX studies]: Many gene expression analysis tools exist but their value 
is limited by a lack of standardisation and the extensive number of analytical approaches 
available. The first step toward analysing gene expression data is to consider the quality of 
data, treatment effects, identity of regulated genes/pathways and the toxicological context of 
gene expression changes. Assessing data quality helps distinguish poor quality data from 
useful data. Two main types of approaches are used: quality metrics and correlation. Quality 
metrics can detect variation in data quality and involves 3 basic approaches: application of a 
threshold benchmark (where metrics that fall short of a predetermined value fail); consistency 
(failing metric values that lie outside the norm within a study); and balance (comparing 
distribution of metric values between study groups). The most informative measure of gene 
expression data quality is the percent present (PP). PP measures the percentage of genes 
present (expressed) in a sample, as a fraction of genes deemed present / total no genes 
present on chip. PP is limited by the fact its value depends on the type of chip and sample 
used. Other quality metrics include 5‟3‟ ratio for specific control genes (measures RNA 
degradation); scale factor (involves scaling unnormalised gene expression mean values); 
Affymetrix specific MM > PM (provides an informative measure of Affymetrix chip quality in 
which perfect match (PM) probe pairs should be greater than mismatch (MM) probe pairs); 
and signal distribution (compares the distribution of expression signal strength that reveals 
differences in data quality). Pearson correlation measures the similarity of expression log 
values between a pair of samples and uses the entire set of genes. A correlation matrix is 
produced by deriving correlation values (or average correlation values) for each sample 
relative to another within the same study.  
Principle component analysis (PCA) is a multivariate technique used in the data exploration 
phase of TGX. PCA visualises multidimensional data sets for gene sets and generates 
principal components plotted against each other. The gene sets can be based on all genes, or 
changing genes or genes for particular pathways. Interpreting all genes PCA involves 
highlighting predominant patterns in gene expression data (where outliers correspond to poor 
quality data). Genes driving the different prominent patterns can be further investigated. The 
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authors emphasis that prominent patterns may also be caused by differential sample 
processing. Changing genes PCA reveal dose and time effects and provide information on 
samples that do not fit the pattern and they themselves may be further investigated.  Percent 
variance corresponds to a principal component and enables a rough assessment of how the 
PCA plots of the first several components reflect the entire gene set.  
 
[TGX databases]: The authors consider that comparing the expression profiles of both similar 
and dissimilar compounds helps put things in context. The study sample must be comparable 
with samples in database. Data comparability is determined by firstly considering the similarity 
of various study design features e.g. vehicle controls, sex/strain of animals, sample and chip 
processing methods. Such features are thought to alter the baseline expression level of 
genes. Normalising the data (within a study) is the next step followed by an assessment of 
data comparability between study and database samples. Normalising data (within a study) is 
considered better for comparing data because it removes much of the cross-study difference 
while preserving the underlying biological responses. The authors report that experience 
suggests unnormalised data is of limited value for comparing data between different groups.  
Assessing data comparability between study samples and the database samples is 
recommended as a next step. Possible reasons for the clustering/grouping of compounds 
observed during data exploration stage are suggested i.e. due to compounds sharing similar 
mechanisms of toxicity, or having high level toxic effects resulting in grouping (necrosis may 
be ultimately induced but arises via different mechanisms), or having similar non toxic effects, 
or sharing study effects (i.e. shared control group). Assessing the similarity of genes during 
the gene analysis stage helps inform on the toxicological significance of genes. Gene 
similarity analysis uses gene expression profiles to identify genes that act similarly to known 
toxicity markers. Similar genes are identified using a statistical algorithm (Match X). Predictive 
modelling aims to link gene expression profiles of multiple compounds to an expected 
behaviour of the compound when used in humans. Model validation is considered the final 
phase of this model building process but it is considered difficult in practice. A multistep 
validation procedure (for a predictive model) is described in relation to the compounds of the 
test and training set, the building and evaluation of the model, and reporting accuracy rates. 
The authors note the significance of comparing training and test sets for developing or 
assessing a model, and provide illustrated examples based on a hypothetical data set. The 
authors describe how to set parameters for building models and describe the different 
methods used to categorise the selection of genes, which themselves can be ranked in terms 
of how useful they are. Several different types of classification methods are used in TGX 
modelling (e.g. clustering, classification tree, logistic regression, K-Means, partial least 
squares, support vector machine (SVM), neural networks and discriminant analysis). Each 
have their own pro‟s and cons in relation to their fitting capability, their tendency to overfit and 
ability to isolate gene contributions.  

