COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER PRODUCTS AND THE ENVIRONMENT

First draft statement on potential risks of α-, β- and γ-hexachlorocyclohexanes in the infant diet

Introduction

1. The Committee on Toxicity (COT) has been asked to provide advice on toxicity of chemicals in the infant diet, in support of a review by the Scientific Advisory Committee on Nutrition (SACN) of Government recommendations on complementary and young child feeding. An initial paper (TOX/2012/03), highlighting some of the areas requiring consideration was discussed by the COT in February, 2012. The COT concluded that persistent organic pollutants included in the Stockholm convention since 2009 i.e. α- and β-hexachlorocyclohexane, lindane (γ-hexachlorocyclohexane), chlordecone, pentachlorobenzene, perfluoro octane sulfonic acid salts and perfluoro octane sulfonic fluoride, technical endosulfan and its related isomers, required further evaluation. In February 2013, COT evaluated a discussion paper (TOX/2013/04) summarising the available toxicological information on α-, β- and γ-hexachlorocyclohexanes (HCHs). Annex A contains the minutes from that discussion.

2. Annex B contains a first draft statement of potential risks of α-, β- and γ-hexachlorocyclohexanes in the infant diet, providing an overview of the available information, taking into account the COT discussion and subsequent comments received from Members. The statement addresses toxicological aspects of the three isomers such as half-life data, evidence of genotoxicity, causes of hepatotoxicity and liver carcinogenicity, evaluation of HCH exposure and epidemiological outcomes, possible association to allergy, clarification on derivation of health-based guidance values (HBGVs) and impact of other sources of exposure like timber.

3. Annex C contains the paper by Meera et al. (1992), which is proposed as a basis for a TDI for γ-HCH.

4. The COT noted that timber could have a potential impact on exposure to γ-HCH. Information provided by the Health and Safety Executive (HSE) is included in Annex D.

5. Members are asked to note that the list of abbreviations, literature searches and bibliography are not complete

Questions

6. Members are invited to address the following questions:
i. Do Members agree that the available data information does not allow identification of robust HBGVs for α- and β-HCH, and that a margin of exposure approach is preferable?

ii. Do Members agree with the approach of using maximum permitted levels in exposure assessment, and if not can they recommend an alternative approach?

iii. Do Members agree with the proposed HBGV for γ-HCH and if not what would be the preferred approach?

iv. Are members able to come to any conclusions on whether there is a toxicological concern for the health of infants from dietary exposure to HCHs?

v. Members are asked whether the information on timber (Annex D) should be referred to in the statement.

vi. Given the available information and taking into account that exposure levels are likely to be decreasing, is there a need for more data on levels of HCH in infant formula and food?

Secretariat
September 2013
COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER PRODUCTS AND THE ENVIRONMENT

First draft statement of potential risks of α-, β- and γ-hexachlorocyclohexanes in the infant diet

Minutes from February 2013.

Item 7: Review of potential risks of α-, β- and γ-hexachlorocyclohexanes in the infant diet - TOX/2013/04

42. Dr Dearman declared a personal non-specific interest, due to ownership of shares in Syngenta. This was considered to be a conflict, and she did not take part in the discussion.

43. This item related to the COT evaluation of toxicity of chemicals in the infant diet, in support of the SACN review of Government recommendations on complementary and young child feeding. During previous discussions, hexachlorocyclohexanes (HCHs) had been selected for further evaluation. Paper TOX/2013/04 summarised the toxicity of α-, β- and γ-HCHs with particular emphasis on the basis of different Health-Based Guidance Values (HBGV) proposed by other groups. It also provided data on occurrence of the chemicals in food, and estimates of dietary exposure in infants aged 0 – 12 months through breast feeding, infant formula and weaning diet.

44. Members emphasised the need to clarify that although a review authored by a toxicology consultancy, which was annexed to the paper, had been used as one of a number of information sources, that did not imply that the Committee endorsed its conclusions.

45. Members questioned the accuracy of the half-life data, and whether the inferences on differences by sex and between isomers were supportable. They asked if data on blood levels in animals and/or humans were available. The hepatotoxicity and carcinogenicity appeared to be related to enzyme induction, an effect that might be considered adaptive rather than adverse. However, it would be important to consider the evidence for genotoxicity, particularly with respect to whether the DNA binding reported for α-HCH was covalent. Further advice from the Committee on Mutagenicity (COM) might be required. It was also questioned whether a carcinogenicity study on γ-HCH had really been conducted in dogs.

46. Studies on humans required more detailed description, and some of the rationale for discounting the evidence was not appropriate. There appeared to be more evidence for an association between HCHs and non-Hodgkin lymphoma than for other outcomes. Epidemiologists on the Committee would look at the papers. Further consideration was also required on allergy as there might be an association between non-Hodgkin lymphoma and asthma. It was suggested that γ-HCH was
likely to have been tested by a local lymph node assay (LLNA).

47. Further information was requested on the proposed HBGVs, tabulating the NOAELs and LOAELs with relevant endpoints for the critical studies. The COT toxicologists would look at the detail of these studies, and advise on the most relevant data for derivation of HBGVs.

48. With regard to exposure from breast milk, further information was required about a study by Kalantzi et al. (Environ Health Perspect. 112(10):1085-91, 2004) since the relative distribution of β- and γ-HCHs appeared inconsistent with other reports.

49. Information on potential exposure from timber in the indoor air environment was also requested. In assessing risks, account should be taken of trends in exposures, which were decreasing over time.

50. A draft COT statement would be produced for future discussion.
COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER PRODUCTS AND THE ENVIRONMENT

First draft statement of potential risks of α-, β- and γ-hexachlorocyclohexanes in the infant diet

Introduction

1. The Scientific Advisory Committee on Nutrition (SACN) is undertaking a review of scientific evidence that bears on the Government’s dietary recommendations for infants and young children. The review will identify new evidence that has emerged since the Government’s current recommendations were formulated, and will appraise that evidence to determine whether the advice should be revised. The recommendations cover diet from birth to age five years, but will be considered in two stages, focussing first on infants aged 0 – 12 months, and then on advice for children aged 1 to 5 years. SACN is examining the nutritional basis of the advice, and has asked that evidence on possible adverse effects of diet should be considered by other advisory committees with relevant expertise. SACN asked COT to review the risks of toxicity from chemicals in the infant diet. The COT considered that persistent organic pollutants included in the Stockholm convention since 2009 including α-, β- and γ-hexachlorocyclohexanes (HCHs), should be included in this review.

2. There are currently no Government recommendations on complementary and young child feeding that relate to HCHs.

3. Lindane (γ-HCH) has been evaluated by the International Programme on Chemical Safety (IPCS) of the World Health Organization (WHO) (WHO-IPCS, 1991) and by the Joint Food and Agriculture Organization (FAO)/WHO Meeting on Pesticide Residues (JMPR) (FAO/WHO, 2002). In addition, α- and β-HCH have been reviewed by IPCS (WHO-IPCS, 1992). The European Food Safety Authority (EFSA) has published an opinion on γ-HCH and other HCHs as contaminants in animal feed (EFSA, 2005). The US Environmental Protection Agency (USEPA) and the Agency for Toxic Substances and Disease Registry (ATSDR) published reviews of HCH isomers toxicity (USEPA, 2001; ATSDR, 2005) and these were used as a starting point for the toxicity section. On behalf of Syngenta Crop Protection and Stauffer Management Company, Integral Consulting recently reviewed the toxicity of α-, β- and γ-HCH with published literature until March 2011 (Integral Consulting, 2011a, b, c). Literature searches were conducted to identify any further relevant papers that were not considered in those publications until October 2012.

General background on HCHs

4. HCHs are organochlorines and encompass a group of eight isomers; α-, β-, δ-, ε-, ζ-, η-, θ- and γ-HCH. Technical-grade HCH consists of approximately 60–70%
This is a draft statement for discussion.
It does not reflect the views of the Committee and should not be cited.

α-HCH, 5–12% β-HCH, 10–15% γ-HCH, 6–10% δ-HCH, and 3–4% ε-HCH (Kutz et al. 1991). This review focuses on α-, β-, and γ-HCH since these are listed as persistent organic pollutants in the Stockholm convention. Their structures are presented in Figure 1.

Figure 1. Chemical structures of α-, β-, and γ-HCH

α-HCH (CAS 319-84-6) β-HCH (CAS 319-85-7) γ-HCH (CAS 58-89-9)

5. Because of their lipophilic properties and persistence in the environment, β-HCH, followed by α-HCH and to a lesser extent γ-HCH bioaccumulate and biomagnify in the food chain. Their semivolatility allows them to be transported long-range and undertake “cold condensation”, thus increased levels are usually found in water in colder regions. The long-range atmospheric transport has resulted in global distribution especially of the most stable isomers α- and β-HCH (EFSA, 2005).

6. The current maximum levels in force for pesticides are described in Directive 2006/141/EC on infant formula and follow-on formula, and Directive 2006/125/EC on processed cereal foods and baby foods for infants and young children. The maximum pesticide level for other food products is described in Directive 2005/396/EC. A general maximum residue level (MRL) (0.01 mg/kg) is applicable ‘by default’ in all cases where an MRL has not been specifically set for a product or product type. This is the case for infant and follow-on formula and processed cereal foods and baby foods for infant and young children. In relation to other food products for human consumption, several different MRLs apply depending on the HCH isomer and the food commodity although for the majority of them the default MRL applies. MRLs range from 0.004 to 0.2 mg/kg for α-HCH, from 0.1 to 0.003 mg/kg for β-HCH, and from 0.001 to 1 mg/kg for γ-HCH (Directive 2013/212/EC).

α-HCH

Toxicokinetics

7. From the limited available data it appears that α-HCH is almost completely absorbed from the gastrointestinal tract (WHO-IPCS, 1992).

8. Following absorption α-HCH is predominantly distributed to the liver, kidney, brain, muscle and adipose tissue with marked accumulation in the fat (WHO-IPCS, 1992).
9. The metabolism of α-HCH involves dechlorination. The major phase I metabolite of α-HCH is 2,4,6-trichlorophenol, with lesser amounts of 1,2,4-, 2,3,4- and 2,4,5-trichlorophenol, 2,3,4,5- and 2,3,4,6-tetrachlorophenols and 1,3,4,5,6-pentachlorocyclohex-1-ene. A glutathione conjugate has also been reported (WHO-IPCS, 1992).

10. After intraperitoneal injection to rats, 40-80% of α-HCH was excreted in the urine and 5-20% in the faeces. No studies have been found reporting plasma elimination half-life values for α-HCH in humans and rodents, or from which they could be adequately inferred. The half-life for clearance from the fat was reported to be 6.9 days in female rats and 1.6 days in male rats. The half-life for elimination from the brain of female rats was reported to be 6 days (WHO-IPCS, 1992).

Induction of drug metabolising enzymes

11. In the promotion study by Masuda et al, (2001) (see paragraph 25), rats were injected with a single dose of 200 mg/kg bw diethyl-nitrosamine (DEN) followed by 2 weeks of basal diet after which a diet containing α-HCH at 0.01, 0.1, 0.5, 1, 2, 4, 7.5, 15, 30, 60, 125 or 500 ppm was given for 6 weeks. The protein expression of CYP2B1 and CYP3A2 in the liver increased statistically significantly from 60 to 500 ppm and 15 to 500 ppm respectively.

12. Similarly, in a study by Puatanachokchai et al, (2006), rats were injected with 100 mg/kw bw DEN 3 times in one week followed by a diet containing 0.01, 0.05, 0.1, 1, 50 or 500 ppm for 10 weeks. At 50 and 500 ppm of α-HCH, CYP2B1, 2C11/6, 2E1, 3A1/2 and NADPH-P450 reductase protein expression was increased by more than 20-fold, 1.5-2-fold, 1.5-fold, 2-5-fold and 2-2.5 fold, respectively.

Toxicity of α-HCH

13. α-HCH is of low acute toxicity, with oral LD50 values in the region of 1,000 – 4,000 and 500 to 5,000 mg/kg b.w. in mice and rats respectively. Signs of toxicity were mainly related to stimulation of the nervous system (WHO-IPCS, 1992).

