Report on the estimated consumption of aluminium, sulphate, copper, zinc, lead and pH

following the contaminatton incident on 6th July 1988.

- 1. INTRODUCTION.
- 1.1 The Report.

- This report has been prepared in three parts:

- Part 2 contains the results of the analysis of the data and the calculations and assessments, and includes the estimates of consumptions of the different substances.
- Part 3 contains the supporting Appendices referred to in the report.

1.2 General.

I am a Chartered Chemical Engineer and registered Euro-Engineer. Since 1988 I have worked as an independent consultant in water and wastewater technology and in environmental protection policy and technology. I have been retained by ..., South West Water Limited, to advise and offer my expert opinion on questions which arise from the contamination incident which occurred at the Lowermoor Water Treatment Works on 6th July 1988.

I have been instructed to prepare as assessment of the probable levels of six different determinands, namely aluminium, sulphate, pH, coper, zinc and lead, in the water consumed during the period of the incident.

page 1

As additional background information, I have prepared a description of the Lowermoor Water Treatment Works and the distribution system as it was at the time of the incident on 6th July 1988. This document is given in Appendix I of this report.

It is impossible to model the distribution network as it was at the time of the incident in such a way that values can be sensibly predicted for the concentrations of aluminium, sulphate, copper, zinc and lead - nor for the pH values - for the period after 6th July 1988. I have explained the reasons for this.

I have seen the results of analyses of many hundreds of samples taken by the South West Water Authority (SWWA) after 6th July 1988 and in my view the best evidence for the level of the different determinands in the water in the distribution network is the results of that sampling and analysis programme. I have therefore developed simple mathematical and statistical models which use the existing data obtained from the sampling and analysis programme, and from these models I have produced a series of graphs and tables. These graphs and tables provide an assessment of the probable levels of the six different determinands in the areas where consumed the affected water, and I have then applied these assessments to each individual together with the evidence and other data on water consumption. in order to produce figures for their probable consumption of the determinands. This information can then be provided to the medical experts as the basis for their opinion on the health effects of the Contamination incident.

1.3 Data and Assessments in Part 2.

I have used the data available from the analysis of samples collected by SWWA to prepare estimates of mean values for the determinands for each day; I have also estimated the maximum and minimum tikely values of the determinands by means of a simple envelope procedure. I report in the tables, and show on the associated graphs, the values predicted by the mathematical models using the data from the samples together with the maximum and minimum values. I have then used these data to estimate the most likely consumption of the different substances or determinands by together with the likely range - ie the minimum likely and maximum likely

consumption.

It must be noted that the mean shown in the tabtes *is* nor the same as the mid-paint of the range between the estimated likely maximum and likely minimum values. In mathematical language the mid-point *of* the range may be more correctly termed the "mode".

1.4 Limitations on the Data Used.

I have not used all the data reported from the SWWA sampling programme since, according to the analytical reports, some samples were obtained from sources which were not drinking water. These are identified on the analytical reports as either "non potable water", "spring water" α "hot tap" water. I have therefore only used those results from the analytical reports which were clearly for potable water drawn from the supply network.

I did not use water drawn from hot water samples for the following two reasons. Firstly, it is widely accepted that the only tap from which water should be drunk is the tap in the kitchen which is fed directly from the mains; all other raps, in *most* houses in England, are supplied from a tank in the roof, and this tank can be subject to contamination from such things as rodents and birds. It is satisfactory as bath water and for toitet flushing, but should not be used for drinking purposes. Any person drinking from a hot tap is therefore always taking a risk of drinking contaminated water. Secondly, the solubility of copper, zinc and lead in hot water is different from solubilities in cold water, and thus the data are qualitatively of a different class, and to include them would introduce a distortion into the analysis.

did not use the data reported for sample 054/07652 taken on 21st July 1988 and sample 054/07717 taken an 22nd July 1988 from in the Delabole/Rockhead area (Area 8).

The analyses of these samples showed sulphate concentrations of 455 mg/l and 381 respectively at a time when all other analyses were showing levels of around 18-24 mg/l. The first sample also had calcium concentrations of 167 mg/l, compared with the normal level of about 10-13 mg/l and a magnesium concentration of 19.4 compared to a normal level of 1.1. The sulphate concentration was roughly twenty times its normal level, the magnesium was also about twenty times its normal level, and the calcium was about 16 times its normal level. Furthermore, the second sample contained only 0.01 mg/l of aluminium, so the 381 mg/l of sulphate was quite evidently not related to aluminium sulphate but more likely to calcium and magnesium sutphate. Also, the incident was

The average of these values is 18/5=3.5; however, the mid point between 1 and 10 is 5. Thus the average of a set of numbers is not necessarily the mid-point of the range between the maximum and minimum values in that set.

91/2737 Crowthar Clayton Associates

isolated and there were no other records during this time in Area 6 of such a distortion in the analytical results. The analyses were clearly anomalous and not part of the normal population of sutphate results nor of the Lowermoor Incident and I have therefore not included them in my modelling and statistical assessments.

Another anomaly occurred on 18th July 1988 when a value of 20.05 mg copper/l is recorded for a sample taken in a garage in Delabole, ye?the same sample shows only 0.01 mg/l for zinc, 0.009 mg/l for lead and 25.3 mg/l for sulphate and a pH of 8.2 (which is slightly alkaline), all of which are normal and acceptable values. The high reading for copper is unlikely to be caused by the presence of acid since the pH was 8.2. Furthermore, no other analysis from this or any other similar source (le cold potable water) in the period July and August 1988 shows such a very high copper level and in my opinion this result should be properly ignored.

I should also like to comment on a point made in the Reports of the Lowermoor Incident Advisory Group on water quality. In the first report the Advisory Group reports that an aluminium concentration of up to 620 mg/l and a sulphate concentration of up to 1,500 mg/l were recorded. However, these results were obtained from samples, analysed by Somerset County Council, which had been retained for some time between sampling and analysis. The Advisory Group points out in paragraph 16 on page 50 of their second report that the samples were "retained samples" which were collected by consumers in an available but not necessarily suitable container. I have therefore disregarded the results reponde by Somerset County Council since they must be regarded as unreliable.

- 2. THE DATA
- 2.1 Locations of

during the Lowermoor Incident.

From the documents it is possible to identify three areas in which drank the affected water.

allegedly

The addresses at which it is claimed that

first and ordinarily consumed the water are

as follows:

- 1. , Şt. Endellion, Port Isaac.
- 2. , New Polzeath, Wadebridge.
- 3. ' as above
- 4. as above
- 5. , Churchtown. St. Minver.
- 6. , Delabole , Delabole.
- 7. frevethy, Tintagel.
- a ., Boscastle.
- 9. as above
- 10. Camelford.

The locations and numbers of

- St. Minver, (1)
- Boscastle, (2)
- Port Isaac, (1)
- Tintagel, (1
- Delabole, (†
- New Polzeath, (3)
- Camelford. (1)

These can be divided into three roughly composite areas, A, 3 and C:-

- Area A. St. Minver/Port Isaac/New Polzeath, served from the St. Endellion reservoir.
- Area B. Delabole/Tintagel/Boscastle, served from the Delabole and Rockhead reservoirs.
- Area C. Camelford, served directly from the Lowermoor site.

Crowther Clayton Associates

1 have therefore prepared data based on these areas

Area A - St. Endellion.

- 1. St. Endellion, Port Isaac.
- 2. , New Polzeath, Wadebridge.
- 3. as above
- 4. as above
- 5. Churchtown, St. Minver.

Area B - Delabdle/Rockhead.

6. Delabole

, Delabole.

- 7. Trevethy, Tintagel.
- 8. Boscastle.
- 9. as above

Area C - Camelford.

10. Camelford.

Data for the three areas are given in the pages in Part 2 of this report.

2.2 The substances in the water.

In the tables in this report I give data for the estimated values for the concentrations of the four metals as maxima, minima and mean values. The meanings of these terms are discussed in section 1.2 above.

Although I have commented on sulphate all the measurements show values for sulphate within the value of 250mg/I which is the Maximum Admissible Concentration (MAC) specified in the EC water

91/2737 Crowther Clayton Associates

quality directive². Details of *the* water quality required by the directive (and subsequently incorporated into English law In 1989) are given in Appendix III to this report. Although all the SWWA data on sulphate show concentrations within the EC MAC limits there is one sample for which there is evidence that the sulphate concentration exceeded the EC MAC. In some cases, where there was no sulphate concentration shown in the analytical reports, I have used the aluminium concentrations to estimate a possible sulphate concentration; these estimates are dearly shown on the graphs and in the relevant tables in Part 2 of this report. One estimation, for 7th July 1988 in the Delabole/Rockhead Area, has 'produced a sulphate concentration of 600 mg/l, substantially in excess of the EC MAC. Despite the fact that most of the evidence in the documentation suggests that sulphate in the period was below the EC MAC, in order to ensure that this report is complete! have included full data and comments on sulphate consumption.

The same comments also apply to pH; the range within which the pH of drinking water should lie is 5.5 - 9.5, and for all but a brief period the water was within this range. It should be remembered that a pH below 5.5 is not necessarily an indication in itself of a health risk; bottled carbonated waters may be below a pH of 5, and some soft drinks such as Coca Cola and lemonade can have a pH of less than 3. In order to make a useful comparison I have included data on the pH graphs for lemonade. pH is not in itself a problem (pH values as low as 1 may occur naturally, without harm, in the stomach). The potential problem with a pH below 5.5 is that it may increase the pick-up of metals from the domestic pipes which carry drinking water such as copper, zinc and lead.

The presence of copper, zinc and lead is indirectly linked to the discharge of the aluminium sulphate and ± has proved impossible to model mathematicallythe concentrations for these metals, and in estimating values to calculate the consumption thave, in some instances, assumed that on days for which there was no sample the concentration is related to samples taken on adjacent days. Also, values for these metals were frequently below the limits of analytical detection and were therefore recorded as, for example, <0.05mg/l (ie less than 0.05mg/l). In making the estimates for consumption 1 have used the limiting value - ie if a substance is reported as <0.05mg/l I have used a value of 0.05mg/l in the estimate; thus the values in my estimates generally err an the high side - maybe excessively so in the case of zinc and lead where many readings are recorded as "less than' some analytical limit.

It appears that the definition of whether the water was suitable tor consumption during the Lowermoor incident is based on the water quality standards in the EC directive on the quality of drinking water. It should be noted that some of the values in the directive are not based on health considerations but on other aspects such as the aesthetic quality of the water.

2.3 Consumption & substances in the water.

The consumption of substances from the drinking water depends on how much water was drunk. I give in the table below the daily consumption of water I have used in estimating the daily intake of aluminium, copper, zinc and lead. The table is based on statements made where the statements give no estimate of tap water consumption I have used a figure of 2 litres/day which is an accepted average value for normal adults.

Table showing the daily consumption of tap water for each

These figures have been used in estimating the consumption of substances in the tap water.