Statistics: [Individual TGX studies]: Fold change (aka two sample t-test) is considered the 
most basic analytical method used in gene level analysis. It tests (statistically) for a difference 
in mean logged expression levels between two groups. It generates a P value and fold 
change. Two groups of samples are required (e.g. high dose vs. control samples). Other 
methods used in gene level analysis include cut-offs, filtering, ANOVA and pathway analysis. 
Cut-offs describe a statistical approach to determining which genes are regulated by a 
compound and involve calculating the false discovery rate (FDR). The FDR is a ratio of the 
number of false positive genes (genes that appear to be significant but are not regulated by 
the compound) to the total of true positive and false positive genes. The level of FDR is 
decided by investigators e.g. a 5% FDR threshold means no more than 5% genes in the list of 
significant genes to be false positive. An example is provided. The authors introduce a related 
calculation „power‟, defined as the ratio of the number of true positives to the total number of 
truly regulated genes. As an example a list of significant genes is said to have 90% power 
when 90% of its genes are truly regulated by a compound. The best cut-off is one that 
achieves maximal power while minimising the FDR at some preset level. Filtering removes 
genes that are not called present by the compound via use of image processing algorithms. 
However, filtering out of low expressing genes that are also regulated by the compound is a 
key concern. ANOVA analyses whether a dependent variable (gene expression level) 
changes/varies in response to a particular parameter or independent variable (e.g. time, 
dose). ANOVA allows for the simultaneous analysis of several independent variables and 
describes the overall effect of a particular independent variable (i.e. whether gene expression 
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level varies with time or dose). Pathway analysis involves the detection of pathways through 
the identification of sets of genes with common characteristics. An equation is used to 
measure whether a compound can affect a pathway. However, since it relies on counts of 
genes, there is the assumption that the genes are independent which is a limitation of this 
technique. Use of a measure that accounts for the correlation between genes within a 
pathway would be a viable alternative approach. The overarching view is that statistics helps 
identify genes/pathways regulated or associated with compound under study.  
 
[TGX databases]: WRT gene level analysis, fold-change (t-test) analysis helps establish 
which pathways are differentially regulated. It does this by comparing the mean fold change of 
a single gene for two groups of samples. It takes into account how genes within a pathway 
correlate.  

Comments: The authors consider that statistics could solve the problem of there being too 
many gene expression analytical approaches. Readers are referred to the Elashoff Consulting 
website www.elashoffconsulting.com where appropriate statistical software is available. 
Elashoff Consulting is a biostatistics company specialising in genomics/genetics analysis and 
clinical trials. The company purports to have experience analysing TGX data wrt predictive 
models, cross platform prediction, phenotypic anchoring and regulatory aspects.  

 
Refs.  
 
There were no refs cited within the text.  
 
 
  

http://www.elashoffconsulting.com/


 144 

 

Rho et al (2008). From proteomics toward systems biology: integration of different types of 
proteomics data into network models. BMB reports; 41(3):184-93. 

Topic covered: This review aims to demonstrate how current proteomic (PTX) technologies 
can improve our understanding of how complex biological networks operate at a systems 
level. The authors address some aspects of PTX study design and discuss a few of the tools 
used to analyse data generated from mass spectrometry (MS). However, there is a strong 
emphasis on application of PTX data to systems biology research. The review does not 
discuss issues related to the statistical analysis of PTX data.  