14. Hepatotoxicity of α-HCH has been reported in many studies. For example, liver hypertrophy was reported in a 90-day study in rats given 10, 50 and 250 mg/kg diet. The no observed adverse effect level (NOAEL) was 2 mg α-HCH/kg diet (equivalent to 0.1 mg/kg b.w./day). Decreased body weight was reported at the highest dose (equivalent to 12.5 mg α-HCH/kg b.w./day) (Kuiper et al., 1985; cited in EFSA, 2005).

15. α-HCH has been reported to be the most potent HCH isomer in inhibiting gamma-aminobutyric acid (GABA)-mediated chloride ion uptake in mouse brain, which is considered to play a primary role in its action on the central nervous system (CNS) (WHO-IPCS, 1992). However information on the dose response relationship for neurotoxicity following oral exposure is not available.

16. Signs of immunosuppression (reduced levels of immunoglobulins) were seen at 2.5 mg α-HCH/kg b.w./day (Kuiper et al., 1985; cited in EFSA, 2005). No local
lymph node assays (LLNA) or other studies investigating the allergenic potential of α-HCH have been found.

17. No studies investigating the potential reproductive toxicity of α-HCH have been found.

Genotoxicity

18. α-HCH was not mutagenic in a number of assays including the Ames test in *Salmonella typhymurium*, the reverse mutation assay in *Escherichia coli* and *Saccharomyces cerevisiae* and spot test with *Bacillus subtilis*.

19. Iverson et al, (1984) reported a low level of binding of $[^{14}C]_α$-HCH to calf thymus DNA in the presence of liver microsomes from phenobarbitone-treated mice, but not from untreated mice. Binding to protein was two to three orders of magnitude higher than binding to DNA. In mice dosed with 25 mg/kg bw $[^{14}C]_α$-HCH i.p., binding to DNA in the liver was reported at a level one to two orders of magnitude lower than binding to protein, but with no impact of pretreatment with phenobarbital. The authors concluded that these findings suggested that the tumorigenic response observed with α-HCH does not result from a genotoxic mechanism.

20. In a study by Sageldorff et al, (1983), male mice were dosed by oral gavage with 6.5 and 8.5 mg/kg $[^3H]_α$-HCH and liver DNA was isolated to determine covalent binding. The authors reported that the low level of DNA binding of α-HCH did not correlate with susceptibility to tumour induction in three different mouse strains and was more than three orders of magnitude lower than would be expected if the mechanism of tumour induction was by genotoxicity mediated by DNA-binding e.g. for carcinogens like aflatoxin B1 or dimethylnitrosamine.

21. Kalantzi et al, (2004) reported an increase in micronuclei in human mammary carcinoma cells MCF-7 cells after treatment at picomolar levels. These authors also reported that DNA breakage was statistically significantly increased compared to control in the Comet assay in MCF-7 with and without repair inhibitors at a concentration of 100 µM α-HCH (Kalantzi et al, 2004). α-HCH in the range 56 to 320 µM produced a concentration-dependent increase of DNA strand breaks in the alkaline elution assay in rat hepatocytes and in hepatocytes in 4 out of 5 human donors but not in mouse hepatocytes (Mattioli et al, 1996).

22. Feeding of male rats for 3 weeks with 600 ppm α-HCH in the diet resulted in increased chromosomal abnormalities but not altered ploidy (Hitachi et al, 1975).

23. The COT considered that the available data do not provide convincing evidence of genotoxicity.

Carcinogenicity

24. α-HCH has been shown to cause benign and malignant liver tumours in multiple mouse strains and in rats, with rats being less sensitive than mice (IPCS, 1992; Integral Consulting, 2011).
25. Results obtained from initiation-promotion studies for α-HCH support the role of α-HCH as a tumor promoter. In the study by Masuda et al. (2001), rats were injected with 200 mg/kg bw DEN followed by 2 weeks of basal diet after which they were fed diet containing α-HCH at 0.01 to 500 ppm for 6 weeks. The numbers and areas of glutathione-S-transferase placental (GST-P)-positive foci were statistically significantly increased at levels from 2 and 7.5 ppm respectively, with a NOAEL of 1 ppm. Using the factor of 0.1 recommended by EFSA for converting feed concentration to dose in rats in subchronic studies (EFSA 2012), 1 ppm is equivalent to 0.1 mg/kg bw/day. In the study by Puatanachokchai et al. (2006), rats were injected 3 times in one week with 100 mg/kw bw DEN followed by a diet containing 0.01 to 500 ppm α-HCH for 10 weeks. The number of GST-P-positive foci was statistically significantly increased at 50 and 500 ppm and the area was also increased at 500 ppm. The authors reported these feed levels to be equivalent to 2.8 to 29.9 mg/kg bw/day. The NOAEL in this study was at the feed concentration of 1 ppm, reported by the authors to be equivalent to 0.055 mg/kg bw/day.

26. Overall, the COT concluded the evidence suggests that α-HCH is primarily a phenobarbitone-like inducer (i.e. induces CYP2B subfamily and other CYP enzymes) in the rat and hence will be an activator of the constitutive androstane receptor (CAR). Because the available studies do not provide convincing evidence of genotoxicity, and liver tumour formation in rodents is likely to be through a CAR activation mode of action (MOA), the carcinogenicity is unlikely to be relevant for humans.

Observations in humans

27. A hospital-based case-control study in India investigated associations between breast cancer and blood levels of α-HCH, as well as β- and γ- HCH and other organochlorine compounds (Mathur et al., 2002). The study included 135 breast cancer patients and 50 female hospital controls. All pesticide levels were higher in breast cancer patients than in controls. Age-stratified analyses were limited by small numbers in the control group, but found higher α-HCH blood levels in cases aged 41–50 years than in control women of the same age. However, no adjustment was made for potentially important confounding factors such as breast feeding, childbearing, occupation and body fat. Nor did the analysis take into account the levels of other organochlorines. Therefore it is inconclusive with respect to associations with the HCHs.

Allergy

28. No studies have been found associating α-HCH and incidence of allergy, atopic disease or hypersensitivity.

Health-based guidance values (HBGV)
29. Table 1 summarises the tolerable daily intakes (TDI) and RfDs that have been established or proposed for α-HCH.

Table 1 TDIs and RfD proposed for α-HCH.

<table>
<thead>
<tr>
<th>Source of HBGV</th>
<th>HBGV μg/kg bw/day</th>
<th>Critical effect and species NOAEL in mg/kg bw/day</th>
<th>UF</th>
<th>Study selected to derive HBGV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral Consulting (2011a)</td>
<td>RfD 0.3</td>
<td>Hepatocarcinogenesis in male rats NOAEL 0.1</td>
<td>300</td>
<td>Masuda et al, 2001</td>
</tr>
<tr>
<td>Slooff and Matthijsen, (1988) confirmed by RIVM (2001)</td>
<td>TDI 1</td>
<td>Liver changes in rats NOAEL 0.1</td>
<td>100</td>
<td>Not identified</td>
</tr>
<tr>
<td>Health Canada (1992), cited in EFSA (2005)</td>
<td>Group TDI 0.3 for all HCH isomers</td>
<td>Unknown</td>
<td>Not identified</td>
<td></td>
</tr>
</tbody>
</table>

30. The RfD for α-HCH proposed by Integral Consulting (2011a) was based on the study of Masuda et al, (2001) on promotion of hepatocarcinogenicity in male rats (paragraph 28). The NOAEL was reported to be 0.1 mg/kg bw per day. An uncertainty factor (UF) of 300 (10 each to account for intra- and inter-species extrapolation, and 3 for database uncertainties) was applied, resulting in the proposed RfD of 0.3 μg/kg bw per day.

31. The RIVM TDI for α-HCH was originally established by Slooff and Mathijsen, (1988). The TDI was based on a 90 day oral study in rats with a NOAEL for liver changes (no further information given) equivalent to 0.1 mg/kg bw/day. Applying an UF of 100, the TDI was established at 1 μg/kg bw/day. No more information was provided on the original study or the rationale for applying only the default UF of 100 to the NOAEL. RIVM (2001) re-evaluated the scientific evidence and confirmed the previously established TDI. The basis for the Health Canada TDI is not publically available.

32. The COT concluded that it was not possible to endorse any of these values. The findings of Masuda et al. (2001) related to tumour promotion were considered to be of uncertain human relevance and there was insufficient information on the study used by RIVM (2001) as the basis for deriving a TDI. The COT concluded that the available information was insufficient to propose a TDI, and that it was more appropriate to apply a margin of exposure (MOE) approach using the NOAEL of 0.1 mg/kg b.w./day for hepatotoxicity, supported by the findings in relation to tumour promotion as a reference point. The toxicity of α-HCH has not been well characterised. In particular, there are no studies of reproductive toxicity. Taking into account that a UF of 100 is required for inter- and intra-species differences, and allowing an additional factor of 10 for the gaps in the database, the COT concluded that a MOE of 1000 or greater compared to the reference point of 0.1 mg/kg b.w./day would be of low health concern.
Sources of α-HCH and occurrence levels

Drinking water

33. Reports from water companies across the UK provide the results of analyses of α-HCH. For example, in the data summary tables from 2011 (published by the Drinking Water Inspectorate 12th July 2013) it was reported that the 99th percentile for α-HCH was < 0.002 µg/L for 1172 samples taken from the following areas: Wales, Trent-Severn, Bristol and Wessex (Dŵr Cymru Welsh Water, 2012; Severn Trent Water Ltd, 2012; Bristol Water Plc, 2012; Wessex Water Services Ltd, 2012).

Breast milk

34. In a study that included 92 samples from 48 donors in the UK sampled in 2001-2002, α-HCH was not detected at a limit of detection of 10 µg/kg fat (Wooldridge et al, 2004).

35. In the context of the 3rd WHO human milk field study (2000-2001) α-HCH was analysed in 16 human milk pools from 10 European countries (Bulgaria, Czech Republic, Germany, Ireland, Italy, Luxembourg, Norway, Russia, Spain and Ukraine) and 11 pools from 6 non-European countries (Brazil, Egypt, Fiji, Hong Kong, Philippines and USA) (Malisch et al., 2004). The α-HCH concentrations in the pools from Bulgaria, Russia and Ukraine ranged from 2 to 6 µg/kg fat with the highest value from the Ukraine. α-HCH was not detected in other European samples at a limit of detection of 1 µg/kg fat.

Infant formula

36. Infant formulae are included in the UK national monitoring programme for pesticide residues in food, which is overseen by the Defra Expert Committee on Pesticide Residues in Food (PRiF). Infant formula was last surveyed in July-September 2009 and was not detected at or above the reporting limits of 10 µg/kg, i.e the current MRL (PRiF, 2010).

37. A study from 2001 to 2006 on marketed food including infant formula in Barcelona (Catalonia, Spain) did not find any sample containing α-HCH at or above the quantification limits out of the 1484 samples analysed (Fontcuberta et al., 2008). The quantification limits were 10 µg/kg in low fat food and 5 µg/kg in high fat food.

Weaning diet

38. Cereal-based, fruit and vegetables, and other products containing egg, fish, meat or cheese to be consumed by infants were last surveyed by PRiF in March (2011) (PRiF, 2011), August (2011) (PRiF, 2012) and February (2009) (PRiF, 2009) respectively. No α-HCH was detected at or above the reporting limits of 10 µg/kg each.
Exposure

39. An on-going market basket study performed between 1994 and 2003 in the Czech Republic, where HCHs were produced and used for a long time, indicated a decline of daily dietary intakes. The median daily intake for \(\alpha \)-HCH in 1994 was 4.3 ng/kg b.w. (Ruprich et al., 1995) and the corresponding intake reported in 2002 was 1.6 ng/kg b.w. (Ruprich et al., 2003).

40. Biomonitoring data in Germany indicate a decrease in exposure to \(\alpha \)-HCH. The third German Environmental Survey conducted in 1998 (GerES III) in blood samples from 4800 subjects geographically representative for the German population, age (18 to 69 years) and gender (Becker et al, 2002). The arithmetic mean and the maximum value for all subjects was <0.1 and 0.4 µg/L respectively. The limit of quantification (0.1 µg/L) was exceeded by 1.7% of the subjects. The subsequent survey (GerES IV) carried out between 2003-2006 in blood samples from 1063 children aged 7 to 14 from 150 randomly selected locations in Germany reported no subjects above the level of quantification of 0.016 µg/L (Schulz et al, 2009).