Comments In Statement	Ouantity In Pints	Quantity In Litres	Comments					
Area A								
 Approx. 3 pints a day.	3.0	1.7						
Normal quantities.		2.0						
 Normal quantities.		2.0						
Normal quantities,		2.0						
2 pints hot drinks per day. 3 pints cold drinks per day.	5.0	2.84	Because of a kidney disorder, drank more than average.					
/	rea B							
1½ to 2 pints a day.	2.0	1.14						
The usual quantities.		2.0						
Nothing on quantity consumed		2 0	Aiso consumed water from bowsar during the period.					
5–6 cups per day.	3.0	1.7	I have assumed a cup to be a BS hall pint cup.					
		•						
Usual quantities.		2.0	ette					

Crowther Clayton Associates

PART 2

i

	age	Date	Day	pΗ	Sulphate	dumonum (Copper	Zinc	l,ead
r	242	07-Jul-88	2			9.00			- I
ſ	410	07-Jul-88	2			0.06			1
Ų.	246	08-Jul-88	3	5.0		27.50	0.45	0.41	0.03
Ī	244	88-101-80	3	4.0		32.50	0.57	0.85	0.04
ı	357	09~Jul-88	4	4.7		7.70	0.06	0.57	< 0.01
A	358	09-Jul-88	4	4.8	110.0	10.08	0.57	0.73	< 0.01
Ų	360	09-Jul-88	4	4.6	83.0	6.20	0.77	0.21	<0.01
ı	359	09-Jul-88	4	8.8		0.06	<0.01	<0.02	<0.01
Ŋ,	356	88-lul-90	4	4.6	115.0	6.93	8.8	1.2	<0.01
•	363	10-Jul-88	5	6.8	16.0	0.43	<0.01	0.02	<0.03
ı,	361	10-Jul-88	5	4.8	37.0	1.00	0.39	0,09	< 0.03
I	382	10-Jul-88	5	5.0	35.0	0.80	0.03	0.18	< 0.03
ï	365	10-Jul-88	5	6.1	33.0	0.96	0.18	80,0	<0.03 <0.03
Ü	364	10-Jul-88	5	6.8	16.0	0.60	0.01	0,02 <0.05	<0.05
I	248	11-Jul-88	6	7.5	29.0	6.90	0.05	<0.005	<0.005
H	249	14-Jul-88	9	7.8	24.0	0.98	<0.005	0.016	< 0.005
ı	250	14~Jul-88	9	5.8	27.0	0.25	< 0.005	0.010	<0.005
Ŋ	251	18-Jul-86	13	8.0	23.6	0.53		0.011	0.005
I	366	19-Jul-88	14	7.9	3t.2	0.40	0.013	V.01	5.50.5
Ĭ	252	20-Jul-88	15	8.4	27.0	0.48	< 0.05	<0.05	<0.05
	253	21-Jul-88	16	7.6	22.1	0.53	<0.05	<0.05	<0.05
Ĭ	254	22-Jul-88	17	8.1	11.4	0.37	< 0.05	<0.05	<0.05
1	255	23-Jul-88	18	7.7	t9.7 19.1	0.37	<0.05	<0.05	<0.05
A	256	24-Jul-88	19	8.0	19.1 19.1	0.36	<0.05	<0.05	< 0.05
Ħ	257 369	26-Jul-88 26-Jul-88	21	7.B	19.1	0.61	~3.03	-4.00	13.00
Ħ			21 22		21:5	a.62	< 0.05	<0.05	< 0.05
ı	370 258	27-Jul-88 27-Jul-88	22	8.0 7.9	21.8	0.58	<0.05	< 0.05	< 0.05
Ħ	259	28-Jul-88	23	7.7	22.5	0.64	<0.05	<0.05	< 0.05
ļ	260	01-Aug-88	23 2 7	7.8	22.7	0.36	< 0.05	<0.05	< 0.05
Ĭ	261	03-Aug-88	29	7.8	20.2	0.34	<0.05	< 0.05	<0.05
ı	372	03-Aug-88	29	7.8	19.0	0.34	0,028	0.006	< 0.005
Ħ	263	04-Aug-88	30	7.9	13.0	0.27	<0.05	< 0.05	< 0.05
Ų.	264	05-Aug-88	31	7.8	20.7	0.19	< 0.05	< 0.05	<0.05
H	265	07-Aug-68	33	7.9	18.5	0.32	< 0.05	< 0.05	<0.05
¥	266	08-Aug-88	34	7.7	18,6	0.46	< 0.05	< 0.05	<0.05
Į.	267	88-guA-90	35	7.5	20,5	0.36	< 0.05	< 0.05	<0.05
1	268	10-Aug-88	36	7.7	19.0	0.40	< 0.05	< 0.05	<0.05
I	269	11-Aug-88	37	8.1	18.8	0.37	< 0.05	< 0.05	<0.05
ı	270	11-Aug-88	37	8.1	19.0	0.31	< 0.05	< 0.05	< 0.05
ď	374	12-Aug-88	38	8.2	15.8	0.39	0.008	0.013	<0.005
ı	271	12-Aug-88	38	ao	19.0	0.35	< 0.05	<0.05	<0.05
¥	272	14-Aug-88	40	8.0	18.4	0.59	< 0.05	< 0.05	<0.05
ħ	375	15-Aug-88	41	8.2	18.2	0.52	0.013	0.009	<0.005
Į	276	16-Aug-88	42	7.6	20.1	0.22	< 0.05	<0.05	<0.08
Ŋ	281	16-Aug-88	42	8.7	10.4	0,41	< 0.05	<0.05	<0.05
ħ	283	16-Aug-88	42	8.0	18.4	0.46	< 0.05	<0.05	< 0.05
ł	275	16-Aug-88	42	7.7	20,9	0.418	10.05		<0.08
ĺ	273	16-Aug-88	42	7.8	21.1	0.45	< 0.05	< 0.05	<0.08
4	274	16-Aug-88	42	7.8	20.0	0.47	< 0.05	<0.05	<0.08
ĺ	285	17-Aug-88	43	7.a		0.41	<0.05	< 0.05	<0.05
1	284	17-Aug-88	43	7.8		0.37	< 0.05	<0.05	<0.05
Ų	412	17-Aug-88	43	8.1	16.2	0.37	< 0.005	<0.005	<0.005
	287	18-Aug-88	44	7.6	17.3	0.38	<0.05	<0.05	<0.08
H	286	18-Aug-88	44	7.6	17.	0.435	< 0.05	<0.05	<0.08
ļ	286	18-Aug-88	44	7.7	17.1	0.40	< 0.05	1	< 0.08
1	296	19-Aug-88	45	7.6	17.1	0.526	< 0.05	< 0.05	
ď	297	19-Aug-88	45	7 e	17.0	0.277	<0.05	<0.05	
{	291	19-Aug-88	45	7.1	12.:	0.111	<0.05	<0.05	
Ĭ	291	19-Aug-88	45	7.5	10.	0.076		,	•
I	294	19-Aug-8E	45	7.1	16.	0.313) .	
Ī	295	19-Aug-88	45	7.8	17.	0.654		1	1
ŀ	309	22-Aug-88	48			0.31			
ļ	312		48	9.:	17.	0.29			1
-	31.1	22-Aug-88	48			0.31			
Ŋ.	310	22-Aug-BE	48	9.:	17.	0.19	0.01	0.03	< 0.01
F.		Concentration	re in mg	al subst	ancerlive.				

NOTE Concentration re in mg of substance/litre.

Results of analyses for aluminium in samples from the St. Endellion Area.

	-	Aluminium	· ·		Aluminium
Date	Day	Samples	Date	Day	Samples
07-Jul-88	2	9.00	05-Aug-88	32	0.19
07-Jul-88	2	0.06	07-Aug-88	34	0.32
08-Jul-88	3	27.50	08-Aug-88	35	0.40
88-Jul-88	3	3250	.09-Aug-88	36	0.36
09-Jul-88	4	7.70	10-Aug-88	37	0.40
09-Jul-88	4	10.08	11-Aug-88	38	0.37
88-lut-ep	4	6.20	11-Aug-88	38	0.31
09-Jul-88	4	0.06	12-Aug-88	39	0.39
09-Jul-88	4	6.93	12-Aug-88	39	0.35
10-Jul-88	5	0.43	14-Aug-88	41	0.59
10-Jul-88	5	1.00	15-Aug-88	42	0.52
10-Jul-88	5	0.80	16-Aug-88	43	0.22
10-Jul-88	5	0.96	16-Aug-88	43	0.41
10-Jul-88	5	0.60	16-Aug-88	43	0.46
11-Jul-88	6	6.90	16-Aug-88	43	0.48
14-Jul-88	9	0 .4 8	16-Aug-88	43	0.45
14-Jul-88	9	0.25	16-Aug-88	43	0.47
18-Jul-88	13	0.53	17-Aug-88	44	0.41
19-Jul-88	14	0.46	17-Aug-88	44	0 .3 7
20-Jul-88	15	0.48	17-Aug-88	44	0 .3 7
21-Jul-88	16	0.53	18-Aug-88	45	0.38
22-Jul-88	17	0.54	18-Aug-88	45	0.435
23-Jul-88	18	0.37	18-Aug-88	45	0.404
24-Jul-88	19	0.36	19-Aug-88	46	0.328
26-Jul-88	21	0.51	19-Aug-88	46	0.277
26-Jul-88	21	0.61	19-Aug-88	46	0.111
27-Jul-88	22	0.62	19-Aug-88	46	0.076
27-Jul-88	22	0.56	19-Aug-88	46	0.313
28-Jul-88	23	<i>0.</i> 64	19-Aug-88	46	0.654
01-Aug-88	27	0.36	22-Aug-88	49	0.310
03-Aug-88	30	0.34	22-Aug-88	49	0.280
03-Aug-88	30	0.34	22-Aug-88	49	0.310
04-Aug-88	31.	0.27	22-Aug-88	49	0.190

		Aluminum	Concentration	ine
Date	Day	Est	Max.	Min.
07-Jul-88	2	8.4	9.0	0.06
08-Jul-88	3	32.5	325	32,50
09-Jul-88	4	92	24.0	0.25
10-Jul-88	5	0.90	15.5	0.191
11-Jul-88	6	0.74	6.9	0.186
12√Jul-88	7	0.72	1.56	0.182
13-Jul-88	á	0.70	1.53	0.102
	9	0.69	. 1.49	0,176
14-Jul-88 15-Jul-86 16-Jul-88	10	0.07	1.46	0.174
16-Jul-88	11	0.66	1.43	0.166
17-Jul-88	12	0.64	1.39	0.162
18-Jul-88	13	0.63	1.36	0.159
19-Jul-88	14	0.61	1.33	0.155
20-Jul-88	15	0.60	1.30	0.152
	16	0.59	1.27	0.148
21-Jul-88			1.24	0.145
22-Jul-88 23-Jul-88	17	0.57	1.24	0.145
23-Jul-88 24-Jul-88	18	0.56 0.55	1.19	0.142
	19	0.54	1.19 1.16	0.136
25-Jul-88	20		_	0.135
26-Jul-88	21	0.52	1.13	0.132
27-Jul-88	22	0.51	1.11	0.129
28-Jul-88	23	0.50	1,08	
29-Jul-88	24	0.49	. 1.06	0.123
30-Jul-88	25	0:48	1.03	0.121
31-Jul-88	26	0.47	1.01	0.118
01-Aug-88	27	0.46	0.99	0.115
02-Aug-88	28	0.45	0.97	0.113
03-Aug-88	29	0.44	0.94	0.110
04-Aug-88	30	0.43	0.92	0.108
05-Aug-88	31	0.42	0.90	0.105
06-Aug-88	32	0.41	38.0	0.10
07-Aug-88	33	0.40	0.86	0,100
08-Aug-88	34	0.39	0.84	0.098
09-Aug-88	31	0.38	0.82	0.096
10-Aug-88	36	0.37	0.80	0.094
11-Aug-88	37	0.36	0.76	0.092
12-Aug-88	38	0.35	0.77	0.090
13-Aug-88	39	0.35	0.75	0.088
14-Aug-88	40	0.34	0.73	0.086
15-Aug-88	41	0.33	0.74	0.084
16-Aug-88	42	0.32	0.70	0.082
17-Aug-88	43	0,32	0.61	0.08(
18-Aug-88	44	0.31	0.67	0.078
19-Aug-88	45	0.302	0.654	0.07(
20-Aug-88	46	0.295	0.639	0.07!
21-Aug-88	47	0.289	0.62!	0.07:
22-Aug-88	48	0,282	0.61	0.07'
23-Aug-88	49	0.276	0.59:	0.07(
24-Aug-88	50	0.269	0.58	0.061
25-Aug-88	51	0.263	0.57	0.06
26-Aug-88	52	0.257	0.55	0.06
27-Aug-88	53	0.251	0.54	0.06
28-Aug-08	5	0.244	0.53	0.06
29-Aug-08	55	0.240	0.52	0.06
30-Aug-08	56	0.23	0.50	0.05
31-Aug-08	57	0.22	0.49	0.05
01-Sep-08		0,224	0.48	0.05
02-Sep-08	59	0.21	0.47	0.05
03-Sep-08	L	0.21	0.464	0.05
04-Sep-08		0.20	0.454	0.05
05-Sep-08	62	0.20	0.443	0.05

Crowther Clayton Associates

91/2737

Comments on the aluminium intake of

The table on the following page gives an estimate of the aluminium intake for the period up to 31st August, after which date there are insufficient data to be able to make any satisfactory prediction.