Design: The authors categorise PTX technologies as either antibody or mass-spectrometry 
(MS) based. MS-based techniques are considered more useful as they provide extensive 
(global) information on proteins in terms of their function, abundance, modifications and 
interactions on different levels. The authors define MS as an analytical tool that measures the 
mass-to-charge (m/z) ratios of ionised analytes (proteins or peptides). In a two scan MS/MS 
procedure, the first scan produces peptide fragments. In a second scan these fragments 
undergo further isolation and fragmentation (via collision-induced dissociation) for 
identification purposes. The authors note that the intensity of the measured peaks is 
proportional to the abundance of certain peptides.  
A key disadvantage associated with these techniques is undersampling i.e. the inability to 
manage the several thousand proteins in complex samples and thus detect less abundant 
proteins. Approaches to address this issue and improve the performance of these 
technologies include adopting sample preparation methods, liquid chromatography (LC) or 
applying additional fractionation methods such as 2-D electrophoresis and multidimensional 
protein identification technology (MudPIT) (Prakash et al 2006). These approaches enable 
thousands of proteins to be detected in complex samples.  
Three stages of MS-based PTX analysis are noted: sample preparation, LC-MS/MS analysis 
and computational analysis of MS data (to quantify and identify the proteins); different 
combinations of the above can be used. Sample preparation methods include isotope 
labelling and subproteome capture methods. Isotope labelling methods (such as ICAT, SILAC 
and iTRAQ) measure the abundance of proteins in complex samples. Label-free methods 
also exist and both methods require the deployment of various computational tools to 
estimate protein abundances. Subproteome capture methods (e.g. of phosphoproteome or 
ubiquinated proteome) measure the extent of post-translational modifications (PTM) of 
proteins and these can be quantified if used in combination with isotope labelling. Other 
sample preparation methods measure protein interaction e.g. immuno-precipitation-based 
methods, tandem affinity purification (TAP)-tagging and chemically conjugated bead-based 
methods. LC separates peptides by molecular weight and is often used in combination with 
MS/MS (LS-MS/MS) to effectively analyse complex samples. 

Analysis: Various data analysis systems are available to deal with the huge amounts of data 
generated from LC-MS/MS. These systems convert, visualise, store and exchange PTX data, 
and also conduct basic analytical functions associated with protein quantification and 
identification.  
The authors note the development of their Integrative Proteomics Data Analysis Pipeline 
(IPDAP), a PTX data analysis system used in systems biology research. IPDAP is built on two 
platforms: a computational PTX laboratory database (CPAS) and a systems biology 
experiment analysis management system (SBEAMS). NB. Includes other tools such as Trans 
Proteomic Pipeline (TPP). IPDAP operates in the following way: raw LC-MS/MS data is stored 
onto CPAS and converted into a standard data format (mzXML). Next, the data is analysed 
via a database search to identify proteins (using X! Tandem or SEQUEST), and a best match 
is identified via use of Peptideprophet (in TPP) which performs the probability calculations. 
Computational tools such as XPRESS, ASAPRatio (in conjunction with isotopic labelling 
methods) are used to quantify the identified proteins. This results in the generation of a list of 
proteins and other associated data i.e. protein abundance and PTM. NB. The identified 
protein data are also stored on CPAS.  Proteins are then mapped onto operational biological 
networks to determine how these proteins interact with each other and how they enrich 
pathways and functional groups, including information on any temporal effects on key 
pathways. Various systems biology software tools analysing particular aspects of the data are 
used e.g. for interaction (BIND, HPRD), statistical analyses (clustering, PCA), network 
modelling and analysis (STRING, Cytoscape), pathway analysis (KEGG).  