41. The consumption values used for the exposure calculation for breast milk and infant formula were 800 mL (average consumer) and 1200 mL (high consumer) as proposed by EFSA (2012) and applied in other COT papers. In its dietary exposure estimations, the COT has previously used bodyweight data from a relatively old survey (DH, 1994). Bodyweight data are now available from the recently published UK Dietary and Nutrition Survey of Infants and Young Children (DNSIYC) (DH, 2013), with average bodyweights of 7.8, 8.7 and 9.6 kg for infants aged >4.0-6.0, >6.0-9.0 and >9.0-12.0 months old, respectively. Since DNSIYC did not include infants younger than 4 months, in this statement a value of 5.9 kg for infants aged 0-3 months from an earlier survey (DH, 1994), is assumed for infants aged 0-4.0 months.

Breast milk

42. Since there are no quantified data for occurrence of \(\alpha \)-HCH of relevance to breast milk in the UK, a worst case estimation has been based on the limit of detection (< 1 µg/kg fat) for most European countries within the 3rd WHO human milk field study. The exposures estimated are presented in Table 2, calculated on the assumption that the fat content of breast milk was 3.5%.

Table 2. Theoretical maximum exposure of infants to \(\alpha \)-HCH for average and high consumption of breast milk.

<table>
<thead>
<tr>
<th></th>
<th>Exposure (µg/kg bw per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 – 4 months</td>
</tr>
<tr>
<td>Average</td>
<td>< 0.005</td>
</tr>
<tr>
<td>High level</td>
<td>< 0.007</td>
</tr>
</tbody>
</table>
43. Two studies carried out in the Czech Republic with samples in the years 1994 and 2002 reported a reduced estimated exposure from 0.004 to 0.002 µg/kg bw/day (Ruprich et al, 1995; 2003).

Infant formula

44. In the surveys carried out in the UK by PRiF on infant formula no samples were found at or above the MRL (10 µg/kg) for α-HCH. From the summary reports provided by the water companies in several regions in the UK the 99th percentile for α-HCH was < 0.002 µg/L. If α-HCH isomer was present at 0.002 µg/L in water used to reconstitute infant formula, the exposure from the water would be 0.002-µg, equivalent to 0.0003 µg/kg bw day for infants younger than 4 months with an average weight of 5.9 kg. This is likely to have a negligible impact on the total from reconstituted formula. Table 3 provides the exposure that would result from consumption of infant formula containing α-HCH at the MRL. It is likely that actual exposure would be much lower than this.

Table 3. Theoretical maximum exposure of infants to α-HCH from average and high consumption of infant formula that is compliant with the legislation

<table>
<thead>
<tr>
<th>Consumption</th>
<th>0 – 4 months</th>
<th>>4.0 – 6.0 months</th>
<th>>6.0 – 9.0 months</th>
<th>>9.0 – 12.0 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (800 ml)</td>
<td>0.18</td>
<td>0.14</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td>High level (1200 ml)</td>
<td>0.27</td>
<td>0.21</td>
<td>0.19</td>
<td>0.17</td>
</tr>
</tbody>
</table>

It is assumed that 0.135 kg of powder is used to reconstitute 1 L of formula, as recommended by the Center for the Evaluation of Risks to Human Reproduction (CERHR), which is consistent with infant formula manufacturers’ advice in the UK. *The contribution from water used for reconstitution has not been added as it is likely to make a negligible contribution to total α-HCH exposure from infant formula.*

Weaning diet

45. The average and 97.5th percentile of total solids consumed by infants from the DNSIYC is estimated at 35 and 54 g/kg bw/day respectively. No samples were found at or above the MRL (10 µg/kg) for α-HCH in the surveys carried out in the UK on cereal-based, fruit and vegetables, and other products containing egg, fish, meat or cheese to be consumed by infants. Thus, the maximum exposure to α-HCH isomer for average and high-level consumption is less than 0.35 and 0.54 µg/kg bw/day respectively. It is likely that actual exposure from solid infant foods would be much lower than this.
Risk characterisation

46. The MOEs calculated for maximal predicted exposure to α-HCH compared to the reference point of 0.1 mg/kg b.w./day are shown in Table 4. The MOEs for maximal exposure from breast milk, of less than 0.007 µg/kg bw/day, exceed 14,500 and are not a concern.

47. The MOEs calculated for maximal predicted exposure from infant formula for average and high consumers are > 370 and > 900. Whilst these MOEs are below the value of 1,000 identified by COT as of low health concern, actual exposure is likely to be much lower since it is highly unlikely that all infant formula would contain α-HCH at the maximum permitted level. The available data indicate that exposure from water used to reconstitute infant formula would be negligible.

48. The MOEs calculated for exposure to α-HCH from solid infant food for average and high consumers are > 370 and > 900 respectively. Again these MOEs are below the value of 1,000 identified by COT as of low health concern, but actual exposures are likely to be much lower.

Table 4. MOEs (rounded) calculated based on potential maximum exposure of infants to α-HCH from average and high consumption breast milk, infant formula and infant foods

<table>
<thead>
<tr>
<th>Isomer</th>
<th>Consumption</th>
<th>Exposure (µg/kg bw/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 - 4.0 months</td>
</tr>
<tr>
<td>Breast milk</td>
<td>Average</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td>High level</td>
<td>14,500</td>
</tr>
<tr>
<td>Infant formula</td>
<td>(assuming compliance with EU legislation)</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>High level</td>
<td>> 370</td>
</tr>
<tr>
<td>Infant food</td>
<td>(assuming compliance with EU legislation)</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>High level</td>
<td>N/A</td>
</tr>
</tbody>
</table>

β-HCH

Toxicokinetics

49. From the limited available data it appears that β-HCH is almost completely absorbed from the gastrointestinal tract (WHO-IPCS, 1992).

50. Following absorption β-HCH is predominantly distributed to the liver, kidney, brain, muscle and adipose tissue with marked accumulation in the fat. β-HCH is reported to pass the blood-brain barrier less readily than other HCH isomers. Transplacental and lactational transfer is also reported (WHO-IPCS, 1992).
51. The metabolism of β-HCH involves dechlorination. β-HCH is metabolised predominantly to 2,4,6-trichlorophenol, but with fewer other chlorophenols having been reported. Conjugation is reported to be mainly with glucuronide or sulphate (WHO-IPCS, 1992).

52. In rats, 70% of β-HCH is eliminated within 28 days, one third of this being excreted in the urine as metabolites, suggesting that faecal excretion is more important for β-HCH than for α-HCH. A 2-stage process has been reported for elimination of β-HCH in mice, the half-life for the first stage being 2.5 days and that for the second stage being 18 days. The half-life for clearance from blood in rats (sex not specified) was 1 month, and the half-life for clearance from fat was 14 days in male rats and 28 days in female rats. A half-life of 22 days for clearance from "internal organs" and 20 days for the brain were reported in female rats. (WHO-IPCS, 1992).

53. The elimination of β-HCH in humans was investigated by Jung et al., (1997) in a group of 40 former workers of a lindane-producing plant. Assuming a first-order kinetic model for excretion, the median half-life of β-HCH was 7.2 years calculated by concentrations in whole blood and 7.6 years calculated by concentrations in extractable lipids.

54. Breast milk is a route of excretion of β-HCH in lactating women. Waliszewski et al. (2009) determined the concentration of organochlorine pesticide levels in human breast milk samples from the 4th to the 30th day postpartum from 40 participants who had lived a minimum of 5 years in Veracruz (Mexico). The β-HCH residues presented as mean and standard deviation (SD) in the breast milk samples decreased during lactation from 95 (60) on the 4th day to 66 (45) µg/kg on the 30th day.

55. There are few studies published on the effects of β-HCH on drug metabolising enzymes, which could be a reflection on their lack of relevance in the mode of action of β-HCH. A study by Van Velsen et al. (1986), showed that β-HCH is a CYP inducer in the rat, but did not determine which CYP enzymes were induced.

Toxicity of β-HCH

56. β-HCH is of low acute toxicity, with oral LD50 values > 8,000 mg/kg b.w. in rats and > 16,000 mg/kg b.w. in mice. Signs of toxicity were mainly related to stimulation of the nervous system (WHO-IPCS, 1992).

57. Hepatotoxicity has been reported for β-HCH in many studies. For example, toxicity was investigated in a 13-week study in rats with β-HCH at 0, 2, 10, 50, or 250 mg/kg feed. Liver effects (increased weight, centrilobular hypertrophy, and proliferation of smooth endoplasmic reticulum or increased activity of microsomal enzymes) were observed in all dose groups. Effects on the thymus, testes and
ovaries, and severe morbidity were observed in the highest dose group (Van Velsen et al., 1986a). The LOAEL from this study was 2 mg/kg feed, the lowest feed concentration. This is equivalent to 0.18 mg/kg bw per day based on the EFSA (2012) default values for subchronic studies.

58. β-HCH has been observed in acute and semi-chronic studies to induce ataxia in rats with a NOAEL of 5 mg/kg b.w. per day and 19 mg/kg bw per day in mice. Other effects such as reduced tail nerve conduction velocity have been reported at higher concentrations (WHO-IPCS, 1992).

59. A study by Van Velsen et al., (1986a) on rats exposed through diet to β-HCH for 13 weeks reported a number of immunological effects with a NOAEL at 4.5 and 3.3 mg/kg bw/day for males and females respectively. The described effects were significantly decreased levels of red and white blood cells in conjunction with increased extramedullary haematopoiesis in the spleen and hypertrophy of the thymus and adrenal gland. Lower NOAELs at 0.89 and 0.66 mg/kg bw/day were reported for relative increased weight in spleen and thymus.

60. In a 2 generation-study by van Velsen, (1986b in PhD Thesis, cited in IPCS-WHO, 1992), male and female rats in the F0 generation were fed β-HCH in the diet at 2, 10 or 50 mg/kg for 13 weeks. Almost complete infertility was reported in the F1 generation for the group ingesting 50 mg/kg together with reduced litter size and death before weaning. In the group ingesting 10 mg/kg precocious vaginal opening and complete infertility in the second generation were reported. No effects were reported for the group on 2 mg/kg. A later publication by Van Velsen et al, (1986a) reported endocrine effects in the parental generation. In females, decreased body weight and increased weight of the adrenal gland and uterus were observed, with a NOAEL of 0.13 mg/kg bw per day. Other effects were also reported in this study such as atrophy of the testes, reduced size of seminiferous tubules and lower number of Leydig cells were observed in males with a NOAEL of 3.3 mg/kg bw per day.

Genotoxicity

61. β-HCH was not mutagenic in the spot test in Bacillus subtilis (Tanooka et al, 1977). A study investigating DNA binding in male mice, an extremely low level of binding liver 10 h after oral administration of β-[3H]HCH i.p. (Sagelsdorff et al, 1983). Weak positives were reported in the micronucleus test at 1 and 10 nM and the Comet assay at 100 µM in MCF-7 cells (Kalantzi et al, 2004). The COT considered that the data did not provide convincing evidence that β-HCH is genotoxic.

Carcinogenicity

62. Eight studies of carcinogenicity have been reported for β-HCH in rats and mice. While there are limitations in several of them only a study by Thorpe and Walker (1973) provided indications of carcinogenicity. In this study male and female mice were treated for 2 years to β-HCH at 200 ppm in the feed (equivalent to 30 mg/kg bw/day applying the EFSA (2012) conversion factor of 0.15 for chronic mouse studies). There was decreased survival in treated animals compared to controls, liver
enlargement seen after 50-60 weeks and ataxia before death. Mice dying early had hepatic and extra-hepatic tumors; males were more susceptible to hepatic tumours than females. Lung metastases were noted in males but not females.