I have not seen any data for samples taken from the premises where the incident.

resided at the time cf

	· · · · · · · · · · · · · · · · · · ·		A1	ر آد ـ ـ ـ ـ ـ احنا		owther Clayton Associates
Ì	Date	Day	By Model	i intake in mg/	Minimum	
┢	07-Jul-88	2	14.3	15.3	0.1	
ı	08-Jul-88	3	55.3	55.3	55.3	
ı	09-Jul-88	4	15.7	40.7	0.4	
ı	10-Jul-88	5	1.5	26.3	0.4 0 . 3	
Ĭ	11-Jul-88	6	1.3		0.3	
H	12-Jul-88	7	1.2		0.3	
1	13-Jul-88	8	1.2		0.3	
ı	14-Jul-88	9	1.2		0.3	
ı	15-Jul-88	10	1.1	2.5	0.3	
Į.	16-Jul-88	It	1.1	2.5	0.3	
1	17-Jul-88	12	1:1	2.4	0.3	
ı	18-Jul-88	13	1.1	2.4	0.3	
ij.	19-Jul-88	14	1.0	2.3	0.3	
۱	20-Jul-88	15	1.0	2.3	0.3	
1	21-Jul-88	16	1.0	2.2	0.3	
	22-Jul-88	17	1.0	2.1	0.2	
1	23-Jul-88	18	1.0	21	0.2	
Į.	24-Jul-88	19	<u> </u>		0.2	
1	25-Jul-88	20	0.9		0.2	
ì	26-Jul-88	21	0.9		0.2	
	27-Jul-88	22	0.9		0.2	
	28-Jul-88	23	0.8	1.8	0.2	
ı	29-Jul-88	24	0.8		0.2	
ı	30-Jul-88	25	0.8		0.2	
ı	31-Jul-88	26	0.8		0.2	
	01-Aug-88	27	0.8		0.2	
	02-Aug-88	29	0.8		0.2	
Ĭ	03-Aug-88	30	0.7		0.2	
	04-Aug-88	31	0.		0:2	
Ţ	05-Aug-88	32	0.7		0.2	
	88-guA-90	33	0.7		0.2	
Í	07-Aug-88	34	0.	7 1.5	0.2	
1	88-guA-80	35	0.7	1.4	0.2	
1	88-guA-60	35	0.0	5 1.4	0.2	
1	10-Aug-88	37	0.6	1.4	0.2	
H	11-Aug-88	38	0.6		0.2	
ı	12-Aug-88	39	C.E		0.2	
	13-Aug-88	40	0.6			l l
۱	14-Aug-88	41	0.6		0.1	
	15-Aug-88	42	O, E		0.1	1
ı	16-Aug-88	4:3	0.5			1
ı	17-Aug-88	44	0.5		0.1	
ļ	18-Aug-88	45	0.5		0.1	Ì
ı	19-Aug-88	46	0::	1.1	0.1	
	20-Aug-88	4;7	0.5		0.1	
1	21Aug-88	48	0.5		0.1	
H	22-Aug-88	49	0.		0.1	1
¥	23-Aug-88	50	0.5		0.1	
H	24-Aug-88		0.!		0.1	
	25-Aug-88		0.4		0.1	
	26-Aug -6₽		0.4		0.1	
	27-hug&	4	0.		0.1	Į
	28-Aug-08		0.		0.1	1
1	29-Aug-08		0.		0.1	
-	30-Aug-08	1	0.		0.1	
[31-Aug-08	58	<u> 0.</u>	0.1	0.1	_] nage

page 15

Comments on the aluminium intake of

The table on the following page gives an estimate of the aluminium intake for the period up to 31st August, after which date there are insufficient data to be able to make any satisfactory prediction.

I have not seen any data for samples taken from the premises where resided at the time of the incident. The only data for I have seen are the analyses of samples taken on 27th April 1989 and 4th May 1989 in which the aluminium concentrations were 0.08 mg/l and 0.05 mg/l, both well below the EC MAC of 0.2 mg/l.

Spowther Clayton Associates

Date 07-Jul 08-Jul 10-Jul 11-Jul 11-Jul 15-Jul 15-Jul 18-Jul 20-Jul 22-Jul 23-Jul 25-Jul 25-Jul 27-Jul 27-Jul 27-Jul 27-Jul 21-Jul	- 88 - 88	Day 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	By Model 16.9 65.1 18.4 1.8 1.5 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.1 1.1 1.1 1.1 1.1	Intake in mg/d Maximum 18.0 65.0 47.9 31.0 13.9 3.1 3.1 3.0 2.9 2.9 2.8 2.7 2.7 2.6 2.5 2.4 2.4	Minimum 0.1 65.0 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
07-Jul 08-Jul 09-Jul 10-Jul 11-Jul 13-Jul 15-Jul 16-Jul 18-Jul 20-Jul 20-Jul 21-Jul 22-Jul 23-Jul 25-Jul 26-Jul 27-Jul 28-Jul 28-Jul 29-Jul 30-Jul 29-Jul 01-Aug 04-Aug 05-Aug 08-Aug 09-Aug 11-Aug	- 88 - 88	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	16.9 65.1 18.4 1.8 1.5 1.4 1.4 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.2 1.1	18.0 65.0 47.9 31.0 13.9 3.1 3.1 3.0 2.9 2.9 2.8 2.7 2.7 2.7 2.6 2.5 2.5 2.4	0.1 65.0 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
08-Juli 09-Juli 10-Juli 11-Juli 13-Juli 15-Juli 15-Juli 15-Juli 20-Juli 21-Juli 22-Juli 23-Juli 25-Juli 26-Juli 27-Juli 28-Juli 29-Juli 30-Juli 01-Augi 03-Augi 04-Augi 08-Augi 09-Augi 11-Augi 11-Aug	-88 -88	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	65.1 18.4 1.8 1.5 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.1 1.1 1.2 1.2 1.2 1.2 1.1 1.1	65.0 47.9 31.0 13.9 3.1 3.1 3.0 2.9 2.9 2.8 2.7 2.7 2.6 2.5 2.5 2.4 2.4	65.0 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
09-Jui 10-Jui 11-Jui 12-Jui 13-Jui 15-Jui 15-Jui 15-Jui 18-Jui 19-Jui 22-Jui 23-Jui 23-Jui 25-Jui 27-Jui 29-Ju 31-Jui 01-Aug 03-Aug 04-Aug 05-Aug 09-Aug 11-Aui	1-88 1-88 1-88 1-88 1-88 1-88 1-88 1-88	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	18.4 1.8 1.5 1.4 1.4 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1	47.9 31.0 13.9 3.1 3.1 3.0 2.9 2.9 2.8 2.7 2.7 2.7 2.6 2.5 2.5 2.4 2.4	0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
10-Jul 11-Jul 12-Jul 13-Jul 15-Jul 16-Jul 16-Jul 18-Jul 20-Jul 23-Jul 23-Jul 23-Jul 26-Jul 27-Jul 28-Jul 29-Jul 31-Jul 01-Aug 02-Aug 03-Aug 04-Aug 05-Aug 10-Aug 11	I-88 I-88 I-88 I-88 I-88 I-88 I-88 I-88	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1.8 1.5 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1	31.0 13.9 3.1 3.1 3.0 2.9 2.9 2.8 2.7 2.7 2.7 2.6 2.5 2.5 2.4	0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
11-Jul 12-Jul 13-Jul 15-Jul 16-Jul 17-Jul 18-Jul 20-Jul 23-Jul 23-Jul 25-Jul 25-Jul 25-Jul 29-Jul 31-Jul 01-Auç 02-Auç 03-Auç 05-Auç 08-Auç 10-Auç 11-Au 11-Au 11-Au 11-Au 11-Au 11-Au 11-Au 11-Au 11-Au 11-Au 11-Au 11-Au	-88 -88 -88 -88 -88 -88 -88 -88	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1.5 1.4 1.4 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1	13.9 3.1 3.1 3.0 2.9 2.9 2.8 2.7 2.7 2.6 2.5 2.5 2.4 2.4	0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
12-Jul 13-Jul 15-Jul 16-Jul 17-Jul 18-Jul 19-Jul 20-Jul 22-Jul 23-Jul 25-Jul 25-Jul 27-Jul 27-Jul 27-Jul 27-Jul 27-Jul 27-Jul 28-Jul 27-Jul 27-Jul 28-Jul 28-Jul 27-Jul 28-Jul 27-Jul 11-Aug	1-88 1-88 1-88 1-88 1-88 1-88 1-88 1-88	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1.4 1.4 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1	3.1 3.1 3.0 2.9 2.9 2.8 2.7 2.7 2.6 2.5 2.5 2.4 2.4	0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
13-Jul 14-Jul 15-Jul 16-Jul 17-Jul 18-Jul 19-Jul 20-Jul 20-Jul 23-Jul 25-Jul 26-Jul 27-Jul 29-Jul 30-Jul 01-Aug 03-Aug 04-Aug 05-Aug 07-Aug 08-Aug 11-Aug	1-88 1-88 1-88 1-88 1-88 1-88 1-88 1-88	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1.4 1.4 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1	3.1 3.0 2.9 2.9 2.8 2.7 2.7 2.6 2.5 2.5 2.4 2.4	0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
14-Jul 15-Jul 16-Jul 17-Jul 18-Jul 19-Jul 20-Jul 21-Jul 22-Jul 23-Jul 25-Jul 26-Jul 29-Jul 30-Jul 31-Jul 01-Aug 02-Aug 03-Aug 04-Aug 08-Aug 09-Aug 11-Aug	I-88 I-88 I-88 I-88 I-88 I-88 II-88 II-88 II-88	9 10 11 12 13 14 15 16 17 18 19 20 21 22	1.4 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1	3.0 2.9 2.9 2.8 2.7 2.7 2.6 2.5 2.5 2.4 2.4	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
15-Jul 16-Jul 17-Jul 18-Jul 19-Jul 20-Jul 21-Jul 22-Jul 23-Jul 25-Jul 26-Jul 27-Jul 29-Jul 31-Jul 01-Aug 03-Aug 04-Aug 05-Aug 08-Aug 10-Aug 11-Aug	I-88 I-88 I-88 I-88 I-88 I-88 II-88 II-88	10 11 12 13 14 15 16 17 18 19 20 21 22	1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1	2.9 2.9 2.8 2.7 2.7 2.6 2.5 2.5 2.5 2.4	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
16-Jul 17-Jul 18-Jul 19-Jul 20-Jul 22-Jul 23-Jul 25-Jul 26-Jul 27-Jul 29-Jul 31-Jul 01-Aug 03-Aug 04-Aug 08-Aug 08-Aug 10-Aug 11	I-88 I-88 I-88 I-88 I-88 II-88 II-88 II-88	11 12 13 14 15 16 17 18 19 20 21 22	1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1	2.9 2.8 2.7 2.7 2.6 2.5 2.5 2.5 2.4	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
17-Jul 18-Jul 19-Jul 20-Jul 22-Jul 23-Jul 25-Jul 25-Jul 25-Jul 29-Jul 31-Jul 01-Auç 03-Auç 05-Auç 08-Auç 08-Auç 10-Au 11-Aul	I-88 I-88 I-88 I-88 I-88 II-88 II-88	12 13 14 15 16 17 18 19 20 21 22	1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1	2.8 2.7 2.7 2.6 2.5 2.5 2.4 2.4	0.3 0.3 0.3 0.3 0.3 0.3 0.3
17-Jul 18-Jul 19-Jul 20-Jul 22-Jul 23-Jul 25-Jul 25-Jul 25-Jul 29-Jul 31-Jul 01-Auç 03-Auç 05-Auç 08-Auç 08-Auç 10-Au 11-Aul	I-88 I-88 I-88 I-88 I-88 II-88 II-88	13 14 15 16 17 18 19 20 21 22	1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1	2.8 2.7 2.7 2.6 2.5 2.5 2.4 2.4	0.3 0.3 0.3 0.3 0.3 0.3
18-Jul 19-Jul 20-Jul 21-Jul 23-Jul 25-Jul 25-Jul 25-Jul 29-Jul 31-Jul 01-Auç 03-Auç 05-Auç 06-Auç 08-Auç 10-Auq 11-Aul 11-Aul 11-Aul 11-Aul 11-Aul 11-Aul 11-Aul 11-Aul 11-Aul 11-Aul 11-Aul 11-Aul 11-Aul	1-88 1-88 1-88 1-88 1-88 1-88 1-88	13 14 15 16 17 18 19 20 21 22	1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1	2.7 2.7 2.6 2.5 2.5 2.4 2.4	0.3 0.3 0.3 0.3 0.3
19-Jul 20-Jul 21-Jul 22-Jul 23-Jul 25-Jul 25-Jul 27-Jul 28-Ju 29-Ju 31-Jul 01-Aug 03-Aug 05-Aug 06-Aug 07-Aug 11-Aug	1-88 1-88 1-88 1-88 1-88 1-88	14 15 16 17 18 19 20 21 22	1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1	2.7 2.6 2.5 2.5 2.4 2.4	0.3 0.3 0.3 0.3 0.3
20-Juli 21-Juli 22-Juli 23-Juli 25-Juli 26-Juli 29-Juli 31-Juli 01-Augi 03-Augi 05-Augi 06-Augi 08-Augi 10-Augi 11-Aug	1-88 1-88 1-88 1-88 1-88 1-88	15 16 17 18 19 20 21 22	1.2 1.2 1.1 1.1 1.1 1.1 1.1	2.6 2.5 2.5 2.4 2.4	0.3 0.3 0.3 0.3
21-Jul 22-Jul 23-Jul 25-Ju 26-Jul 27-Jul 29-Ju 31-Jul 01-Aug 02-Aug 03-Aug 06-Aug 08-Aug 09-Aug 11-Aug	1-88 1-88 1-88 1-88 1-88	16 17 18 19 20 21 22	1.2 1.1 1.1 ; 1.1 1.1 1.0	2.5 2.5 2.4 2.4	0.3 0.3 0.3
22-Jul 23-Jul 24-Jui 25-Jul 26-Jul 27-Jul 28-Jul 30-Jul 31-Jul 01-Aug 02-Aug 05-Aug 06-Aug 08-Aug 10-Aug 11	1-88 1-88 1-88 1-88	17 18 19 20 21 22	1.1 1.1 1.1 1.1 1.0	2.5 2.4 2.4	0.3 0.3
23-Jul 24-Ju 25-Jul 26-Jul 27-Jul 29-Jul 31-Jul 01-Aug 02-Aug 05-Aug 06-Aug 08-Aug 10-Aug 11-	1-88 1-88 1-88 1-88	18 19 20 21 22	1.1 ; 1.1 1.1 1.0	2.4 2.4	0.3
24-Jui 25-Jui 26-Jui 28-Ju 29-Ju 31-Ju 01-Aug 02-Aug 05-Aug 06-Aug 09-Aug 10-Aug 11-Au	88-li 88-li 88-li	19 20 21 22) 1.1 1.1 1.0	2.4	
25-Jul 26-Jul 27-Jul 28-Jul 30-Jul 31-Jul 01-Aug 02-Aug 05-Aug 06-Aug 09-Aug 10-Aug 11-Aug	88-li 88-li	20 21 22	1.1 1.0		, n n n
26-Jul 27-Jul 28-Jul 30-Jul 31-Jul 01-Aug 02-Aug 03-Aug 05-Aug 06-Aug 10-Aug 11-Aug	I-88	21 22	1.0		0.3
27-Ju 28-Ju 30-Ju 31-Ju 01-Aug 02-Aug 03-Aug 05-Aug 06-Aug 09-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug		22		2.3	0.3
28-Ju 29-Ju 31-Ju 01-Aug 02-Aug 03-Aug 05-Aug 06-Aug 09-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug	1 - 88			2.3	0.3
29-Ju 30-Ju 31-Ju 01-Aug 02-Aug 03-Aug 05-Aug 06-Aug 08-Aug 11-Aug		23	1.0	2.2	0.3
30-Ju 31-Ju 01-Auç 02-Auç 03-Auç 05-Auç 06-Auç 08-Auç 10-Auç 11-Au 12-Au 15-Au 16-Au 17-Au 18-Au	1-88	. ~~	1.0	2.2	0.3
31-Ju 01-Aug 02-Aug 03-Aug 05-Aug 06-Aug 09-Aug 10-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug	11-88	24 [1.0	2.1	0.2
01-Aug 02-Aug 03-Aug 05-Aug 06-Aug 09-Aug 10-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug	ıl-88	25	1.0	2.1	0.2
01-Aug 02-Aug 03-Aug 05-Aug 06-Aug 09-Aug 10-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug 11-Aug	ıl-88	26	0.9	2.0	0.2
02-Aug 03-Aug 04-Aug 05-Aug 06-Aug 09-Aug 10-Aug 11-Aug 13-Aug 15-Aug 16-Aug 17-Aug 18-Aug 18-Aug		27	0,9	2.0	0.2
03-Aug 04-Aug 05-Aug 06-Aug 08-Aug 10-Aug 11-Aug 12-Aug 15-Aug 16-Aug 18-Aug 18-Aug 18-Aug	-	29	0.9	1.9	0.2
04-Aug 05-Aug 06-Aug 08-Aug 10-Aug 11-Aug 12-Aug 13-Aug 15-Aug 16-Aug 18-Aug 18-Aug 18-Aug	_	30	0.9	1.9	0.2
05-Aug 06-Aug 07-Aug 08-Aug 10-Aug 11-Aug 13-Aug 15-Aug 16-Aug 17-Aug 18-Aug 19-Aug	_	31	0.9	1.8	0.2
06-Aug 07-Aug 08-Aug 09-Aug 10-Aug 12-Aug 13-Aug 15-Aug 16-Aug 17-Aug 18-Aug 19-Aug	-	32	0.8	1.8	0,2
07-Aug 08-Aug 10-Aug 11-Aug 12-Aug 13-Aug 15-Aug 16-Aug 17-Aug 18-Aug 19-Aug	-	33	0.8	1.8	0.2
08-Aug 09-Aug 10-Aug 11-Aug 13-Aug 14-Aug 15-Aug 16-Aug 17-Aug 18-Aug 19-Aug	-	34	0.8	1.7	0.2
09-Aug 10-Aug 11-Aug 12-Aug 13-Aug 15-Aug 16-Aug 17-Aug 19-Aug	_			1.7	0.2
10-Aug 11-Aug 12-Aug 13-Aug 14-Aug 15-Aug 17-Aug 18-Aug 19-Aug	-	35	0.8		0.2
11-Au 12-Au 13-Au 14-Au 15-Au 16-Au 17-Au 18-Au 19-Au	_	36	0.8	1.6	
12-Au 13-Au 14-Au 15-Au 16-Au 17-Au 18-Au 19-Au	_	37	0.7	1.6	0.2
13-Au 14-Au 15-Au 16-Au 17-Au 18-Au 19-Au		38	0.7	1.6	0.2
14-Au 15-Au 16-Au 17-Au 18-Au 19-Au			0.7	1.5	0.2
15-Au 16-Au 17-Au 18-Au 19-Au	g-88		0.7	1.5	0.2
16-Au 17-Au 18-Au 19-Au	g-88	41	0.7	1.5	0.2
16-Au 17-Au 18-Au 19-Au	g-88	42	0.7	1.4	0.2
17-Au 18-Au 19-Au	-		0.6	1.4	0.2
18-Au 19-Au	_		0.6	1.4	0.2
19-Au	_		0.6	1,3	0.2
II .			0.6	1.3	0.2
* *C-U	IO-RA		0.6	1.3	0.1
П	-	1	0.6	1.2	0.1
II .	ıg-88		0.6		0.1
II	ig-88 ig-88		0.6		0.1
п	ig-88 ig-88 ig-88				0.1
K.	ig-88 ig-88 ig-88 ig-88	. 1	0.5		0.1
25-Au	1g-88 1g-88 1g-88 1g-88	3 52			
26-Au	19-88 19-88 19-88 19-88 19-88				0.1
27-Au	19-88 19-88 19-88 19-88 19-88	53			0.1
28-Au	ng-88 ng-88 ng-88 ng-88 ng-88 ng-88	53 54	0.5		0.1
29-AL	ng-88 ng-88 ng-88 ng-88 ng-88 ng-88	53 54		1.0	0.1
30-Au	nd-0g nd-8g nd-8g nd-8g nd-8g nd-8g nd-8g	53 54 55 55	0.5		0.1
31-Au	nd-06 nd-96 nd-86 nd-86 nd-86 nd-86 nd-86	53 54 55 55 56		1.0	0.1