Statistics: The review does not address issues related to the statistical analysis of raw TGX 
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Comments: The authors define a biological network as a composite of nodes (e.g. DNA, 
mRNAs, proteins and metabolites of cellular systems) and edges (e.g. the interactions 
between these nodes, which can be between proteins i.e. protein-protein (PPI), protein-DNA 
(PDI), chemical-protein (CPI) and chemical-DNA (CDI)). These networks enable systems 
(defined as organs, tissues, cells and subcellular compartments) to function and they receive 
signals from these systems. The authors describe network modules as a particular portion of 
a biological network. They are activated to execute certain functions to offset perturbations 
caused by environmental or genetic events. Disease arises when these network modules 
malfunction and are unable to offset perturbations.  
The authors state that systems biology approaches aim to understand how complex networks 
operate via a three-step process. The first step generates global data following perturbation of 
a system. The data is then integrated into network models that provide information on key 
events arising from these perturbations. The final step involves generating a testable 
hypothesis to determine associated mechanisms. Prior to these steps, the authors note that 
key network modules must first be identified and any transitions arising from these 
perturbations also examined.  
The authors comment that PTX studies have enhanced our understanding of how biological 
networks function. Use of PTX data in systems biology approaches involves 3 steps: step 1 
defines problems for biological/medical systems. Step 2 involves perturbing relevant 
biological systems while the final step involves generating comprehensive PTX data. This is 
followed by a series of computational steps to determine biological networks and modules. 
Finally, the authors consider network modelling as a key step for processing PTX data in 
systems biology. IPDAP provides a general solution for network modelling and visualising 
pipelines although various technical challenges exist.  
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Groups/Organisations/Initiatives 
 

Name URL: http:// 
 

BTS British Toxicology Society  thebts.org 
EBI European Biomarkers Institute  ebi.ac.uk/ 
ERCC External RNA Control Consortium  cstl.nist.gov 
ECVAM  European Centre for the Validation of Alternative 

Methods 
ecvam.jrc.ec.europa.eu/ 

EMBL European Molecular Biology Laboratories  embl.org 
EPA US Environmental Protection Agency  epa.gov 
FDA US Food & Drug Administration  fda.gov 
FP6/7   
GO 
Consortium 

Gene Ontology Consortium geneontology.org/ 

HESI Health and Environmental Sciences Institute hesiglobal.org 
   
ICCVAM  Interagency Coordinating Committee on the 

Validation of Alternative Methods 
iccvam.niehs.nih.gov/ 

IMI Innovative Medicines Initiatives  
 

imi.europa.eu/index_en.h
tml  

ILSI  International Life Sciences Institute ilsi.org 
IPCS WHO International Programme on Chemical 

Safety 
who.int/ipcs/en/ 

MAQC  MicroArray Quality Control fda.gov/ScienceResearc
h/BioinformaticsTools/Mi
croarrayQualityControlPr
oject/default.htm 

MGED 
Society 

Microarray Gene Expression Data Society mged.org/ 

NCT National Center for Toxicogenomics niehs.nih.gov/research/at
niehs/nct.cfm 

NCTR National Center for Toxicological Research fda.gov 
NICEATM 
 

National Toxicology Program Interagency Center 
for the Evaluation of Alternative Toxicological 
Methods 

iccvam.niehs.nih.gov/ 

NIEHS National Institute of Environmental Health 
Sciences 

niehs.nih.gov/research 

NIHS Japanese National Institute of Health Sciences; nihs.go.jp/english/index.h
tml 

NRC US National Research Council sites.nationalacademies.
org/NRC/ 

OECD Organisation for Economic Co-operation and 
Development  

oecd.org 

REACH EU Registration, Evaluation, Authorisation and 
restriction of CHemicals 

echa.europa.eu/home_e
n.asp 

SOT Society of Toxicology toxicology.org 
TRC Toxicogenomic Research Consortium niehs.nih.gov/research/s

upported.centers/trc 
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Software/Databases 
 
Name URL http://www. 
   
AMIA 
 

Automated Microarray Image Analysis  ? 