63. The COT concluded that the available data do not provide convincing evidence that β-HCH is carcinogenic.

Observations in humans

64. In 2004, the Committee on Carcinogenicity of Chemicals in Food, Consumer Products and the Environment (COC) considered whether exposure to organochlorine insecticides including β-HCH and lindane was associated with an increased risk of breast cancer (COC, 2004). At that time, the COC concluded that:

“β-HCH should be regarded as having weak in vivo oestrogenic activity. There is evidence from investigations undertaken in the UK for a decline in β-HCH concentrations in human fat samples after 1982/3. The available epidemiological studies do not suggest any evidence for an association between β-HCH and increased risk of breast cancer. Overall the available data do not suggest that environmental exposure to β-HCH is a cause for concern as a risk factor for human breast cancer”. Further studies have been published since 2004 until October 2010 focussing on the potential association between β-HCH and breast cancer. A study by Ociepa-Zawal et al, (2010) comparing levels of β-HCH in healthy subjects (n=23) and breast cancer patients (n=54) in Poland reported higher levels of β-HCH in adipose tissue in the latter population. Two studies carried in Japan did not find an association between serum plasma levels of β-HCH and breast cancer (Itoh et al, 2009; Iwasaki et al, 2008).

65. Most other studies investigating associations of β-HCH with risk of cancer have focused on non-Hodgkin lymphoma (NHL). Five case-control studies were found which looked at this. Cantor et al (2003) conducted a case-control study of 74 cases and 174 controls nested in a community-based US cohort. This had the strongest design of the five studies as serum samples were obtained well before diagnosis (a median of 12 years). After adjustment for covariates including PCBs, there was no consistent trend in risk with increasing concentration of β-HCH, and risk in the highest quartile of concentrations was 1.5 (95% CI 0.5-4.3) in comparison with the lowest quartile – i.e. not statistically significant. A European case-control study with 174 cases and 203 controls (Cocco et al, 2008) and a US study with 100 cases and 100 controls (de Roos et al, 2005) found no association between NHL and higher β-HCH in plasma. A further US study by Quintana et al (2004) of 175 cases and 481 controls measured β-HCH in adipose samples from cadavers and surgical patients with a variety of diagnoses, and found that risk of NHL was elevated for the highest quartile of concentrations (OR 2.47, 95% CI 1.34-4.55). Although risks were lowest in the two middle quartiles of exposure, there was a highly significant trend in risk across the four exposure categories (P=0.0001). However, associations were attenuated after adjustment for other pesticides (heptachlor epoxide, p,p'-DDE and dieldrin) in two-pollutant statistical analyses, only remaining
statistically significant after adjustment for one of these three (p,p'-DDE). A Canadian study by Spinelli et al, (2007) involving 422 cases and 460 controls found significant associations of β-HCH and five other pesticides with NHL (OR for highest quartile of β-HCH 1.59, 95% CI 1.01-2.49), but the study did not adjust for other pesticide residues or PCBs, with which β-HCH was moderately correlated.

66. Taken together, the inconsistent findings between studies are not strongly suggestive of increased risk of NHL in association with higher tissue concentrations of β-HCH. However, correlations of tissue concentrations with those of other persistent organic pollutants make it difficult to demonstrate associations with any single compound, and small numbers of subjects have limited the statistical power of most studies to explore associations with subtypes of NHL.

67. Three studies have evaluated associations between β-HCH and Parkinson’s disease. Weisskopf et al (2010) reported a case-control study in Finland in which serum samples were taken before diagnosis and analysed contemporaneously. The study included 171 cases and 349 controls within a cohort of 40,221 individuals participating in the Finnish Mobile Clinic Health Examination Survey, who had provided serum samples during 1968-1972. Cases occurring up to 1994 were identified through a national registry and confirmed by neurologist review. The study found no associations between β-HCH and Parkinson’s disease (although an association was seen with dieldrin). This contrasts with two case-control studies in which measurements were made after diagnosis and levels reported in blood were lower than those from the Finnish study. A US study comparing 149 cases and 134 controls (Richardson et al 2011) found that higher serum β-HCH was associated with increased risk of Parkinson’s disease. This incorporated most (49 of 50 cases, 41 of 43 controls) subjects from an earlier report published by the same group (Richardson et al, 2009), which also indicated an association. Estimated ORs were 1.03 (95% CI 1.00 to 1.07) for an increase of 1ng/mg cholesterol, and 2.85 (95% CI 1.8-4.48) for levels above the detectable inter-quartile range. Petersen et al (2008) in a study of 79 cases and 154 controls in the Faroe islands also found that higher serum levels of β-HCH were associated with Parkinson’s disease. None of the studies of Parkinson’s disease adjusted for other pesticide exposures.

68. The epidemiological findings for Parkinson’s disease are conflicting and therefore inconclusive. Notably, the largest study, which was least prone to bias since samples were collected before diagnosis, did not find an association. No account was taken of potential weight loss related to illness, which may have affected the studies with samples taken after diagnosis.

69. Three studies have looked for, but not found, associations of β-HCH exposure with cryptorchidism. A nested case-control study (241 cases, 681 controls) by Pierik et al, (2007) found no evidence of a dose-response relationship between β-HCH in the serum of pregnant women and cryptorchidism in their sons, although two of the three highest of six quantiles (but not the highest quantile) showed significantly increased risks. Damgaard et al. (2006) did not find higher β-HCH levels in post-partum breast milk samples from mothers of 62 boys with cryptorchidism as compared with 68 controls. Hosie et al (2000) measured pesticide levels in fat
samples from 18 cases and 30 controls, and there were no statistically significant associations with β-HCH.

Allergy

70. One relevant study has been found in the scientific literature when searching for β-HCH and incidence of allergy, atopic disease or hypersensitivity. A cross-sectional study by Miyake et al, (2011) investigated presence of β-HCH in breast milk and the incidence of allergic disorders in a Japanese population of women (n = 124). The definition of wheeze and asthma was based on criteria from the European Community Respiratory Health Survey whereas that of eczema and rhinoconjunctivitis was based on criteria from the International Study of Asthma and Allergies in Childhood. Adjustment was made for age, smoking, family history of allergic disorders, and education. The prevalence values of wheeze, asthma, eczema, and rhinoconjunctivitis in the past 12 months were 9.7%, 4.8%, 13.7%, and 29.8%, respectively. The median concentrations of β-HCH in breast milk were 28.3 ng/g lipid, respectively (range, 4.5-253 ng/g lipid, respectively). When the exposures were treated as continuous variables, no significant associations were found between concentrations of β-HCH and the prevalence of wheeze, asthma, eczema, or rhinoconjunctivitis. The results suggest that concentrations of β-HCH in breast milk are not evidently associated with the prevalence of wheeze, asthma, eczema, or rhinoconjunctivitis in young female Japanese adults (Miyake et al, 2011).

71. No other studies have been found associating β-HCH and incidence of allergy, atopic disease or hypersensitivity.

Health-based guidance values (HBGV)

72. Table 5 summarises the tolerable daily intakes (TDI) and RfDs that have been established or proposed for β-HCH.

Table 5 TDI and RfD proposed for β-HCH.

<table>
<thead>
<tr>
<th>Source of HBGV</th>
<th>HBGV µg/kg bw/day</th>
<th>Critical effect and species NOAEL/LOAEL mg/kg bw/day</th>
<th>UF</th>
<th>Study selected to derive HBGV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral Consulting (2011b)</td>
<td>RfD 0.06</td>
<td>Hepatotoxicity in rats LOAEL 0.18</td>
<td>3,000</td>
<td>Van Velsen et al, 1986a</td>
</tr>
<tr>
<td>Slooff and Matthijsen, (1988) confirmed by RIVM (2001)</td>
<td>TDI 0.02</td>
<td>Infertility in male rats NOAEL 0.02</td>
<td>1,000</td>
<td>Van Velsen et al, 1986b</td>
</tr>
<tr>
<td>Health Canada (1992), cited in EFSA (2005)</td>
<td>Group TDI 0.3</td>
<td>Unknown</td>
<td></td>
<td>Not identified</td>
</tr>
</tbody>
</table>

73. The RfD for β-HCH proposed by Integral Consulting, (2011b) was based on the study by Van Velsen et al, (1986a) on hepatotoxicity in rats exposed for 13 weeks, with a LOAEL of 0.18 mg/kg day (paragraph 57). The UF applied was 3,000 to account for inter- and intra-species differences, use of LOAEL, use of subchronic study, and database limitations, resulting in a proposed RfD of 0.06 µg/kg day.
74. The RIVM TDI for β-HCH was originally established by Slooff and Mathijsen, (1988). The TDI was based on a semi-chronic oral study on reproduction in rats reported in a PhD Thesis by Van Velsen (1986b) cited in WHO-IPCS (1992), with a NOAEL for infertility considered to be equivalent to 0.02 mg/kg bw/day (paragraph 57). Applying a UF of 1,000, the TDI established was TDI. The basis for the UF of 1,000 was not stated. RIVM (2001) re-evaluated the scientific evidence and confirmed its TDI.

75. The COT concluded that it was not possible to endorse the HBGV proposed by RIVM due to insufficient information on the study. The COT concluded that the available information was insufficient to propose a TDI, and that it was more appropriate to apply a MOE approach using the LOAEL of 0.18 mg/kg bw/day based on centrilobular hypertrophy (paragraph 57) as a reference point. The toxicity of β-HCH has not been well characterised. The study on reproductive toxicity by Van Velsen (1986b) provides insufficient information. Taking into account that a UF of 100 is required for inter- and intra-species differences, and allowing additional factors of 3 for the absence of a NOAEL and 10 for the other gaps in the database. The COT concluded that a MOE of 3000 or greater compared to the reference point of 0.18 mg/kg b.w./day would be of low health concern.

Sources of β-HCH and occurrence levels

Drinking water

76. Reports from water companies across the UK provide the results of analyses of β-HCH. For example, in the data summary tables from 2011 (published by the Drinking Water Inspectorate12th July 2013) it was reported that the 99th percentile for α-HCH was < 0.002 µg/L for 566 samples taken from the following areas: Wales and Trent-Severn (Dŵr Cymru Welsh Water, 2012; Severn Trent Water Ltd, 2012).

Breast milk

77. A time-related decline in the levels of β-HCH in breast milk is apparent from the scientific literature. Table 6 shows the concentrations of β-HCH in breast milk from studies in UK populations published since 1965.

Table 6. UK studies measuring β-HCH in breast milk published since 1965.

<table>
<thead>
<tr>
<th>N</th>
<th>µg/kg milk fat</th>
<th>Mean µg/kg whole milk</th>
<th>% samples with detectable residues</th>
<th>Years of sample collection</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7 33</td>
<td>13 (A or G not specified)</td>
<td>100 1963-1964</td>
</tr>
</tbody>
</table>
This is a draft statement for discussion.
It does not reflect the views of the Committee and should not be cited.

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 (A or G not specified)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1984</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>193</td>
<td>80</td>
<td>N.D.</td>
<td>60</td>
<td><20</td>
<td>990</td>
<td>2</td>
<td>82</td>
<td>1989-1991</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>68 (A or G not specified)</td>
<td>50</td>
<td><8</td>
<td>750</td>
<td>1</td>
<td>36</td>
<td>1997-1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>40</td>
<td>15</td>
<td>17</td>
<td>1.2</td>
<td>1500</td>
<td>N.D.</td>
<td>100</td>
<td>2001-2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

78. In a study that included 92 samples from 48 donors in the UK sampled in 2001-2002, β-HCH was not detected in any sample at a limit of detection of 100 µg/kg fat (Wooldridge et al, 2004).

79. In the context of the 3rd WHO human milk field study (2000-2001) β-HCH was analysed in 16 human milk pools from 10 European countries (Bulgaria, Czech Republic, Germany, Ireland, Italy, Luxembourg, Norway, Russia, Spain and Ukraine) and 11 pools from 6 non-European countries (Brazil, Egypt, Fiji, Hong Kong, Philippines and USA) (Malisch et al., 2004). The β-HCH concentrations in the pools from European countries ranged from 11 to 279 µg/kg.

80. The occurrence levels of β-HCH in breast milk in studies on populations in the United States and Europe published since 1994 are shown in Table 7.
Table 7. US and European studies measuring β-HCH in breast milk published since 1994 in chronological order of sample collection.