page 17

Comments on the aluminium intake of

The table on the following page *gives* an estimate of the aluminium Intake for the period up to 31st August, after which date there are insufficient data to be able to make any satisfactory prediction.

I have not seen any data for samples taken from the premises where resided at the time of the incident. The only data I have seen are the analyses of samples taken on 27th April 1989 and 4th May 1989 in which the aluminium concentrations were 0.08 mg/l and 0.05 mg/l respectively, both well betow the EC MAC of 0.2 mg/l.

•	,				
		Aluminium	take in mg/d	ay C	owther Clayton Associates
Date	Day	By Model	Maximum	Minimum	
07-Jul-88	2	14.3	15.3	0.1	•
88-Jul-88	3	55.3	55.3	55.3	
09-Jul-88	4	15.7	40.7	0.4	
10-Jul-88	5	1.5	26.3	0.3	
11-Jul-88	6	1.3	11.8	0.3	
12-Jul-88	7	1.2	27	0.3	
13-Jul-88	8	1.2	2.6	0.3	
14~Jul-88	9	1.2	25	0.3	
15-Jul-86	10	1.1	2 5	0.3	
16-Jul-88	11	1.1	2.4	0.3	
17-Jul-88	t2	1.1	2.4	0.3	
18-Jul-88	13	1.1	2.3	0.3	
19-Jul-88	14	1.0	2.3	0.3	
20-Jul-88	15	1.0	22	0.3	
21-Jul-88	16	1.0	2.2	0.3	•
22-Jul-88	17	1.0	2.1	0.2	
23-Jul-88	10	1.0	2.1	0.2	
24-Jul-88	19	0.4	2.0	0.2	
25-Jul-88	20	0.9	2.0	0.2	
26-Jul-88	21	0.9	1.9	0.2	
27-Jui-88	22	0.9	1.9	0.2	•
28~Jul-88	23	0.8	1.8	0.2	
29-Jul-88	24	0.8	1.8	0.2	
30-Jul-88	25	0.8	1.8	0.2	
31-Jul-88	26	0.0	1.7	0.2	
01-Aug-88	27	8.0	1.7	0.2	
02-Aug-88	29	0.8	1.6	0.2	
03-Aug-88	30	0.7	1.6	0.2	
04-Aug-88	31	0.7	1.6	0.2	
05-Aug-88	32	0.7	1.5	0.2	
06-Aug-88	33	0.7	1.5	0.2	
07-Aug-88	34	0.7	1.5	0.2	
08-Aug-88	35	0 . 7	1.4	0.2	
09-Aug-88	36	0.6	1.4	0.2	,
10-Aug-88	37	0.6	1.4	0.2	
11-Aug-88	38	0.6	1.3	0.2	
12-Aug-88	39	0.6	1.3	0.2	
13-Aug-88	40	0.6	1.3	0.1	
14-Aug-88	41	0.6	1.2	0.1	
15-Aug-88	42		1.2	0.1	
16-Aug-88	43	0.5	1.2	Q.1	
17-Aug-88	44	0.5		0.1	
18-Aug-88	45	0.5	1.1	0. 1	
19-Aug-88	46	0.5	1. †	0.1	i
20-Aug-88	47	0.5	1.1	0.1	}} ·
21-Aug-88		0.5	1.1	0.1	Ų.
22-Aug-86		0.5	1.0		ll .
23-Aug-88		0.5		0.1) }
24-Aug-88		0.5		0.1	<u> </u>
25-Aug-88		0.4		0.1	
26-Aug-88		0.4	0.9	0.1	
27-Aug-88	L	0.4	0.9		k
28-Aug-08			0.9	0.#	ll l
29-Aug-08			0.9	0.1	1
30-Aug-08			0.5	0.1	
31-Aug-0	58	0.4	3.0	0.1	j nace 1

page 19

Comments on the aluminium intake of

The table on the following page gives an estimate of the aluminium intake for the period up to 31 st August, after which date there are insufficient data to be able to make any satisfactory prediction.

I have not seen any data for samples taken from the premises where resided at the time of the Incident. The only data for I have seen are the analyses of samples taken on 27th April 1989 and 4th May 1989 in which the aluminium concentrations were 0.08 mg/l and 0.05 mg/l, both well below the EC MAC of 0.2 mg/l.