Array Express 
 

ebi.ac.uk/microarray-as/ae/ 

ArrayTrack fda.gov/nctr/sceince/centers/toxicoi
nformatics/ArrayTrack/index.htm 
 

BASE 
 

BioArray Software Environment base.thep.lu.se/  

Baseline Animal Database 
 

hesiglobal.org/ 

Bioconducter Project 
 

bioconductor.org/ 

BioGPS A successor to Symatlas  biogps.gnf.org/ 
 

BRB-Array 
Tools  
 

Biometric Research Branch Array Tools linus.nci.nih.gov/BRB-
ArrayTools.html 

CEBS 
 

Chemical Effects in Biological Systems  cebs.niehs.nih.gov 

CIBEX Centre for Information Biology gene 
Express 

 

CTD Comparative Toxicology Database ctd.mdibl.org 
 

dbZach 
 

Zacharewski Lab database dbzach.fst.msu.edu/ 

dChip 
 

DNA-Chip Analyzer biosun1.harvard.edu/complab/dchi
p/ 
 

DDBJ 
 

DNA Data Bank of Japan ddbj.nig.ac.jp/ 

EDGE Environment, Drugs and Gene 
Expression 

edge.oncology.wisc.edu/edge.php 

EMBL Bank EMBL Nucleotide Sequence Database www.ebi.ac.uk/embl/  
 

GenBank 
 

ncbi.nlm.nih.gov/genbank/ 

Genecards 
 

genecards.org/ 

GEO Gene Expression Onimbus ncbi.nlm.nih.gov/geo/ 
 

GOBO Global Open Biological Ontologies now 
called Open Biological and Biomedical 
Ontologies 

obofoundry.org/ 
 
 
 

GO 
database 

Gene Ontology Database  
 

geneontology.org/ 
 
 

GSEA Gene Set Enrichment Analysis broadinstitute.org/gsea/ 
 

KEGG Kyoto Encyclopedia of Genes and 
Genomes 

genome.jp/kegg/ 
 
 

IPA Ingenuity Pathway Analysis  
 

http://www.ebi.ac.uk/embl/


 158 

Locus Link 
 

ncbi.nlm.nih.gov/LocusLink 

MeSHer 
 

Integrated into MeV (multi Experiment 
Viewer) 
 

tm4.org/mev/ 

MGED Ontology 
 

mged.sourceforge.net/ontologies/M
GEDontology.php 
 

MIAME 
Express 
 

Tox MIAMExpress no longer supported ebi.ac.uk/miamexpress/ 

Onto-Tools (Onto-Express, Onto-Compare, Onto-
Design, Onto-Translate and Onto-
Miner) 
 

vortex.cs.wayne.edu/projects.htm 

pCEC Profiles of Chemical Effects on Cells project.nies.go.jp/eCA/cgi-
bin/index.cgi 
 

PIPE 
 

Protein-Protein Interaction Prediction 
Engine 

cgmlab.carleton.ca/PIPE2/ 

Prosite  
 

expasy.org/prosite/ 

Pubmed 
 

ncbi.nlm.nih.gov/pubmed/ 

RACE 
 

Remote Analysis Computation for gene 
Expression data 
 

race.unil.ch. 

RefSeq 
 

Reference Sequence ncbi.nlm.nih.gov/RefSeq/ 

SCOP Structural Classification of Proteins scop.mrc-lmb.cam.ac.uk/scop/ 
 

SOFG Standards and Ontologies for 
Functional Genomics 
 

sofg.org/ 

SwissProt 
 

expasy.org/sprot/ 

TEST Toxicogenomics for Efficient Safety Test istech.info/TEST/ 
 

TGP Japanese Toxicogenomics Project 
database 
 

?? 

TM4 software 
 

tm4.org/ 

Unigene 
 

ncbi.nlm.nih.gov/unigene 

  
Commercial products 
 

 
Name  URL: http:// 

 
Affymetrix affymetrix.com/ 
Agilent agilent.com 
Molecular Beacons molecular-beacons.org/ 
Nimblegen nimblegen.com/ 
Scorpions ® Primers premierbiosoft.com/tech_notes/Scorpion.html 
SYBR® Green appliedbiosystems.com 
TaqMan Probes ® 

 

http://race.unil.ch/