<table>
<thead>
<tr>
<th>Country (City/Region)</th>
<th>µg/kg milk fat median/mean/level as indicated (high percentile as indicated) (time data provided)</th>
<th>Years samples collected</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy (average of Rome, Milan, Florence and Pavia)</td>
<td>130 mean (not indicated)</td>
<td>1987</td>
<td>Larsen et al, 1994</td>
</tr>
</tbody>
</table>
| Germany (North) | 200 median (not indicated) (1986)
| Spain | 240 unknown mean or median (not indicated) | 1991 | Hernandez et al. in Wong (2002) |
| Germany (Saxony) | 40 median (95th%, 7,970) | 1992-1993 | Raum et al, 1998 |
| Germany (Saxony) | 59 median (not indicated) | 1992-1993 | Schlaud et al, 1995 |
| Germany (Saxony – Rural areas) | 45 median (not indicated) | 1992-1993 | Schlaud et al, 1995 |
| Russia (Murmansk) | 853 mean (not indicated) | 1993 | Polder et al, 1998 |
| Russia (Monchegorsk) | 740 mean (not indicated) | 1993 | Polder et al, 1998 |
| Ukraine | 731 median (90th%, 1,305) | 1993-1994 | Gladen et al, 1999 |
| Norway (Oslo) | 14 mean (not indicated) | 2000-2001 | Polder et al, 2008 |
| Norway (Tromsø) | 10 mean (not indicated) | 2000-2001 | Polder et al, 2008 |
| Germany (North Ryne-Westphalia) | 130 mean (not indicated) | 1984 | P Fürst, personal communication to EFSA, 2005. |
| North Germany | 11.6 median (unknown) | 2006 | Zietz et al, 2008 |
| USA (California) | 0.22 urban median (75%, 0.24) | 2002-2007 | Weldon et al, 2011 |
| | 0.44 rural median (75%, 0.52) | | |

81. In a study on a German cohort, the median levels of β-HCH in breast milk were positively correlated with maternal age and negatively associated with parity and the total period of breast-feeding. Post-pregnancy body mass index (BMI) was a significant predictor of the likelihood of having higher concentrations of β-HCH in breast milk. Women who had followed a low-fat diet for at least 3 years had lower β-HCH levels in their breast milk than women whose diet included large quantities of meat (Schade, 1998).

Infant formula

82. Infant formula was last surveyed in the UK national monitoring programme for pesticide residues in food in July-September 2009 (PRiF, 2010) and was not detected at or above the reporting limits of 10 µg/kg each, i.e the current MRL.

83. A study from 2001 to 2006 on marketed food including infant formula in Barcelona (Catalonia, Spain) did not find any sample at or above the quantification limits out of the 1484 samples analysed (Fontcuberta et al., 2008). The quantification limits were 10 µg/kg in low fat food and 5 µg/kg in high fat food.
Weaning diet

84. Cereal-based, fruit and vegetables, and other products containing egg, fish, meat or cheese to be consumed by infants were last surveyed by PRIF in March (2011) (PRIF, 2011), August (2011) (PRIF, 2012) and February (2009) (PRIF, 2009) respectively. No β-HCH was detected at or above the reporting limits of 10 µg/kg each.

Exposure

85. An on-going market basket study performed between 1994 and 2003 in the Czech Republic, where HCHs were produced and used for a long time, indicated a decline of dietary exposure. The median daily intake for β-HCH in 1994 was 8.4 ng/kg b.w. (Ruprich et al., 1995) and the corresponding intake reported in 2002 was 2.1 ng/kg b.w. (Ruprich et al., 2003).

86. Biomonitoring data in Germany also indicate a decrease in exposure to β-HCH. The third German Environmental Survey conducted in 1998 (GerES III) in blood samples from 4800 subjects geographically representative for the German population, age (18 to 69 years) and gender (Becker et al. 2002). The arithmetic mean and the maximum value for all subjects was 0.16 and 7.8 µg/L respectively. The limit of quantification (0.1 µg/L) was exceeded by 34% of the subjects. The subsequent survey (GerES IV) carried out between 2003-2006 in blood samples from 1063 children aged 7 to 14 from 150 randomly selected locations in Germany reported 76% of the subjects above the level of quantification of 0.04 µg/L with 0.01 and 0.1 µg/L as 50% and 95% percentile respectively (Schulz et al, 2009).

87. The values for consumption and body weight used for the estimation of exposure for β-HCH are as described for α-HCH in paragraph 41.

Breast milk

88. The occurrence value selected for the calculation of exposure to β-HCH was the mean value from the most recent UK study presented in Table 2, i.e. 15 µg/kg for β-HCH (Kalantzi et al., 2004). The exposures estimated are presented in Table 8, calculated on the assumption that the fat content of breast milk was 3.5 %.

Table 8. Estimated exposure of infants to β-HCH for average and high consumption of breast milk.

<table>
<thead>
<tr>
<th>Consumption</th>
<th>Exposure (µg/kg bw per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 – 4.0 months</td>
</tr>
<tr>
<td>Average</td>
<td>0.07</td>
</tr>
<tr>
<td>High level</td>
<td>0.11</td>
</tr>
</tbody>
</table>
89. EFSA calculated, assuming an average intake of 800 ml breast milk with a fat content of 3.5% that the concentration of 20 µg β-HCH/kg fat identified from a study in Western Germany in 1984 would result in a daily intake of 0.11 µg/kg b.w. for a fully breastfed infant weighing 5 kg (EFSA, 2005).

90. Two studies carried out in the Czech Republic with samples collected in the years 1994 and 2002 reported a reduced estimated exposure from 0.019 to 0.006 µg/kg bw/day (Ruprich et al, 1995; 2003). Mean exposure levels from samples collected in Spain between 1989 and 1990 were 0.27 and 0.23 µg/kg bw/day for a 1 and 3 months old respectively (Martín Montero et al, 1993). Mean exposure levels from samples collected in Canada between 1993 and 1996 were 0.001 µg/kg bw/day (Health Canada, 2003).

Infant formula

91. No samples were found at or above the MRL (10 µg/kg) for β-HCH in the surveys carried out in the UK by PRiF on infant formula. As for α-HCH, the MRL was used to estimate the theoretical maximum exposure of infants to β-HCHs. The summary reports of water companies in several regions in the UK provided a 99th percentile for β-HCH < 0.002 µg/L equal to the occurrence level reported for α-HCH. Given the identical occurrence, the same theoretical maximum exposure of infants for α-HCH applies to β-HCH (paragraph 44 and Table 3).

Weaning diet

92. The maximum exposure estimates calculated from solid infant foods for α-HCH also apply to β-HCH given the selection of a MRL common to both isomers (paragraph 45).

Risk characterisation

93. The MOEs calculated for maximal predicted exposure to β-HCH compared to the reference point of 0.18 mg/kg bw/day are shown in Table 9. Based on the available information, it is not possible to conclude that the MOEs are greater than 3000. However, since these calculations are based on maximum permitted levels for infant formula and food it is likely that actual exposures are much lower and the MOEs are not informative about health risk.
Table 9. MOEs (rounded) calculated based on potential maximum exposure of infants to β-HCH from average and high consumption breast milk, infant formula and infant foods compared to the reference point of 0.18 mg/kg bw/day

<table>
<thead>
<tr>
<th>Isomer</th>
<th>Consumption</th>
<th>0 – 4.0 months</th>
<th>>4.0 – 6.0 months</th>
<th>>6.0 – 9.0 months</th>
<th>>9.0 – 12.0 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast milk alone</td>
<td>Average</td>
<td>2,600</td>
<td>3,600</td>
<td>3,600</td>
<td>4,500</td>
</tr>
<tr>
<td></td>
<td>High level</td>
<td>1,600</td>
<td>2,300</td>
<td>2,600</td>
<td>3,000</td>
</tr>
<tr>
<td>Infant formula (assuming compliance with EU legislation)</td>
<td>Average</td>
<td>> 1000</td>
<td>> 1300</td>
<td>> 1500</td>
<td>> 1600</td>
</tr>
<tr>
<td></td>
<td>High level</td>
<td>> 670</td>
<td>> 900</td>
<td>> 950</td>
<td>> 1100</td>
</tr>
<tr>
<td>Infant food (assuming compliance with EU legislation)</td>
<td>Average</td>
<td>N/A</td>
<td>N/A</td>
<td>> 510</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High level</td>
<td>N/A</td>
<td>N/A</td>
<td>> 330</td>
<td></td>
</tr>
</tbody>
</table>

γ-HCH

94. The term “lindane” commonly refers to pesticidal products that contain >99% γ-HCH, although it has also been used colloquially as a synonym for γ-HCH. In this statement the term “lindane” is used when referring to the product, and γ-HCH is used when referring to the chemical. Lindane has been used for topical insecticide treatment in humans and animals. It has been estimated that for each ton of lindane produced, around 6-10 tons of other isomers, were generated (Stockholm Convention, 2009).

95. Pesticidal use of HCH products that contained less than 99.0 % γ-HCH was banned in the EU by Council Directive 79/117/EEC of 21 December 1978. The authorization for lindane use as a pesticide was withdrawn in the EU by Commission Decision 2000/801/EC of 20 December 2000. This action was taken primarily due to concerns with regard to its safety, in particular for operator exposure, the fate and behaviour of lindane in the environment and effects on non-target organisms.

96. There are no current Marketing Authorisations (product licences) in the UK for any medicines containing lindane as the active ingredient (Medicines and Healthcare products Regulatory Agency, personal communication, 2013). However, it is still used in other countries. For example, shampoos with lindane for medical purposes are approved by the US Food and Drug Agency (USFDA) and are marketed in the US. Lindane is typically used at 1 % concentration (Reynolds, 1996). USFDA suggests their use as a second-line medication for patients with scabies and lice who have failed or cannot tolerate first-line therapies (USFDA, 2007).

Toxicokinetics

This is a draft statement for discussion.
It does not reflect the views of the Committee and should not be cited.
This is a draft statement for discussion.
It does not reflect the views of the Committee and should not be cited.

97. γ-HCH is rapidly and extensively absorbed in mice and rats after oral dosing. Absorption is rapid with peak levels in blood after single administration of 20 mg/kg bw at 40 minutes to 5 hours after which a plateau was observed (FAO/WHO, 2002). Absorption through skin was shown in human volunteers with different solvents such as white spirit and alcohol (Dick et al., 1997).

98. The metabolism of γ-HCH is extensive in mammals, involving stepwise dehydrogenation, dechlorination and dehydrochlorination, which may be followed by conjugation with sulphate or glucuronide. CYPs appears to be involved in the phase I metabolism. The predominant metabolite is again 2,4,6-trichlorophenol, with varying amounts of other chlorophenols, depending on species. EFSA (2005) noted that 70 metabolites of γ-HCH have been identified in animals and humans, including (in no particular order) pentachlorophenol, 2,3,4,6- and 2,3,5,6-tetrachlorophenol and 2,4,6-trichlorophenol, tetrachlorophenols, 2,3,4,5,6-pentachlorobenzene and pentachlorocyclohexene and conjugates with glutathione, glucuronide and sulphate.

99. γ-HCH is extensively distributed throughout the body of rodents. In mice and rats, results from several studies showed similar distribution patterns with radiolabel detected in fat, brain, kidney, muscle, liver and ovary tissue after administration of lindane in the diet. The highest concentration was found in adipose tissue (FAO/WHO, 2002).

100. Urine is the major route of excretion of metabolites, with a smaller proportion in the faeces. The half-life of γ-HCH in rats was estimated to be 3–5 days, approximately 80% of the administered dose being excreted within 8 days (FAO/WHO, 2002).

Induction of drug metabolising enzymes

101. Parmar et al. (2003) reported dose-dependent increased levels of CYP 1A1/1A2, 2B1/2B2 and 2E1 enzymes in the liver and brain of rats dosed with γ-HCH at 2.5 mg/kg bw per day or more for 21 days. The induction of CYP2B in rat has been also confirmed by Matsuurara et al. (2005).

Toxicity of γ-HCH

102. Oral LD50 for γ-HCH values are 56 to 250 mg/kg bw in mice and 140–190 mg/kg bw in rats (FAO/WHO, 2002).

103. In rats, γ-HCH exhibits renal toxicity that is considered not to be relevant to humans since it is a consequence of accumulation of α-2micro-globulin, a protein that is not found in humans (FAO/WHO, 2002).