ì

		Aluminium	Intake in mg/	en en	wther Clayton Associates
Date	Day	By Model	Maximum	Minimum	, 11550014005
07-Jul-88	2	16.9	18.0	0.1	
88-Jul-88	3	65.1	65.0	65.0	
09-Jul-88	4	18.4	47.9	0.5	
10-Jul-88	5	1.8	31.0	0.4	
11-Jul-88	6	1.5	13.9	0.4	
12-Jul-88	7	1.4	3.1	0.4	
13-Jul-88	8	1.4	3.1	0.4	
14-Jul-88 _;	9	1.4	3.0	0.3	
15-Jul-88	10	1.3	2.9	0.3	
16-Jul-88	11	1.3	2.9	0.3	
17-Jul-88	12	1.3	2.8	0.3	
18-Jul-88	13	1.3	2.7	0.3	
19-Jul-88	14	1.2	2.7	0.3	
20-Jul-88	15	1.2	2.6	0.3	
21-Jul-88 22-Jul-88	16 17	1.1	2.5	0.3	
23-Jul-88	18	1.1	2.5 2.4	0.3	
24-Jul-88	19	, 1.1	2.4	0.3	
25-Jul-88	20	1,1	2.3	0.3	
26-Jul-88	21	1.0	2.3	0.3	
27-Jul-88	22	1.0	2.2	0.3	
28-Jul-88	23	1.0	2.2	0,3	
29-Jul-88	24	1.0	2.1	0.2	
30-Jul-88	25	1.0	2.1	0.2	
31-Jul-88	26	0.9	2.0	0.2	
01-Aug-88	27	0.9	2.0	0.2	
02-Aug-88	29	0.9	1.9	0.2	
03-Aug-88	30	0.9	1.9	0.2	
04-Aug-88	31	0.9	1.8	0.2	
05-Aug-88	32	0.8	1.8	0.2	
06-Aug-88 07-Aug-88	33 34	8.0 8.0	1.8 1.7	0.2	
08-Aug-88	35	0.8	1.7	0.2	
09-Aug-88	36	0.8	1.6	0.2	
10-Aug-88	37	0.7	1.6	0.2	
11-Aug-88	38	0.7	1.6	0.2	
12-Aug-88	39	0.7	1.5	0.2	
13-Aug-88	40	0.7	1.5	0.2	
14-Aug-88	41	0.7	1.5	0.2	
15-Aug-88	42	0.7	1.4	0.2	
16-Aug-88	43	0.6	1.4	0.2	
17-Aug-88	44	0.6	1.4	0.2	ŀ
18-Aug-88	45	0.6	1.3	0.2	i N
19-Aug-88	46	0.6	1.3	0.2	}
20-Aug-88	47	0.6	1.3	0.1	-
21-Aug-88	48	0.6	1.2	0.1	
22-Aug-88	49	0.6	1.2	0.1 0.1	
23-Aug-88	50	0.6	1.2	0.1	1
24-Aug-88	51 52	0.5	1.1	0.1	
25-Aug-88 26-Aug-88	53	0.5	1.1	0.1	
27-Aug-88	54	0.5	1.1	0.1	1
28-Aug-08	55	0.5	1.1	0.1	1
29-Aug-08	56	0.5	1.0	0.1	1
30-Aug-08	57	0.5	1.0	0.1	1 .
31-Aug-08	58	0.5	1.0	0.1	1
		<u> </u>			page 2

page 21

Crowther Clayton Assodates

91/2737

Comments on the aluminium intake d

The table on the following page *gives* an estimate of the aluminium intake for the period up to 31st August, after which date there are insufficient data to be able to make any satisfactory prediction.

I note that on 27th August the analysis of a sample of water taken from the cold tap in residence gave 0.31 mg Al/litre. This compares well with the estimated values for that day of

ì

Maximum

1.5 mg/l

Model prediction:

0.7 mg/l

Minimum

0.2 mg/l

water is close to the minimum value predicted, and since the difference between the actual quantity ingested, based on 0.31 mg/l, and the quantities based on the estimated values is small, and since the estimates of water consumption can only be approximate, 1 have not changed the values in the table for the 27th August.

Segwither Clayton Associates

									the
				luminium			lay		
		Day		y Model	Ma	ximum	Mir	imum	
	07-Jul-88	2	_	24.0		25.6		0.2	
	08-Jul-88	3	} <u> </u>	92.4		92.3		92.3	
	09-Jul-88	4	<u> </u>	26.1		68.1		0.7	
	10-Jul-88		5 [2.6	<u> </u>	44.0		0.5	
	11-Jul-88	ŧ	3 🗀	2.1		19.7		0.5	
1	12-Jul-88		7 🗔	2.0	<u> </u>	4.4		0.5	
Į	13~Jul-88	;	8 [2.0	<u> </u>	4.3		0.5	
	14-Jul-88	!	9 [2.0	<u> </u>	4.2		0.5	
١	15-Jul-88	1	∘ 🗀	1.9	<u> </u>	4.1		0.5	
1	16-Jul-88	1	1 🔼	1.9	<u> </u>	4.0		0.5	
	17-Jul-88	1	2 🗌	1.8		4.0		0.5	
ŀ	18-Jul-88	1	з 🗀	1.8	<u> </u>	3.9		0.5	
1	19-Jul-88	1	4 🗌	1.7	<u> </u>	3.8	ļ <u>.</u>	0.4	
1	20-Jul-88] 1	5	1.7	1	3.7		0.4	
1	21-Jul-88	1	6 🗌	1.7	<u> </u>	3.6	 	0.4	
1	22-Jul-88	1	7	1,6		3.5	 -	0.4	İ
ı	23-Jul-88	1	8	1.6	<u> </u>	3,4	Ļ	0.4	ŀ
	24-Jul-88] }	19 🔃	1.6		3.4	<u> </u>	0.4	į
1	25-Jul-88	1 2	20 [1.5	_	3.3	 	0.4	ĺ
H	26-Jul-88	1 :	21 🗌	1.5		3.2	 	0.4	1
1	27-Jul-88	: :	22 [1.5		3.1	 -	0.4	1
N.	28-Jul-88	1 3	23 🗌	. 1.4	Ц_	3.1	<u> </u>	0.4	
1	29-Jul-88	: إ t	24 🗌	1.4	_	3.0	↓	0.4	ł
ı	`30√Jul-88	3 J	25 🗌	1.4		2.9	1	0.3	4
\	31-Jul-86	3	26 _	1.3		2.9		0.3	
	01-Aug-88	3]	27 [1.3		2.8		0.3	1
1	02-Aug-88	3	29 📗	1.3		2.7		0.3	-
1	03-Aug-88	3	30	1.3		2.7			∄
I	04-Aug-88	в↓	31	1,		2.6		0.3	╣
	05-Aug-8	8	32	1.		2.6		0.3	╣
ı	06-Aug-8	₿	33 [1.		2.5	-	0.3	╣
1	07-Aug-8	8	34	1.	_	2.4	_	0.3	-[
ı	8-guA-80		35	1.		2.4		0.3	-
-	109-Aug-8	8	36	1.		2.: 2.:		0.3	1
ı	10-Aug-8	8	37	1.	_			0.3	
N	11-Aug-8		38 [0	2.5		0.3	1
Ŋ	12-Aug-8	88	39		.0	2.		0.2	
ļ	13-Aug-8		40		<u>.</u>	2.		0.2	
]	14-Aug-8		41		.0	2.		0.2	
Ī	15-Aug-8		42		.9	2.		0.2	_
ı	16-Aug-l		43		.9	2.	9	0.2	
	17-Aug-		44).9			0.2	
ļ	18-Aug-		45).9		.9 .9	0.2	
	19-Aug-		46		0.9			0.:	
	20-Aug-		47		3.8		.8	0.	_
1	21-Aug-		48		0.8		.8	0.	
	22-Aug-		49		0.8		.,	0.	
	23-Aug-		50		0.8		7	0.	_
	24-Aug		51		0.8		1.6		2
	25-Aug		52		0.7		1.6		.2
	26-Aug		53		0.7		1.5		.2
	27-Aug		54		0.7		1.5		1.2
	28-Aug		55		0.7		1.5		1.2
	29-Aug		56		0.7		1.4		0.2
	30-Aug		57		0.7	 	1.4).2
	31-Aug	-08	58		0.7		1.4	,	_

Sulphate concentrations for the St. Endellion **Area.**

		, —-9	Sulphale	concentratio	ns 1
Date		ау	Samples	Model	Estimated
A	Jul-88				
u	88-lul	2			19.3
II	88-lul 86-lul	3		184,0 184,0	165.7 192.3
II	Jul-88	4	110.0	115.7	194.3
II	Jul-88	4	83.0	115.7	
09~	1ul-88	4	115.0	115.7	l i
10~	88-lut	5	37.0	36.3]
II	Jul-88	5	35.0	36.3	l 1
91 ·	Jul-88	5	33.0	38.3	
Н	38-luL	6	29.0	2B.9	
11	Jul-88 Jul-88	7 8		28.9 26.4	1
E .	Jul-88	9	24.0	25.9	
E .	3ul-88	9	27.0 27.0	25.9	
н.	88-iul	10		25,5	! !
16~	88-Iu£	11		25.1	į į
п	Jul-88	12		24.7	
н	Jul-88	13	23.6	24.3	
II	88-lul 88-lul	14	31.2 27.0	23.9 23.6	
II	Jul-88	15	27.0 22 .1	23.5	
41	Jul-88	17		22.9	
0	Jul-88	18	19.7	22.6	
24~	Jul-88	19	19.1	22.3	
В	Jul-88	20		22.0	
	Jul-88	21	19.1	21.8	
	88-lut Jul-88	22	21.6	21.5 21.5	,
	Jul-88	23	21.8 22.5	21.2	
н :	Jul-08	24		21.0	[]
Я	Jul-88	25	l	20.8	}
•	88-luL	26		20.5	
H	86-gu	27	22.7	20.3	ļ l
k .	vg-88	28		20,1	
II	wg-88 wg-88	29 29	20.2 19.0	19.9 19.9	į
II.	wg-88	30	13.0	19.7	
	ug-88	31	20.7	19.5	
II .	ug-88	32		19.3	
11	ug-88	33	18.5	19.2	'
	\ug-88	34	18.6	19.0	}
R.	\ug-88 \ug-88	35 36	20.5i	18.9 18.7	1
II.	Lug-88	37	18.8	18.8	
B	kug-88	37	19.0	18.6	
12-A	lug-88	38	15.8	10.4	
12-4	Nug-88	38	19.0	18.4	
	88-gw	39	40.4	18.3	
15.4	88-gu/	40 41	18.4 18.2	18.2 18.0	
	\ug-88	4:2	20.1	17.9	
	\ug-88	4:2	18.4	17.9	ļ
16-4	38-pu	4:2	18.4	17.4	1
	Aug-88	4:2	20.9	17.9	
	Aug-88	42	21.1	17.5	
	Aug-88	42	20.0	17.5 17.8	
	Aug-BE Aug-BE	43	16.2	17.1	
	Aug-88	44	17.1	17.7	
	4ug-88	44	17.2	17.1	
	Aug-Bi	46	17.7	17.6	
III .	Aug-8i	45	17.6	17.6	
	Aug-8i	45	16.3	t7.t5	1
	Aug-Bi	45		17.1	
	Aug-8I Aug-8I	46		17.5	
	Aug-8i Aug-Bi	47		17.3	
	Aug-8l	48		17.3	
	-Jul-8i	49	1	17.2	
31	Aug-8i	50	<u> </u>	17.1	

NOTE:

The estimated values were calculated from the aluminium concentrations plus 19 mg/l to account for the naturally occurring suiphate.

Crowther Clayton Associates

91/2737 The quantity of sulphate ingested by

The results of the analyses on all the samples collected by South West Water Authority from the St. Endellion Area (Area A in this report) show sulphate concentrations below the EC Maximum Allowable Concentration of 250 mg/l.

I could find no data for sulphate concentrations on 7th and 8th July 1988, but there are data for the aluminium concentration and these two days. I have therefore calculated the equivalent theoretical sulphate concentration for the aluminium concentrations for the 7th and 8th July. These values can only be approximate since the sutphate concentrations are not necessarily the stoichiometric equivalent of the aluminium - for example, the water naturally contains roughly 16-20 mg sulphate/litre which B not associated with any aluminium, and some of the aluminium may have precipitated as the hydroxide leaving the associated sulphate still in solution, However, these are the only data available and it enables an approximate evaluation of sulphate intake to be made for the first two days when the statistical model for sulphate concentration is less reliable because of the shortage of data.

The data are:

Date	Day	Aluminium in mg/l	Calculated Stoichiometric Sulphate Concentration
07-Jul-88	2	9.0	48.0
07-Jui-88	2	0.6	3.2
08-Jul-88	3	27.5	146.7
08-Jul - 88	. 3	32.5	173.3
09-Jul-88	4	7.7	41.1

All other data reported for sulphate concentration in the St. Endellion Area, including those samples taken from residence, are also for values below the EC MAC of 250 mg/l.

In estimating the total sulphate concentration I have added 19 mg/l to the stoichiometric values shown in the table above since, as noted above, the water naturally contains roughly 16-20 mg/l sulphate; thus the maximum value for 8th July, used in my estimation for total sulphate ingested, is 192.3 mg/l. On the basis of the available data it is not possible to say that ingested concentrations of sulphate in excess of the acceptable limits.

The results of the analyses on all the samples collected by South West Water Authority from the St. Endellion Area (Area A in this report) show sulphate concentrations below the EC Maximum Allowable Concentration of 250 mg/l.

I could find no data for sulphate concentrations on 7th and 8th July 1988, but there are data for the aluminium Concentration on these two days. I have therefore calculated the equivalent theoretical sulphate concentration for the aluminium concentrations for the 7th and 8th July. These values can only be approximate since the sulphate concentrations are not necessarily the stoichiometric equivalent of the aluminium - for example, the water naturally contains roughly 16-20 mg sulphate/litre which is not associated with any aluminium, and some of the aluminium may have precipitated as the hydroxide leaving the associated sulphate still in solution. However, these are the only data available and it enables an approximate evaluation of sulphate intake to be made for the first two days when the statistical model for sulphate concentration is less reliable because of the shortage of data.

The data are:

Date	Day	Aluminium in mg/l	Calculated Stoichiometric Sulphate Concentration
07-Jul-88	2	9.0	48.0
07-Jul-88		1	3.2
08-Jul-88			146.7
08-Jul-88	. 3	32.5	173.3
09-Jul-88	4	7.7	41.1

All other data reported for sulphate concentration in the St. Endellion Area, including those samples taken from residence, are also for values below the EC MAC of 250 mg/l.

In estimating the total sulphate concentration I have added 19 mg/l to the stoichiometric values shown in the table above since, as noted above, the water naturally contains roughly 16-20 mg/l sulphate; thus the maximum value for 8th July, used in my estimation for total sulphate ingested, is 192.3 mg/l. On the basis of the available data it is not possible to say that ingested concentrations of sulphate in excess of the acceptable limits.

The results of the analyses on all the samples collected by South West Water Authority from the St. Endellion Area (Area A in this report) show sulphate concentrations below the EC Maximum Allowable Concentration £ 250 mg/l.

I could find no data for sulphate concentrations on 7th and 8th July 1988, but there are data for the aluminium concentration on these two days. I have therefore calculated the equivalent theoretical sulphate concentration for the aluminium concentrations for the 7th and 8th July. These values can only be approximate since the sulphate concentrations are not necessarily the stoichiometric equivalent of the aluminium - for example, the water naturally contains roughly 16-20 mg sulphate/litre which is not associated with any aluminium, and some of the aluminium may have precipitated as the hydroxide leaving the associated sulphate still in solution. However, these are the only data available and t enables an approximate evaluation of sulphate Intake to be made for the first two days when the statistical model for sulphate concentration is less reliable because of the shortage of data.

The data are:

Date	Day	Aluminium in mg/l	Calculated Stoichiometric Sulphate Concentration
07-Jul-88	2	9.0	48.0
07-Jul-88	2	0.6	3.2
08-Jul-88	3	27.5	146.7
98-Jul-88	, 3	32.5	173.3
09-Jul-88	4	7.7	41.1

All other data reported for sulphate concentration in the St. Endellion Area, including those samples taken from residence, are also for values below the EC MAC of 250 mg/l.

In estimating the total sulphate concentration I have added 19 mg/I to the stoichiometric values shown in the table above since, as noted above, the water naturally contains roughly 16-20 mg/I sulphate; thus the maximum value for 8th July, used in my estimation for total sulphate ingested, is 192.3 mg/I. On the basis of the available data it is not possible to say that ingested concentrations of sulphate in excess of the acceptable limits.

The results of the analyses on all the samples collected by South West Water Authority from the St. Endellion Area (Area A in this report) show sulphateconcentrations below the EC Maximum Allowable Concentration of 250 mg/l.

I could find no data for sulphate concentrations an 7th and 8th July t 988, but there are data for the aluminium concentration on these two days. I have therefore calculated the equivalent theoretical sulphate concentration for the aluminium concentrations for the 7th and 8th July. These values can only be approximate since the sulphate concentrations are not necessarily the stoichiometric equivalent of the aluminium - for example, the water naturally contains roughly 16-20 mg sulphate/litre which is not associated with any aluminium, and some of the aluminium may have precipitated as the hydroxide leaving the associated sulphate still in solution. However, these are the only data available and it enables an approximate evaluation of sulphate intake to be made for the first two days when the statistical model far sulphate concentration is less reliable because of the shortage of data.

The data are:

Date	Day	Aluminium in mg/l	Calculated Stoichiometric Sulphate Concentration	
07-Jul-88	2	9.0	48.0	
07-Jul-88	2	0.6	3.2	
08-Jul-88	3	27.5	146.7	
08-Jui-88	. 3	32.5	173.3	
88-luL-e0	4	7.7	41.1	

All other data reported for suitchate concentration in the St. Endellion Area, Including those samples taken from residence, are also for vatues below the EC MAC of 250 mg/l.

In estimating the total sulphate concentration I have added 19 mg/l to the stoichiometric values shown in the table above since, as noted above, the *water* naturally contains roughly 16-20 mg/l sulphate; thus the maximum value for 8th July, used in my.estimation for total sulphate ingested, is 192.3 mg/l. On the basis of the available data it is not possible to say that ingested concentrations of sulphate in excess of the acceptable limits.

The results of the analyses on all the samples collected by South West Water Authority from the St. Endellion Area (Area A in this report) show sulphate concentrations below the EC Maximum Allowable Concentration of 250 mg/l.

I could find no data for sulphate concentrations on 7th and 8th July 1988, but there are data for the aluminium concentration on these two days. I have therefore calculated the equivalent theoretical sulphate concentration far the aluminium concentrations for the 7th and 8th July. These values can only be approximate since the sulphate concentrations are not necessarily the stoichiometric equivalent of the aluminium - for example, the water naturally contains roughly 16-20 mg sulphate/litre which is not associated with any aluminium, and some of the aluminium may have precipitated as the hydroxide leaving the associated sulphate still in solution. However, these are the only data available and it enables an approximate evaluation of sutphate intake to be made for the first two days when the statistical model for sulphate concentration is less reliable because of the shortage of data.

The data are:

Date	Day	Aluminium in mg/l	Calculated Stoichiometric Sulphate Concentration
07-Jul-88	2	9.0	48.0
07-Jul-88	2	0.6	3.2
08-Jul-88	3	27.5	146.7
08-Jul-88	3	32.5	173.3
09-Jul-88	4	7.7	41.1

All other data reported for sulphate concentration in the St. Endellion Area, including those samples taken from residence, are also for values below the EC MAC of 250 mg/l.

In estimating the total sutphate concentration I have added 19 mg/l to the stoichiometric values shown in the table above since, as noted above, the water naturally contains roughly 16-20 mg/l sulphate; thus the maximum value for 8th July, used in my estimation for total sutphate ingested, is 192.3 mg/l. On the basis of the available data it is not possible to say that ingested concentrations of sulphate in excess of the acceptable limits.

Date	Day	pH]
07~Jul-88	2	
07~Jul-88	2	
08-Jul-88	3	5.0
88-luL-80	3	4.0
09-Jul-88	4	4.7
88-lul-80	4	4.0
09-Jul-88	4	4,6
09-Jul-88	4	8.8
09-Jul-88 10-Jul-88	4	4.6 6.8
10-Jul-88	5 5	1.8
10-Jul-88	5	5,D
10-Jul-88	5	6.1
10-Jul-88	5	6.8
11-Jul-88	8	7.5
14~Jul-88	9	7.8
14-Jul-88	9	5.8
18-Jul-88	13	8.0
19-Jul-88	14	7.9
20-Jul-88	15	8.4
21-Jul-88	16	7.6
22-Jul-88	17	8.1
23-Jul-88	18	7.7
24~Jul-88	19	8.0
26-Jul-88	21	7.8
26-Jul-88	21	۰
27-Jul-88 27-Jul-88	22 22	8.0 7.9
28-Jul-88	23	7.7
01-Aug-88	27	7.8
03-Aug-88	29	7.8
03-Aug-88	29	7.0
04-Aug-88	30	7.9
05-Aug-88	31	7.8
07-Aug-88	33	7.9
08-Aug-88	34	7.7
09-Aug-88	35	7.5
B8-guA-01	36	7.7
11-Aug-88	37	8.1 at (
11-Aug-88	37 38	8.2
12-Aug-88 12-Aug-88	38	8.0
14-Aug-88	40	8.0
15-Aug-88	41	8.2
16-Aug-88	42	7.6
16-Aug-88	42	6.7
16-Aug-88	42	8.0
16-Aug-88	42	7.7
16-Aug-88	42	7.8
16-Aug-88	42	7.8
17-Aug-88	43	7.9 7.9
17-Aug-88	43	7.8
17-Aug-88	43	a.1 7.6
18-Aug-88 18-Aug-88	44	7.0 7.8
18-Aug-88	44	7.7
19-Aug-88	45	7.£
19-Aug-88	45	7.8
19-Aug-88	45	7.1
19-Aug-88	45	7.5
19-Aug-88	45	7.7
19-Aug-88	45	7.6
22-Aug-88	48	
22-Aug-88	48	9.1
22-Aug-88	48	!
22-Aug-88	48	9.\$

Crowther Clayton Associates

91/2737

pH of water consumed by

pH is not a substance which can be consumed and for which the quantity ingested can be calculated as it can for aluminium σ sulphate; pH is a measure of the acidity and alkalinity balance in water.

The range for pH in drinking water specified in the EC Directive are

upper limit ' 9.5; lower limit 5.5.

With the exception of 8 samples taken on the 8th. 9th and 10th Jupe 1988 all samples are within this range.

The significance of pH lies more in its effect on pipes and other fittings in the water supplier's and the consumer's water distribution system than on the health of consumers. Many normal beverages are outside the EC Drinking Water pH limits, for example soft drinks such as Coca Cola and lemonade. I show on the graph of the pH of samples in the St. Endellion Area the relative position of lemonade which typically has a pH in the region of 3.

Crowther Clayton Associates

91/2737

pH of water consumed by

pH is not a substance which can be consumed and for which the quantity ingested can be calculated as it can for aluminium or sulphate; pH is a measure of the acidity and alkalinity balance in water.

The range for pH in drinking water specified in the EC Directive are

upper limit i 9.5; lower limit 5.5.

With the exception of 8 samples taken on the 8th, 9th and 10th June 1988 all samples are within this range.

The significance of pH lies more in its effect on pipes and other fittings in the water supplier's and the consumer's water distribution system than on the health of consumers. Many normal beverages are outside the EC Drinking Water pH limb, for example soft drinks such as *Coca* Cola and lemonade. I show on the graph of the pH of samples in the St. Endellion Area the relative position of lemonade which typically has a pH in the region of 3.

Crowther Clayton Assodates

91/2737

pH ofwater consumed by

pH is not a substance which can be consumed and for which the quantity ingested can be calculated as it can for aluminium or sulphate; pH is a measure of the acidity and alkalinity balance in water.

The range for pH in drinking water specified in the EC Directive are

upper limit ^f 9.5; lower limit 5.5.

With the exception of 8 samples taken on the 8th, 9th and 10th June 1988 all samples are within this range.

The significance of pit lies more in its effect on pipes and other fittings in the water supplier's and the consumer's water distribution system than on the health of consumers. Many normal beverages are outside the EC Drinking Water pH limits, for example 'softdrinks such as Coca Cola and lemonade. I show on the graph of the pH of samples in the St. Endellion Area the relative position of lemonade which typically has a pH in the region of 3.

Crowther Clayton Assodates

91/2737

pH of water consumed by

pH is not a substance which can be consumed and for which the quantity ingested can be calculated as it can for aluminium or sulphate; pH is a measure of the acidity and alkalinity balance in water.

The range for pH in drinking water specified in the EC Directive are

upper limit '9.5; lower limit 5.5.

With the exception of 8 samples taken on the 8th, 9th and 10th June 1988 all samples are within this range.

The significance of pH lies more in its effect on pipes and other fittings in the water supplier's and the consumer's water distribution system than on the health of consumers. Many normal beverages are outside the EC Drinking Water pH limits, for example soft drinks such as Coca Cola and lemonade. I show on the graph of the pH of samples in the St. Endellion Area the relative position of lemonade which typically has a pH in the region of 3.

91/2737

Crowther Clayton Associates

pH cf water consumed by

pH is not a substance which can be consumed and for which the quantity ingested can be calculated as it can for aluminium or sulphate; pH is a measure of the acidity and alkalinity balance in water.

The range for pH in drinking water specified in the EC Directive are

upper limit

lower limit 5.5.

With the exception of 8 samples taken on the 8th, 9th and 10th June 1988 all samples are within this range.

9.5;

The significance of pH lies more in its effecton pipes and other fittings in the water supplier's and the consumer's water distribution system than on the health of consumers. Many normal beverages are outside the EC Drinking Water pH limits, for example soft drinks such as *Coca* Cola and lemonade. I show on the graph of the pH of samples in the St. Endellion Area the relative position of lemonade which typically has a pH in the region of 3.

The EC Maximum Allowable Concentrations (MAC) fur copper, zinc and lead are

copper: $3,000\mu g/l$ ie 3 mg/l. zinc : $5,000 \mu g/l$ ie 5 mg/l. lead : $50 \mu g/l$ ie 0.05 mg/l.

All samples for copper and zinc show levels for these two metals at levels very substantially below the EC MAC - sometimes as much 3 orders of magnitude below the MAC.