104. Hepatocellular hypertrophy was observed in a number of studies of γ-HCH in mice, rats and rabbits. In a 2-year study of toxicity and carcinogenicity in rats, the NOAEL was 10 ppm in the diet (estimated by authors to be equal to 0.47 mg/kg bw per day) on the basis of increased liver weight, hepatocellular hypertrophy, increased
spleen weight and deaths at 100 ppm (equal to 4.7 mg/kg bw per day) (Amyes et al., 1990; FAO/WHO, 2002).

105. There are a large number of studies on neurotoxicity of γ-HCH, which have been evaluated by JMPR (FAO/WHO, 2002). With a single exposure in rats, a NOAEL at 6 mg/kg bw was reported on the basis of increased fore-limb grip strength and decreased grooming behaviour. In a 90-day study in rats, the NOAEL for males was 7.1 mg/kg bw per day on the basis of hypersensitivity to touch and hunched posture. In a study of developmental neurotoxicity in rats, the NOAEL for maternal toxicity after 25 days of exposure ad libitum was 4.2 mg/kg bw per day on the basis of decreased body weight, decreased food consumption and increased reactivity to handling.

106. Based on a study in which mice were given γ-HCH at 0, 10, 40 or 160 mg/kg in the diet for 39 weeks to examine the effects on the total number of leukocytes and on the relative proportion of lymphocyte populations, JMPR concluded that γ-HCH is not immunotoxic (FAO/WHO, 2002).

107. Meera et al. (1992) investigated a number of different immunological endpoints in female rats exposed for 24 weeks to γ-HCH. Lymphocyte transformation and haemolytic plaque forming cell assay was observed at 0.012 mg/kg bw per day, the lowest dose tested. The lymphocyte proliferation response to concanavalin A increased up to 8 weeks with a later decrease after 12 weeks. An increase in the plaque forming assay number up to 8 weeks was followed by suppression up to 24 weeks. Other effects were reported at higher doses such as necrosis of thymus, lymph nodes and spleen.

108. Endocrine effects have been investigated in a number of studies. The most prominent effects are a decrease in the levels of thyroid hormones and modulation of luteinizing and follicle-stimulating hormone which are likely to be related with the alteration of oestrous cycle in females. In male rats, exposure to γ-HCH led to a decrease in serum testosterone levels, epididymal sperm count, sperm motility and an increase in the percentage of abnormal sperm (Prasad et al, 1995) whilst in mice a reduction of primordial germ cells was reported in vivo (exposure during pregnancy) and in vitro by measuring the apoptosis rate (La Sala et al, 2009).

109. There are a large number of studies that have investigated the reproductive toxicity of γ-HCH. The outcomes are diverse and occasionally inconsistent between studies. In rats, effects such as delayed vaginal opening, decreased ovary weight and decreased number of fetuses have been reported. In the F1 generation, the effects observed were decreased weight and viability of pups and increased spleen weight. Semi-chronic studies in mink ranging from 12 to 17 weeks exposure at 1 mg/kg per day induced effects such as reduced litter size (F2), reduced testis size (F3), reduced mating receptivity and increased embryo loss.

110. In an extended two-generation reproduction study (Matsuura et al., 2005), rats were exposed to lindane at 10, 60 or 300 ppm diet for 10 weeks before and through mating until terminal necropsy (males); and through mating, gestation, lactation until F1 weaning at post partum day 21 (females); the F1 were treated in the same
manner as F0 animals after weaning at postpartum day 21. Findings in all generations included decreased body weight gain, increased liver weights and centrilobular hypertrophy and induction of hepatic drug metabolising enzymes. Reproductive effects included lack of nursing and retrieval behaviour, possibly due to effects on the nervous system, but no effects on oestrus cycle, spermatogenesis, mating, fertility, pregnancy or parturition. No changes were found in endpoints for endocrine disrupting activity. In the males of the low dose group (with dose calculated by the authors equal to an average of 0.56 mg/kg bw/day) the relative liver weight was statistically significantly higher than control, but without clear dose-dependency. Other effects were observed at the high, and in some instances also in the mid dose group. Overall, the results of this study indicate a NOAEL of 0.6 mg/kg bw/day.

Genotoxicity

111. JMPR reviewed a large number of studies, including assays for bacterial and mammalian cell mutation, chromosomal changes, DNA repair in vitro, and chromosomal aberration, sister chromatid exchange and dominant lethal mutations in vivo, and concluded that genotoxicity of γ-HCH was found only at cytotoxic concentrations or in the presence of lindane precipitate and that lindane is not genotoxic (FAO/WHO, 2002).

112. Since the JMPR evaluation, Kalantzi et al, (2004) reported that γ-HCH increased DNA breakage in the Comet assay in MCF-7 cells at a concentration of 100 µM α-HCH in the presence of DNA repair inhibitors, and increased the incidence of micronuclei in MCF-7 and human prostate cancer cell line (PC-3) at picomolar levels. Since these results are not consistent with the earlier studies they are not considered convincing evidence of genotoxicity of γ-HCH.

Carcinogenicity

113. JMPR noted that lindane did not induce a carcinogenic response in rats, but increased incidences of adenomas and carcinomas of the liver were observed in agouti and pseudoagouti mice in a study of the role of genetic background in the latency and incidence of tumorigenesis. No tumours were observed in black mice in this study. In another study, a slightly increased incidence of lung adenomas was observed in female mice at the highest dose; however, there was a limited dose-response relationship and this tumour was common in the strain of mice used. In the absence of genotoxicity and on the basis of the weight of the evidence from the studies of carcinogenicity, the JMPR concluded that lindane is not likely to pose a carcinogenic risk to humans (FAO/WHO, 2002).

Observations in humans

114. As part of their review of organochlorine insecticides in 2004, the COC considered whether exposure to lindane was associated with an increased risk of breast cancer (COC, 2004). They concluded that:
“Lindane (γ-HCH) does not have any in vivo oestrogenic activity. It is not approved for use as a pesticide in the U.K. Exposure is likely to be negligible. The Committee have previously concluded that there is no biological rationale for including lindane in any epidemiology studies on risk of breast cancer. The Committee concluded there is no reason to undertake any further reviews of the association of this chemical with increased risk of breast cancer”.

115. Two investigations on the potential associations between γ-HCH body burden and breast cancer have been published since the COC statement but do not call into question its conclusions. A study by Mills and Yang (2006) reported no association after evaluation of a database covering a total of 23,513 women of Hispanic origin diagnosed with breast cancer in California during the years 1988-1999. Muir et al. (2004) conducted a spatial analysis in England, investigating associations between modelled ward-level pesticide application in 1991 (using data from the Pesticide Usage Survey from the Ministry of Agriculture Fisheries and Food) and cases of breast cancer in Lincolnshire and Leicestershire during the period 1989 to 1991, obtained from the Trent Cancer Registry. Findings were inconsistent, with a positive association in rural wards in Leicestershire but not Lincolnshire. Moreover, this was an ecological study, and as such, it was particularly prone to uncontrolled confounding. Also, it is unclear how closely agricultural pesticide application relates to exposure in the general population.

116. Three large case-control studies investigated associations between self-reported γ-HCH exposure and non-Hodgkin lymphoma (NHL). Blair et al (1998) combined information on 987 cases and 2895 population-based controls from three US cohorts, with questionnaire information about agricultural use of pesticides. There was an increased risk with reported use of lindane (OR 1.5, 95% CI 1.1-2.0) that remained statistically significant after adjustment for 10 of 17 other group or individual pesticide exposures. Lee et al (2004) subsequently analysed two of the same cohorts stratifying by farming and asthma status. In comparison with non-farmers who did not have asthma, farmers without asthma but with reported lindane exposure had an OR of 1.3 (95% CI 0.97-1.8) for NHL, and those with asthma and lindane exposure had an OR of 2.4 (1.0-5.7). A population-based Canadian study (McDuffie et al, 2001) of 517 cases and 1506 controls found an increased risk with exposure to lindane (OR 2.06, 1.01-4.22, based on 15 exposed cases). A further study from Iceland, where dipping of sheep with lindane was legally compulsory (Rafnsson et al, 2006) found a statistically significant association between sheep dipping and NHL in farmers. This finding was based on 45 cases and 221 controls nested in a cohort of 7882 sheep owners. The epidemiological studies described are compatible with a small effect of lindane on NHL, but because of important limitations in the assessment of exposures and control for confounders, the evidence is fairly weak.

117. A Californian case-control study found an exposure-response relationship between risk of prostate cancer risk and quartiles of an ecological measure of γ-HCH usage. The study included 222 cases and 1110 controls from a large cohort of members of a Farm Workers Union (Mills and Yang, 2003), and exposure was
assessed as the pounds of pesticide active ingredient applied at county-level, as recorded by the California Department of Pesticide Regulation, in the places where the subjects had been employed. Strengths of this investigation were its large size, use of registry records, and assessment of exposure independently of, and prior to, diagnosis. Also, analyses adjusted for multiple other pesticide exposures. Weaknesses were the lack of individual-level exposure information and the possibility that relevant exposures could also have occurred before becoming a Union member or after leaving the Union.

118. A small number of studies have investigated associations of γ-HCH with Parkinson’s disease, but their findings are inconclusive. Levels of γ-HCH were assessed in post-mortem brain tissue from 10 people with Parkinson’s disease in a small UK study (Fleming et al., 1994). Levels of lindane in the substantia nigra (the brain tissue affected in Parkinson’s disease) were significantly higher than in six neurologically normal controls, six with Alzheimer’s disease and six with cortical Lewy body dementia. A US study (Corrigan et al., 2000) using frontal and/or occipital cortex did not detect lindane in 20 Parkinson’s disease cases nor in 21 controls.

Allergy

119. No studies have been found associating α-HCH and incidence of allergy, atopic disease or hypersensitivity.

Health-based guidance values (HBGV)

120. Table 10 summarises the ADI, TDI and RfDs that have been established or proposed for γ-HCH.

Table 10. ADI, TDIs and RfDs proposed for γ-HCH isomers.

<table>
<thead>
<tr>
<th>Source of HBGV</th>
<th>HBGV μg/kg bw/day</th>
<th>Critical effect and species</th>
<th>NOAEL/LOAEL mg/kg bw/day</th>
<th>UF</th>
<th>Study selected to derive HBGV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral Consulting (2011c)</td>
<td>RfD 0.01</td>
<td>Immunotoxicity in female rats</td>
<td>LOAEL 0.00012</td>
<td>1,000</td>
<td>Meera et al., 1992</td>
</tr>
<tr>
<td>RIVM (2001)</td>
<td>TDI 0.04</td>
<td>Immunotoxicity in female rats</td>
<td>LOAEL 0.00012</td>
<td>300</td>
<td>Meera et al., 1992</td>
</tr>
<tr>
<td>Health Canada (1992), cited in EFSA (2005)</td>
<td>Group TDI 0.3</td>
<td>Unknown</td>
<td></td>
<td>Not identified</td>
<td>Not identified</td>
</tr>
<tr>
<td>JMPR (FAO/WHO, 2002)</td>
<td>ADI 5</td>
<td>Hepatotoxicity in rats</td>
<td>NOAEL 0.47</td>
<td>100</td>
<td>Amyes et al., 1990</td>
</tr>
</tbody>
</table>

121. The RfD for γ-HCH proposed by Integral Consulting (2011c) was based on the study by Meera et al. (1992) on immunotoxicity in female rats exposed for 24 weeks with a LOAEL of 12 µg/kg bw/day (paragraph 107). An UF of 1,000 was applied (100 for inter- and intra-species variation, and 10 for extrapolation from LOAEL to NOAEL) resulting in a proposed RfD of 0.01 µg/kg bw per day.
122. The TDI for γ-HCH established by RIVM in 2001 was also based on the study by Meera et al. (1992). However they applied a total UF of 300 was applied (10 each for intra- and inter-species variability and 3 to compensate for the use of a LOAEL rather than a NOAEL), resulting in a TDI of 0.04 µg/kg bw per day. This study had criticised by JMPR in relation to the purity of the preparation used (~ 97%). However RIVM concluded that the JMPR argument was invalid since there were no indications at the time for impurities that would cause such a substantial higher toxicity of the substance tested.

123. JMPR established an ADI of 5 µg/kg b.w. on the basis of the NOAEL for hepatotoxicity, equivalent to 0.47 mg/kg b.w./day from a long-term study of toxicity and carcinogenicity in rats (Amyes et al., 1990) (paragraph 104), applying a safety factor of 100. The Meeting established an acute RfD of 0.06 mg/kg bw on the basis of the NOAEL of 6 mg/kg bw in the study of acute neurotoxicity in rats (paragraph 105) in which clinical signs of toxicity (increased fore-limb grip strength and decreased grooming behaviour) were observed at higher doses, and a safety factor of 100. (FAO/WHO, 2002).

124. In 1992 Health Canada set a group TDI for all HCH isomers of 0.3 µg/kg b.w. (Feeley, 2005, personal communication to EFSA, 2005). Details on the derivation of this group TDI are not available in the public domain.

125. The COT noted that the toxicological database for γ-HCH (lindane) is much more extensive than for the other HCH isomers, and therefore establishing an HBGV was considered appropriate. The recent reproductive study extended two-generation reproduction study by Matsuura et al. (2005) provided a similar NOAEL (0.6 mg/kg bw per day) to the study used by the JMPR to establish its ADI. However the COT could not discount the relevance of the immunotoxicity data of Meera et al. (1992) identifying a LOAEL of 12 µg/kg bw/day for a sensitive immunological marker. Taking into that this is a sensitive endpoint, a UF of 3 for extrapolation from LOAEL to NOAEL is consistent with the COT approach (COT, 2004). Therefore the COT agreed with the RIVM TDI of 0.04 µg/kg bw per day. This should be considered a TDI rather than an ADI because γ-HCH now occurs as an environmental contaminant rather than as an approved pesticide.

Sources of γ-HCH and occurrence levels

Drinking water

126. In 2011, 3565 samples of treated water were analysed for γ-HCH in the UK. Four samples were reported to contain detectable concentrations (typical limit of detection is 0.003 µg/L). None exceeded the regulatory limit of 0.1 µg/L (Drinking Water Inspectorate, personal communication, 2013).

Breast milk
This is a draft statement for discussion. It does not reflect the views of the Committee and should not be cited.

127. A time-related decline in the levels of γ-HCH in breast milk is apparent from the scientific literature. Table 11 shows the concentrations of HCH isomers in breast milk from studies in UK populations published since 1982.

Table 11. UK studies measuring γ-HCH in breast milk published since 1982.

<table>
<thead>
<tr>
<th>N</th>
<th>µg/kg milk fat</th>
<th>Mean µg/kg whole milk</th>
<th>% samples with detectable residues</th>
<th>Years of sample collection</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>30 N.D.</td>
<td>10 <10 270</td>
<td>1</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>- - -</td>
<td><1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>35 A or G?</td>
<td>35 A or G?</td>
<td>25 <8 200<1</td>
<td>2</td>
<td>1997-1998</td>
</tr>
<tr>
<td>54</td>
<td>N.D. 0.8</td>
<td>0.6 N.D. 7.7 N.D.</td>
<td>91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

128. γ-HCH was not detected 92 samples of breastmilk from 48 donors in the UK sampled in 2001-2002, at a limit of detection of 10 µg/kg fat (Wooldridge et al, 2004).

129. In the context of the 3rd WHO human milk field study γ-HCH was analysed in 16 human milk pools from 10 European countries (Bulgaria, Czech Republic, Germany, Ireland, Italy, Luxembourg, Norway, Russia, Spain and Ukraine) and 11 pools from 6 non-European countries (Brazil, Egypt, Fiji, Hong Kong, Philippines and USA) (Malisch et al., 2004). In the pools from European countries the concentrations of γ-HCH ranged from < 1 to 13 µg/kg fat.

130. The occurrence levels of HCH isomers in breast milk in studies on populations in the United States and Europe published since 1995 are shown in Table 12.
This is a draft statement for discussion. It does not reflect the views of the Committee and should not be cited.

Table 12. European studies measuring γ-HCH in breast milk published since 1995 in chronological order of sample collection.

<table>
<thead>
<tr>
<th>Country (City/Region)</th>
<th>µg/kg milk fat median/mean/level as indicated (high percentile as indicated) (time data provided)</th>
<th>Years samples collection</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain (Huelva / Andalucia)</td>
<td>80 mean (highest sample, 200) (after 1 month) 71 mean (highest sample, 130) (after 3 months)</td>
<td>1989-1990</td>
<td>Martinez Montero, 1993</td>
</tr>
<tr>
<td>Germany (Saxony)</td>
<td>5 median (95%, 3,240)</td>
<td>1992-1993</td>
<td>Raum et al, 1998</td>
</tr>
<tr>
<td>Germany (Saxony)</td>
<td>12 median (not indicated)</td>
<td>1992-1993</td>
<td>Schlaud et al, 1995</td>
</tr>
<tr>
<td>German (Saxony – Rural areas)</td>
<td>16 median (not indicated)</td>
<td>1992-1993</td>
<td>Schlaud et al, 1995</td>
</tr>
<tr>
<td>Greece (South West)</td>
<td>58 mean In whole milk (not indicated)</td>
<td>1995-1997</td>
<td>Schinas et al, 2000</td>
</tr>
<tr>
<td>Norway (Oslo)</td>
<td>0.7 mean (not indicated)</td>
<td>2000-2001</td>
<td>Polder et al, 2008</td>
</tr>
<tr>
<td>Norway (Tromsø)</td>
<td>0.3 mean (not indicated)</td>
<td>2000-2001</td>
<td>Polder et al, 2008</td>
</tr>
<tr>
<td>Germany (North Ryne-Westphalia)</td>
<td>20 levels (not indicated)</td>
<td>1984</td>
<td>P Fürst, personal communication to EFSA, 2005.</td>
</tr>
<tr>
<td></td>
<td>< 1 mean (not indicated)</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Spain (Almeria, agricultural area and Granada, urban area / Andalucia)</td>
<td>0.31 mean (not indicated) Granada 1.60 mean (not indicated)</td>
<td>Not mentioned</td>
<td>Campoy et al, 2001</td>
</tr>
<tr>
<td></td>
<td>0.28 mean (not indicated) Granada 1.90 mean (not indicated)</td>
<td>Not mentioned</td>
<td>Campoy et al, 2001</td>
</tr>
<tr>
<td></td>
<td>0.32 mean (not indicated) Granada 0.82 mean (not indicated)</td>
<td>Not mentioned</td>
<td>Campoy et al, 2001</td>
</tr>
</tbody>
</table>

Infant formula

131. Infant formulae are included in the UK national monitoring programme for pesticide residues in food, which is overseen by the Defra Expert Committee on Pesticide Residues in Food (PRiF). Infant formula was last surveyed in July-September 2009 (PRiF, 2010). γ-HCH was not detected at or above the reporting limits of 10 µg/kg each, i.e the current MRL.
132. A monitoring programme from 2001 to 2006 on marketed food including infant formula in Barcelona (Catalonia, Spain) did not find any infant formula sample at or above the quantification limits out of the 1484 samples analysed (Fontcuberta et al., 2008). The quantification limits in this study were 10 µg/kg in low fat food and 5 µg/kg in high fat food.

133. A study performed in Huelva (Andalucía, Spain) measured occurrence levels of γ-HCH and total HCH (sum of α-, β- and γ-HCH) in milk formula reconstituted as per manufacturers’ instructions. The mean levels were 21 and 22 µg/kg respectively (Martínez Montero et al., 1993). No information was provided on range, median or percentiles, or on the levels of HCH in the water used for reconstitution.

134. A survey of the pesticide content of 25 infant formulae marketed in New Zealand was undertaken in 1996. It included a representative mixture of imported and New Zealand manufactured infant foods. Approximately 140 pesticides including γ-HCH were screened. γ-HCH was not detected with a limit of detection of 0.2 µg/kg (Cressey and Vannoort, 2003).

Weaning diet

135. Cereal-based, fruit and vegetables, and other products containing egg, fish, meat or cheese to be consumed by infants were last surveyed by PRiF in March (2011) (PRiF, 2011), August (2011) (PRiF, 2012) and February (2009) (PRiF, 2009) respectively. No γ-HCH was detected at or above the reporting limits of 10 µg/kg each.

136. The Food Safety Authority of Ireland published in 2004 a report on surveillance of infant food for pesticide residues (Food Safety Authority of Ireland, 2004). Of the 41 infant food samples tested for 366 pesticide compounds including γ-HCH, representing 15006 individual results, there were no positive results for the presence of γ-HCH. The limit of quantification was 1 µg/kg. The samples were biscuits for infants (2 samples), infant formula (6 samples), fruit-based infant food (11 samples), vegetable/meat infant food (12 samples), cereal-based infant food (6 samples) and juices for infant and young children (3 samples).

137. A survey of the pesticide content of 30 weaning food products available in New Zealand was undertaken in 1996. It included a representative mixture of imported and New Zealand manufactured infant foods. Approximately 140 pesticides including γ-HCH were screened. γ-HCH was not detected with a limit of detection of 0.2 µg/kg (Cressey and Vannoort, 2003).

Exposure

138. An on-going market basket study performed between 1994 and 2003 in the Czech Republic, where HCHs were produced and used for a long time, indicated a decline of daily dietary intakes. The median daily intake for β-HCH in 1994 was 19.0 ng/kg b.w. (Ruprich et al., 1995) and in 2002 was 6.4 ng/kg b.w. (Ruprich et al., 2003).
139. Biomonitoring data in Germany indicate a decrease in exposure to γ-HCH. The third German Environmental Survey conducted in 1998 (GerES III) in blood samples from 4800 subjects geographically representative for the German population, age (18 to 69 years) and gender (Becker et al, 2002). The arithmetic mean and the maximum value for all subjects was <0.1 and 4.7 µg/L respectively. The limit of quantification (0.1 µg/L) was exceeded by 5.2% of the subjects. The subsequent survey (GerES IV) carried out between 2003-2006 in blood samples from 1063 children aged 7 to 14 from 150 randomly selected locations in Germany reported no subjects above the level of quantification of 0.076 µg/L (Schulz et al, 2009).

140. The values for consumption and body weight used for the estimation of UK infant exposure to γ-HCH are as described for α-HCH in paragraph 41.

Breast milk

141. The geometric mean value from the most recent UK study presented in Table 10, i.e. 0.8 µg/kg for γ-HCH (Kalantzi et al., 2004) was selected for the exposure estimation, calculated on the assumption that the fat content of breast milk was 3.5% (see Table 13). Due to the reported decreases in γ-HCH in breast milk over time, these could possibly overestimate current exposure.

Table 13. Theoretical maximum exposure of infants to γ-HCH for average and high consumption of breast milk.

<table>
<thead>
<tr>
<th>Consumption</th>
<th>0 – 4.0 months</th>
<th>>4.0 – 6.0 months</th>
<th>>6.0 – 9.0 months</th>
<th>>9.0 – 12.0 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>0.004</td>
<td>0.003</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>High level</td>
<td>0.006</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Infant formula

142. As for α- and β-HCH, the MRL was selected to estimate the theoretical maximum exposure of infants to γ-HCH, resulting in the same theoretical maximum exposure of infants for α- and β- applies to γ-HCH (paragraph 44). DWI reported that the limit of detection for γ-HCH, 0.003 µg/L, was exceeded in 4 out of 3565 analyses. If γ-HCH isomer was present at 0.003 µg/L in water used to reconstitute infant formula, the exposure from the water would be 0.004-µg, equivalent to 0.0006 µg/kg bw day for infants younger than 4 months with an average weight of 5.9 kg. This is likely to have a negligible impact on the total from reconstituted formula.