Lead also appears to be *consistently* below the MAC, and usually well below (and sometimes one order of magnitude below) the MAC. Results of lead analyses are normally reported as <0.05 or <0.005 - ie less than $50\mu\,\mathrm{g/l}$ or *less* than $5\,\mu\,\mathrm{g/l}$ (and thus within the MAC). However, on three days, 16th, 18th and 19th August 1988, the results of the sample analyses on 13 samples are reported as <0.08 mg/l. I presume that different methods of analysis have been used and that the limit of sensitivity of these analyses vary between 0.08 mg/l and 0.005 mg/l. It is therefore not possible to say with certainty that on those 13 occasions the lead concentration did not exceed $50\,\mu\,\mathrm{g/l}$. However, since every other reported result, using the more sensitive methods, never exceed the MAC, and the acidity of these 13 samples was in the Same range as all other satisfactory samples, it is very unlikely that the concentrations of lead ever exceeded the EC MAC vatues.

The daily intake of copper and zinc was thus always well below the levels acceptable.

The dally intake of lead was also almost certainly well below the levels considered acceptable, the only uncertainty being those 13 occasions when the concentration was recorded as <80 μ g/l. If the level had been 80 μ g/l on those three days then intake on those three days would have been less than 136 μ g (<0.136 mg).

The EC Maximum Allowable Concentrations (MAC) for copper, zinc and lead are

copper: 3,000 μ g/l ie 3 mg/l. zinc : 5,000 μ g/l ie 5 mg/l. lead : 50 μ g/l ie 0.05 mg/l.

All samples for copper and zinc show levels for these two metals at levels very substantially below the EC MAC - sometimes as much 3 orders of magnitude below the MAC.

Lead also appears to be consistently below the MAC, and usually well below (and sometimes one order of magnitude below) the MAC. Results \pm lead analyses are normally reported as <0.05 or <0.005 - ie less than 50 μ g/l or less than 5 μ g/l (and thus within the MAC). However, on three days, 16th, 18th and 19th August 1988, the results of the sample analyses on 13 samples are reported as <0.08 mg/l. I presume that different methods of analysis have been used and that the limit \pm sensitivity of these analyses vary between 0.08 mg/l and 0.005 mg/l. It is therefore not possible to say with certainty that on those 13 occasions the lead concentration did not exceed 50 μ g/l. However, since every other reported result, using the more sensitive methods, never exceed the MAC, and the acidity of these 13 samples was in the Same range as all other satisfactory samples, it is very unlikely that the concentrations of lead ever exceeded the EC MAC values.

The daily intake of copper and zinc was thus always well below the levels acceptable.

The daily intake of lead was also almost certainly well below the levels considered acceptable, the only uncertainty being those 13 occasions when the concentration was recorded as <80 μ g/l. If the level had been 80 μ g/l on those three days then intake on those three days would have been less than 160 μ g (<0.16 mg).

The EC Maximum Allowable Concentrations (MAC) for copper, zinc and lead are

copper: $3,000 \mu g/l = 3 mg/l$. zinc : $5,000 \mu g/l = 5 mg/l$. lead : $50 \mu g/l = 0.05 mg/l$.

All samples for copper and zinc show levels for these two metals at levels very substantially below the EC MAC - sometimes as much 3 orders of magnitude below the MAC.

Lead also appears to be consistently below the MAC, and usually well below (and sometimes one order of magnitude below) the MAC. Results of lead analyses are normally reported as <0.05 or <0.005 ~ ie less than $50\mu\,\mathrm{g/l}$ or less than $5\,\mu\,\mathrm{g/l}$ (and thus within the MAC). However, on three days, 16th, 18th and 19th August 1988, the results of the sample analyses on 13 samples are reponde as <0.08 mg/l. 1 presume that different methods of analysis have been used and that the limit of sensitivity of these analyses vary between 0.08 mg/l and 0.005 mg/l. It is therefore nos possible to say with certainty that on ?hose 13 occasions the lead concentration did not exceed $50\,\mu\,\mathrm{g/l}$. However, since every other reported result, using the more sensitive methods, never exceed the MAC, and the acidity of these 13 samples was in the Same range as all other satisfactory samples, it is very unlikely that the concentrations of lead ever exceeded the EC MAC values.

The daily intake of copper and zinc was thus always well below the levels acceptable.

The daily intake of lead was also almost certainly well below the levels considered acceptable, the only uncertainty being those 13 occasions when the concentration was recorded as <80 μ g/l. If the level had been 80μ g/l on those three days then intake on those three days would have been less than 160μ g (<0.16 mg).

The EC Maximum Allowable Concentrations (MAC) for copper, zinc and lead are

copper:

 $3,000\mu g/l$ ie 3 mg/l.

zinc

 $5,000 \,\mu \, g/l \, \text{ie } 5 \, \text{mg/l}.$

lead

 $50 \mu g/l$ ie 0.05 mg/l.

All samples for copper and zinc show levels for these two metals at levels very substantially below the EC MAC - sometimes as much 3 orders of magnitude below the MAC.

Lead also appears to be consistently below the MAC, and usually well below (and sometimes one order of magnitude below) the MAC. Results of lead analyses are normally reported as <0.05 or <0.005 - ie less than $50\mu g/l$ or less than $5\mu g/l$ (and thus within the MAC). However, on three days, 16th, 18th and 19th August 1988, the results of the sample analyses on 13 samples are reported as <0.08 mg/l. I presume that different methods of analysis have been used and that the limit of sensitivity of these analyses vary between 0.08 mg/l and 0.005 mg/l. It is therefore not possible to say with certainty that on those f3 occasions the lead concentration did not exceed 50 μ g/l. However, since every other reported result, using the more sensitive methods, never exceed the MAC, and the acidity of these 13 samples was in the same range as all other satisfactory samples, it is very unlikely that the concentrations of lead ever exceeded the EC MAC vatues.

The daily intake of copper and zinc was thus always well below the levels acceptable.

The daily Intake of lead was also almost certainly well below the levels considered acceptable, the only uncertainty being those 13 occasions when the concentration was recorded as <80 μ g/l. If the level had been 80μ g/l on those three days then intake on those three days would have been less than 160 μ g (<0.16 mg).

The EC Maximum Allowable Concentrations (MAC) for copper, zinc and lead are

copper: $3,000\mu g/l$ ie 3 mg/l. zinc : $5,000\mu g/l$ ie 5 mg/l. lead : $50\mu g/l$ ie 0.05 mg/l.

All samples for copper and zinc show levels for these two metals at levels very substantially below the EC MAC - sometimes as much 3 orders of magnitude below the MAC.

Lead also appears to be consistently below the MAC, and usually well below (and sometimes one order of magnitude below) the MAC. Results of lead analyses are normally reported as <0.05 or <0.005 - ie less than $50\mu g/l$ or less than $5 \mu g/l$ (and thus within the MAC). However, on three days, 16th, 18th and 19th August 1988, the results of the sample analyses on 13 samples are reported as <0.08 mg/l. I presume that different methods of analysis have been used and that the limit of sensitivity of these analyses vary between 0.08 mg/l and 0.005 mg/l. It is therefore not possible to say with certainty that on those 13 occasions the lead concentration did not exceed $50 \mu g/l$. However, since every other reported result, using the more sensitive methods, never exceed the MAC, and the acidity of these 13 samples was in the Same range as all other satisfactory samples, it is very unlikely that the concentrations of tead ever exceeded the EC MAC values.

The daily intake of copper and zinc was thus always well below the levels acceptable.

The daily intake of lead was also almost certainty well below the levels considered acceptable. the only uncertainty being those 13 occasions when the concentration was recorded as <80 μ g/l. If the level had been 80μ g/l on those three days then intake on those three days would have been less than 227 μ g (<0.227 mg).

Analyses of SWW samples from the Delabole and Rockhead Area.