Weaning diet

143. The maximum exposure estimates calculated from solid infant foods for α- and β- also apply to γ-HCH given the selection of a MRL common to all isomers (paragraph 45).
Risk characterisation

144. The estimated maximum exposures of infants to γ-HCH are presented in Table 14. Estimated exposure of breast fed infants is below the TDI of 0.04 µg/kg bw per day and not a concern. Based on the available information, it is not possible to conclude that the TDI is not exceeded by consumption of infant formula and food. However, since these calculations are based on maximum permitted levels it is likely that actual exposures are much lower and this comparison is not informative about health risk.

Table 14. Potential maximum exposure of infants to γ-HCH from consumption of breast milk, infant formula and infant foods

<table>
<thead>
<tr>
<th>Isomer</th>
<th>Consumption</th>
<th>Exposure (µg/kg bw/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 – 3 months</td>
</tr>
<tr>
<td>Breast milk</td>
<td>Average</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>High level</td>
<td>0.006</td>
</tr>
<tr>
<td>Infant formula (assuming compliance with EU legislation)</td>
<td>Average</td>
<td>< 0.18</td>
</tr>
<tr>
<td></td>
<td>High level</td>
<td>< 0.27</td>
</tr>
<tr>
<td>Infant food (assuming compliance with EU legislation)</td>
<td>Average</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>High level</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Overall conclusions

[To be completed after COT discussion]

Secretariat
September 2013
This is a draft statement for discussion. It does not reflect the views of the Committee and should not be cited.

ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADI</td>
<td>Acceptable Daily Intake</td>
</tr>
<tr>
<td>ATSDR</td>
<td>Agency for Toxic Substances and Disease Registry</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CERHR</td>
<td>Center for the Evaluation of Risks to Human Reproduction</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>COC</td>
<td>Committee on carcinogenicity of chemicals in food, consumer products and the environment</td>
</tr>
<tr>
<td>COT</td>
<td>Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrome P450</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-amino butyric acid</td>
</tr>
<tr>
<td>HBGV</td>
<td>Health based guidance value</td>
</tr>
<tr>
<td>HPRT</td>
<td>Hypoxanthine-guanyl phosphoribosyl transferase</td>
</tr>
<tr>
<td>HCH</td>
<td>Hexachlorocyclohexane</td>
</tr>
<tr>
<td>IPCS</td>
<td>International Program on Chemical Safety</td>
</tr>
<tr>
<td>JMPR</td>
<td>WHO/FAO Joint Meeting on Pesticide Residues</td>
</tr>
<tr>
<td>MAFF</td>
<td>Ministry of Agriculture, Fisheries and Food</td>
</tr>
<tr>
<td>MHRA</td>
<td>Medicines and Healthcare products Regulatory Agency</td>
</tr>
<tr>
<td>MRL</td>
<td>Maximum Residue Limit</td>
</tr>
<tr>
<td>LOAEL</td>
<td>Lowest observed adverse effect</td>
</tr>
<tr>
<td>NOAEL</td>
<td>Non observed adverse effect</td>
</tr>
<tr>
<td>PRiF</td>
<td>Defra Expert Committee on Pesticide Residues in Food</td>
</tr>
<tr>
<td>RfD</td>
<td>Reference dose</td>
</tr>
<tr>
<td>RIVM</td>
<td>Rijksinstituut Voor Volksgezondheid En Milieu</td>
</tr>
<tr>
<td>SACN</td>
<td>Scientific Advisory Committee on Nutrition</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>TDI</td>
<td>Tolerable Daily Intake</td>
</tr>
<tr>
<td>US FDA</td>
<td>United States Food and Drug Administration</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
This is a draft statement for discussion.
It does not reflect the views of the Committee and should not be cited.

References

EFSA (2012). Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. *The EFSA Journal* 10, 2579.

This is a draft statement for discussion. It does not reflect the views of the Committee and should not be cited.

This is a draft statement for discussion. It does not reflect the views of the Committee and should not be cited.

This is a draft statement for discussion.
It does not reflect the views of the Committee and should not be cited.

Search strategy

Websites and databases interrogated –

- Pubmed
- EFSA
- COT
- COC
- FSA
- IPCS-WHO
- JMPR
- ATSDR
- USFDA

Scientific publications literature search

Specific search terms:

HCHs/α-HCH/β-HCH/γ-HCH/lindane AND breast milk
Search Dates (From/To) - From 1965 to present

HCHs/α-HCH/β-HCH/γ-HCH/lindane AND infant formula
Search Dates (From/To) - From 1970 to present

HCHs/α-HCH/β-HCH/γ-HCH/lindane AND infant food
Search Dates (From/To) - From 1970 to present

HCHs/α-HCH/β-HCH/γ-HCH/lindane AND weaning
Search Dates (From/To) - From 1970 to present

Other sources:
- Medical and Healthcare products Regulatory Agency
- Drinking Water Inspectorate
COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER PRODUCTS AND THE ENVIRONMENT

First draft statement of potential risks of α-, β- and γ-hexachlorocyclohexanes in the infant diet

For copyright reasons, this paper is not included on the COT website. It is in the public domain and available from the normal sources.
This is a draft statement for discussion. It does not reflect the views of the Committee and should not be cited.

COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER PRODUCTS AND THE ENVIRONMENT

First draft statement of potential risks of α-, β- and γ-hexachlorocyclohexanes in the infant diet

Information related to lindane in timber provided by HSE
Committee on Toxicity Meeting- 26/03/2013

Investigation into reports/findings on blood and wood levels of Lindane (γ-HCH)

1. Blood levels following Lindane exposure (from the CRD archives, often minimal facts with no study details)

1.1 Animal single dose studies
- Rats administered 20mg/kg orally for the purposes of a toxicokinetic study had maximal blood levels of 600ng/ml at 40-60 minutes post administration.
- Rats dosed parenterally with 10mg/kg Lindane attained levels of 0.2µg/g tissue after 24 hours.
- Guinea pigs dermally administered 1% γ-HCH in Kwell lead to 0.43µg/ml in blood.

1.2 Animal repeat dose studies
- Rats were orally given 10-15mg attained a maximal blood level of 2.0mg/kg after 28 days over a 56 day study.
- Oral treatment of mice with 20mg/kg for 10 consecutive days gave a blood concentration <3µg/g.
- Guinea pigs given 20mg for three consecutive days had γ-HCH at 0.81µg/ml in adults and half the amount in newborns.
- In an inhalation study with mice, over 90 days the top dose of 5mg/m³ caused a serum level of 290ng/ml in females and 152ng/ml in males.
- Lindane levels in pigs peaked at 13 weeks in a 9-12 month study following administration of 40mg/kg bw/d.

1.3 Human studies- single exposure studies
- 12 children treated with Kwell (1% γ-HCH) attained a peak level of 0.03µg/ml at 6 hours post-treatment.
- Baseline levels of γ-HCH in females was 2.6ng/ml and males 3.2ng/ml. The subjects were exposed (whole body) to 0.3% γ-HCH and blood concentrations measured. Males peaked at 5ng/ml 6 hours post treatment and females attained 7.3ng/ml at day 6.
- 8 males in the same study had base levels of 40ng/ml and were subject to the same treatment regime as above. The highest level post treatment was 425ng/ml.
- A follow up study with patients with scabies saw blood levels peak at 100-200ng/ml at 4-6 hours post treatment but only 5ng/ml in healthy subjects also treated.
This is a draft statement for discussion.
It does not reflect the views of the Committee and should not be cited.

1.4 Human exposure- single exposure reported cases
- Dermal application of 1.4g γ-HCH resulted in 9µg/L in blood falling to 0.1µg/L after 14 days.
- A blood level of 20.7ng/ml was reported following twice daily administration of 1% γ-HCH for 3 weeks, this fell to 0.5ng/ml after 12 weeks.
- 25-30ppb reported following 1.2% exposure over 2-3 months in a house treated with γ-HCH.
- 2.5 year old boy had levels of 1.6-2.2µg/ml lindane after exposure to a vaporiser since birth (only an 8 month respite in that time).
- 600ng/ml was reported following ingestion of 15-30ml γ-HCH, this fell to 5ng/ml after 5 days.

1.5 Human exposure- repeat exposure/studies on occupational exposure
- A review of 478 homes with lindane vaporisers was conducted. These homes had vaporisers for up to 26 years and 70% of samples were between 1-46ppb of lindane.
- Workers involved in planting operations were reported to have lindane levels of 0.03ppm after spraying lindane at 10mg/ml over 16 weeks.
- UK forestry workers were sampled in an initial study and one individual had levels of 0.8ppm whilst all others tested were below 0.2ppm.
- In 1986, the forestry commission undertook a small scale investigation of their workers and found no significant levels of lindane. A follow up large scale study did however reveal lindane in the blood. Men involved in dipping trees had levels exceeding 70nmol/l whilst those involved in planting had detectable levels by the end of the season but these were less than 35nmol/l.
- 24 samples were taken from workers in Kielder forest. In 1985, 4 workers exceeded the WHO limit (70nmol/l whole blood, 140nmol/l plasma). In 1986 2/3 dippers had 38nmol/l and 63nmol/l of lindane. None of 42 planters tested had more than 1/3 WHO recommendations. Inclusion of other sites increased the tested population to 108 and only another two exceeded the limit of detection (5nmol/l). In 1987, none of the workers exceeded ⅓ WHO limits, likely due to better PPE and personal hygiene.
- Reports to the HSE show that timber workers handling tress were exhibiting ill effects. Of 35, 9 had levels below 50nmol/l, 1 had 50-100nmol/l and all those with greater than 100nmol/l experienced ill effects.
- In 1988, 45 men involved in forestry seedling dipping were sampled for lindane. They were exposed to 1.6% lindane and in the first 8 weeks the blood levels remained below 5nmol/l. This did increase however to 40nmol/l by the end of the planting (June-July). One worker peaked at 123nmol/l but dropped to 26nmol/l after 14 days. After 1 month (august) mean reading was 16nmol/l and after another month levels returned to those pre-planting.
This is a draft statement for discussion. It does not reflect the views of the Committee and should not be cited.

2. Blood levels following Lindane exposure (epidemiology reviews)

2.1 Human epidemiological data

- Long term exposure to wood preserving chemicals particularly lindane was analysed by Peper et al in 1999. 15 women visiting a gynaecological clinic were chosen to take part based on self-reporting, biological monitoring and environmental sampling. The mean exposure time was 10 years and the mean γ-HCH blood level was 0.085mg/L.
- To-Figuras et al 2000 reported blood HCB in a group of volunteers from Flix, Spain. Values ranged from 2.4-1485ng/ml in a group of 53 chosen by responses to a questionnaire and biological sampling. The title says “highly exposed human population” but not clear how etc.

3. Blood Lindane levels from the Austrian report B.6.9.3

Blood dyscrasias

- Samuels and Milby 1971- 79 individuals had been exposed to lindane for several weeks to several years and were separated into 5 groups based on duration and intensity of exposure. Lindane ranged from 0.93µg/L in the low exposed group to 30.6µg/L.

Reproductive studies

- Saxena et al 1980- Women undergoing spontaneous abortion or premature labour versus full term labour were analysed for blood lindane levels. Mean levels were 56.09ng/ml in those suffering early labour-abortion whilst the mean for women at full term was 18.5ng/ml.
- This was reproduced by Wassermann et al 1982 who observed mean serum lindane levels of 15ng/ml in women delivering at weeks 20-37 whilst women at full term had 4.3ng/ml.
- No significant difference was noted between controls and sufferers of toxaemia regards Lindane levels (4.3 and 5.6-6.8ng/ml respectively).
- No significant differences in Lindane levels in recent or repeated abortion versus controls (6.24-8.48, 4.94 and 7.97 respectively).
- Pregnant women monitored at 3 and 6 months and at delivery showed no difference in lindane levels pre birth (1.65 and 1.3µg/l) but at delivery levels had risen to 2.72µg/l.
Neurological studies

- 37 workers in a fertilizer plant were exposed to lindane over 2 years. 15 workers reported clinical signs and had blood lindane levels between 0.002 and 0.34µg/ml which were linked with clinical symptoms.
- Baumann et al 1980- workers from a γ-HCH factory were analysed for blood levels of lindane versus controls. Controls had no detectable lindane but 21 workers exposed to γ-HCH had levels between 19 and 188mg/L.

4. Lindane levels in wood

After reading the archives at CRD there are no reports on lindane levels in wood itself.