	SWW sample		- Demooid												
Page or	Date	рН	Sulphate	Aluminium	,	Zinc	Lead	Page of Sample	Date	pH	Sulphate	Aluminium	Соррег	Zinc	Lead
5.849B	D7-701-88			109	≃ †			169	BB-DUA-8U	B. T	18.0	0.23	₹0.05	₹0.0	20:03
L8499	07-Jul-88	4.7	ĺ	7.80	ľ		1	284	08-Aug-68	ao	16.3	0.44	< 0.05	< 0.00	< 0.05
482	08-Jul-88	8.0		22.60	0.06	0.11	0.04	556	06-Aug-88	8.6	18.7	0.32	< 0.05	< 0.05	<0.05
484 255	88-lul-88 88-lul-90	8.0 7.8		4.39 0.49	0.26 0.14	0.68 0.08	0.04 <0.01	285 170	09-Aug-88 09-Avg-88	7.9 7.7	17.81 18.5	0.37	<0.05	<0.05	<0.05
488	09-Jul-88	4.B	ļ	0.75	0.14	0.06	<0.01	559	09-Aug-88	8.4	17.5	0.32	<0.05 <0.05	<0,05 <0,05	<0.05 <0.05
112	88-lul-80	7.0	i	5.29	<0.1	0.12	< 0.01	489	88-guA-60	0.2		0.90	<0.01	0.06	<0.01
113	C9-Jul-88	5.9	60.0	1.95	0.09	0.11	0.2	171	10-Aug-88	8.7	18.6	0.23	< 0.05	<0.05	< 0.05
114	09-Jul-88	6.0	}	1,93	0.04	0.1	0.06	561	10-Aug-86	0.8	18.4	0.35	< 0.05	< 0.05	<0.05
494	10-Jul-88	7.0	27.0	1,00	<0.01	0.04	< 0.03	286	10-Aug-88	8.5	18.1	0.33	< 0.05	< 0.05	< 0.05
258 492	10-Jul-85 10-Jul-88	∯,1 67	30.0	0.39	0.04	0,113 agy	<0.03 <0.03	172 563	11-Aug-88 11-Aug-88	7.8 9.9	19.6i 18.9i	0.32	<0.05 <0.05	< 0.05	<0.05
493	10-Jul-88	7.2	27.0	1.02	<0.01	0.05	<0.03	568	12-Aug-88	a 2	19.4	0.52	<0.05	<0.05 0.134	<0.05 <0.05
12t	10-Jul-88	7.0	47.0	am	0.12	0.1	0.22	287	12-Aug-88	8. 8	18.7	0.41	< 0.05	< 0.05	<0.05
2w	10-Jul-88	10.0	28.0	0.80	0.02	0.05	< 0.03	173	12-Aug-88	B.O	18.5	0.24	< 0.05	<0.05	<0.05
119	10-Jul-88	6.6	47.0	0,90	0,01	0.08	0.03	288	14-Aug-88	Q.2	18.3	0.47	< 0.05	<0.0:	<0.05
117	10-Jul-88	8.5	52.0	1.68	0.03	0.08	<0.03	174	14-Aug-88	e.5	19.1	0.40	< 0.05	< 0.00	< 0.05
115 264	10-Jul-88 11-Jul-88	9.0 75	57.0 33.0	0.82	<0.01	0.08	0.03 <0.05	289 570	14-Aug-88 14-Aug-88	9.1 9.2	18.3i 10.0	0.28 0.15	<0.05 <0.05	< 0.05 < 0.05	<0.05 <0.05
265	11-Jul-88	(5)	33.0	0.61	< 0.05	< 0.05	0.1	575	15-Aug-68	8.2	16,6	0.13	<0.05	<0.03	<0.05
260	11-Jul-88	7.5	36.0	0.46	<0.05	< 0.05	< 0.05	290	15-Aug-86	9,3	18.4	0.30	<0.05	< 0.01	< 0.05
124	14-Jul-88	7.5	25.0	1,50	0.005	< 0.005	< 0.005	177	15-Aug-88	e.5	18,34	0.34	< 0.05	< 0.00	< 0.05
125	14~Jul-88	7.4	25.0	1.00	0.005	< 0.005	< 0.005	297	16-Aug-88	5.5	18.5	0.12	< 0.05	<0.00	<0.08
268	18-Jul-66	7.9	25.0	089	0.007	0.015	0.009	298	16-Aug-88	e. t	19,5	0.29	< 0.05	< 0.00	<0.08
129	18-Jul-88 16-Jul-88	9.1	25.2	1.00	0.005	0.017	< 0.005	s.9921M 299	16-Aug-88 16-Aug-88	7.9 a. 0	20.7' 19.7'	0.28	<0.05 <0.05	>0.05 <0.05	<0.08 <0.08
500 138	16-301-68	8.2 8.2	25.3	0.77 : 1,10	0.005 0.007	0.01 0.014	<0.005 <0.005	186	16-Aug-68	9.0	18.0	0.19	<0.05	0.057	<0.05
136	20-Jul-88	8.1	29.9	0.73	0.007	. 0.014		300	16-Aug-88	7.9	21.1	0.66	< 0.05	< 0.01	<0.08
504	20-Jul-88	7.6	32.6	0.68			,	313	88-guA-81	6.8	17.6	0.34	<0.005	0.00	< 0.005
267	20-Jul-88	8.1	28.6	0.50				585	16-Aug-88	9.0	17.0	0.20	<0.05	<0.00	<0.05
268	21-Jul-88	8.0	25.9	0.56	< 0.05	<0.05	< 0.05	312	16-Aug-68	8.9	18.0	0.37	< 0.05	< 0.01	<0.05
269	21-jui-88	7.8	26.J	a.55	< 0.05	0.05	< 0.05	317	16-Aug-88	7.8 7.9	17.3 18.7	0.14 0.49	0.01 <0.05	0.00! <0.0!	<0.005 <0.08
511 s.7722	21-√u1-88 22-√u1-88	8.4	18.4 15.8	2.20 0.77	< 0.05 0.05	<0.05 <0.05	<0,05 0,05	296 292	16-Aug-88 16-Aug-88	6.0	19.2	0.41	<0.05	<0.0	<0.08
270	22 101-88	a4	15.0	0.44	< 0.05	<0.05	< 0.05	315	16-Aug-88	8.1	17.2	0.42	0.008	0.00	< 0.005
517	22~Jul-88	9.2	147	0.28	< 0.05	< 0.05	<0.05	291	16-Aug-86	8.0	18.9	0.46	< 0.05	< 0.8	<0.05
140	22-Jul-88	8.5	16.9	1.80	< 0.05	< 0.05	< 0.05	589	17-Aug-86	P2	16.6	0.15	< 0.05	< 0.0:	<0.05
139	22-Jui-88	8.6	15.1	0.31	< 0.05	< 0.05	< 0.05	329	17-Aug-88	8.7	16.4	0.26	< 0.05	<0.0: <0.0:	<0.05 <0.05
141	. 23-Jul-68 23-Jul-68	7.9	17.5	0.65 0.27	< 0.05	<0.05 0.098	<0.05 <0.05	326 324	17-Aug-88 17-Aug-88	6.0 8.1	16.4 16.7	0.55 0.65	<0.05 0.005	0.01:	<0.05
271 519	23-Jul-88	a.7	18.3	0.41	<0.05 <0.05	<0.05	<0.05	195	17-Aug-88	9.5	10.11	0.30	<0.005	< 0.00	<0.005
2r2	24-Jul-88	7.8	18.9	0.33	<0.05	9,087	0.05	197	17-Aug-88	B.6	15. 7	0.17			
142	24-Jul-58	8.3	17.8	0.51	< 0.05	< 0.05	< 0.05	196	17-Aug-88	9.4	16.8	0.28	<0.05	<0.0	< 0.05
520	24-Jul-86	8.4	19.2	0.43	< 0.05	< 0.05	< 0.05	338	17-Aug-88	7.8		0.48	< 0.05	< 0.0	< 0.05
143	25 Jul-88	7.2	19.3	0.36	< 0.05	< 0.05	< 0.05	191	17-Aug-88	8.3	17. 2 17.1	0.36	<0.05 <0.05	<0.0 <0.0	<0.05 <0.05
144 273	26-Jul-88	8.0	18.8 19.5	0.45	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	199 339	17-Aug-68 17-Aug-88	8.3 7.6	17.1	0.21	< 0.05	0.05	<0.05
524	26-Jul-88	6.0 8.3	19.6	a n	<0.05	< 0.05	<0.03	332	17-Aug-86	3 7		0.35	<0.05	0.07	< 0.05
145	26-Jul-88			0.28	< 0.05	< 0.05	< 0.05	340	17-Aug-88	7.9		0.39	< 0.05	<0.0	< 0.05
5,6070	27-Jul-88	9.1	23	0.24	0.05 -	< 0.05	<:0.05	34174	17-Aug-88	0.1		0.16	<0.05	<0.0	< 0.05
s.8021	27-Jul-88	8.6	23	0.2	0.05	0.063	<:0.05	343	18-Aug-86	7.5	12.4	0.177	< 0.05	<0.0	<0.08 <0.08
527	27-Jul-86	9.2	22.6	0.61	< 0.05	< 0.05	<0.03	346	16-Aug-88	7.7 7.1	IS. 3 16.1	0.337	< 0.05 < 0.05	<0.0 <0.0	< 0.08
146	27-Jul-88	8.0	19.9		< 0.05	< 0.05	< 0.05	344 345	18-Aug-88 18-Aug-88	7.5	16.2	0.270	<0.05	<0.0	< 0.08
274 275	27-Jul-88 28-Jul-86	a3 8.5	22.6 23.8	0.60	< 0.05 < 0.05	<0.05 <0.05	<0.05 <0.05	356	19-Aug-88	7.	13.4	6.413	< 0.05	<0.0	< 0.08
155	28-141-88	8.0	21.7		< 0.05	< 0.05	<0.05	353	19-Aug-88	8.2	10.6	0.144	< 0.05	9.0	< 0.08
531	28-Jul-88	8.6	21.4	0.48	< 0.05	< 0.05	< 0.05	354	19-Aug-88	7.t	13.4	0.121	< 0.05	<0.0	80.02
536	29-Jul-88	8.3	21.8	0.49	< 0.05	<0.05	<0,05	357	19-Aug-68	7.i	1210	0.412	< 0.05	0.06	<0.08 <0.08
278	29-Jน-68	8.2	21.0		< 0.03	0.051	< 0.05	358	19-Aug-88	7.t	12.0	0.456 0.486	<0.05 <0.05	<0.0 <0.0	<0.08
277	01-Aug-88	7.7	22.5		< 0.05	< 0.03	< 0.05	359 355	19-Aug-88 19-Aug-68	7.: 7.t	11.8 14.5		< 0.05	<0.0	<0.08
537	01-Aug-88 01-Aug-89	7.8 7.7	20.0		< 0.05 < 0.05	<0.05 <0.05	<0.05 <0.05	201	19-Aug-88	, "	.=.3	0.296			
156 158	02-Aug-68	7.7	21.6		< 0.05	0.05	₹0.05	352	19-Aug-88	9.:	15.1	0.161	< 0.05	0.0	<0.08
157	02-Aug-88	9.2			<0.05	< 0.03	< 0.05	351	19-Aug-88	7.1	16.5		< 0.05	<0.0	<0.08
p8579/540		7.6	x1.4	0.22	< 0.05	< 0.05	< 0.05	362	19-Aug-88	7.	19,4		< 0.05	<0.0	<0.08
278	03-Aug-88	B.C	20.5		<0.05	< 0.05	<0.05	363	19-Aug-88	7.1	13.7		< 0.05	. <0.0	<0.08 <0.08
159	03-Aug-68	7.E	21.6		< 0.05	800,0	< 0.03	200	19-Aug-88	7.	14.48	0.301	< 0.05 < 0.05	0.0	0.209
279	04-Aug-68	7.6			< 0.05	< 0.05	< 0.05	369 365	19-Aug-88 18-Aug-88	i		0.666	<0.05	<0.□	<0.08
280	04-Aug-88	7.1	19.8		<0.05 <0.005	<0.05 <0.008	<0.05 <0.005	360	19-Aug-60	7.1	14.1		<0.05	<0.1	<0.08
548 549	04-Aug-88 04-Aug-88	7.f 8.0	18.3	0.20	<0.03	<0.05	<0.00	361	19-Aug-88	7.	14,1	0.330	< 0.05	<0.□	<0.08
167	05-Aug-86	7.1	18.6			< 0.05	< 0.05	364	19-Aug-88			0.162		<0.	<0.08
551	05-Aug-88	7.1	19.1	0.25	< 0.05	< 0.05	< 0.05	105	19-Aug-66	7	12.5			<0.	<0.08
261	88-guA-20	7.1	16.7			< 0.05	< 0.05	208	20-Aug-88	B.	18.0			<0.	< 0.03
168	07-Aug-88		19.3			< 0.05	c 0.05	205	20-Aug-88	e. a.	18.0			₹0.	<0.03
554	07-Aug-88		18.3						20-Aug-88 20-Aug-88	а. В.	16.0			<0.	< 0.03
282	07-Aug-88		17.9 18.8						20-Aug-88		19.0				< 0.03
283	09-Aug-88	1.0	<u>المناسب لـ</u>	1.00	4003		4	M = sam			nce.				
								H = sam		res ida					

M = sample from

residence

Page or				Page of			
Sample 3,6496	Oeto 07-Jul-88	Day	Aluminlum	Sample	Date	Oay	Aluminium
a.6499	07-Jul-88	2 2	109 7,90	284 556	08-Aug-88 08-Aug-88	34 34	0.44 0.37
482	C8-Jul-88	ā	22.60	285	08-Aug-88	35	0.32
484	08-Jul-88	3	4.39	170	08-Aug-88	35	0.32
255	86-tul-90	4	0.49	559	88-guA-90	35	0.99
466 112	28-ju}-60 88-ju/-90	4	0.75 5.29	469 171	09-Aug-88 10-Aug-88	35 38	0.23 0.35
113	88-lul-90	4	1.95	561	10-Aug-88	38	0.33
114	00-Jul-88	4	1.83	286	10-Aug-88	36	0.32
494	10~Jul-88	5	1.00	172	11-Aug-88	37	0.29
258	10-Jul-88	5	0.39	563	11-Aug-68	37	0.52
492 493	10-Jul-88 10-Jul-88	5 5	0.47 t.02	568 287	12-Aug-88 12-Aug-88	38 38	0.41 0.24
121	10-Jul-88	5	0.90	173	12-Aug-88	38	0.47
256	10-Jul-86	5	0.80	268	14-Aug-86	40	R4a
118	10-Jul-86	5	am	174	14-Aug-88	40	0.28
117	10-Jul-88	5	1.62	289	14-Aug-88	40	0,15
115 264	10-Jul-88	5i e	0.82 0.81	570 575	14-Aug-88 15-Aug-88	40 41	9.17 0.30
260	11-Jul-88		0.48	290	15-Aug-88	41	0.34
124	14-Jul-88	9	1.50	177	15-Aug-88	41	0.12
125	14-Jul-58	•	100	297	16-Aug-88	42	0.29
266 129	18-Jul-88	13	0.50	298	16-Aug-88	42	0.28
500	16-Jul-88 16-Jul-88	13 13	1.00 t 0.77	e.9921 299	16-Aug-88 16-Aug-88	42 42	R27 0.19
138	20-Jul-88	15	1.10) 188	16-Aug-88	42	0.66
136	20-Jul-88	1s	0.73	300	18-Aug-88	42	0.34
504	20-Jui-88	15	0.68	313	18-Aug-88	42	0.20
267 268	20-√u⊁88 21-√u⊢88 .	15	0.50	585	16-Aug-88	42 42	0.37 0.14
266	21-Jul-86	18 16	0,56 ass	312 317	16-Aug-88 16-Aug-88	42	0.49
511	21-Jul-88	16	2.20	296	16-Aug-88	42	R41
8.7722	22-Jul-88	17	0.77	292	16-Aug-88	42	0.42
270	22-Jul-88	17	0.44	315	16-Aug-88	42	0.46
517 140	22-Jul-88 22-Jul-88	17 17	0.26 1.80	291 589	16-Aug-68 17-Aug-68	42 43	0.15 0.25
139	22-jul-88	17	0.31	329	17-Aug-85	43	0.55
141	23-Jul-86	18	0.65	326	17-Aug-85	43	0.65
271	23-Jul-88	. 18	0.27	324	17-Aug-88	43	0.30
519 272	23-Jul-88 24-Jul-88	18 19	0,41	195	17-Aug-88	43	0.17 0.28
142	24-Jul-88	. 19	0.33 0.61	197 196	17-Aug-88 17-Aug-88	43	0.45
520	24-Jul-88	IS	0.43	338	17-Aug-88	43	0.36
143	25~Jul-88	20	0.36	191	17-Aug-88	43	0.21
144	26-Jul-88	. 21	0.45	199	17-Aug-88	43	0.54
273 524	26-jul-88 26-jul-88	21 21	0.44	339 332	17-Aug-88 17-Aug-88	43 43	0.35
145	26-Jul-88	21	0.72	340	17-Aug-88	43	0.16
4,8070	27-Jul-88	22	0.24	341	17-Aug-88	43	0.177
s.8021	27-Jul-88	22	0.2	343	18-Aug-68	44	0.337
527	27-Jul-88	22	0.81	346	18-Aug-88	44	0.331 0.270
146 274	27-Jul-88 27-Jul-88	22 22	0.51 0.60	344 345	18-Aug-88 18-Aug-88	44 44	0.270
275	28-Jul-88	23	0.86	356	19-Aug-88	45	0.144
155	26-Jul-88	23	n47	353	19-Aug-88	45	0.121
531	28-Jul-88	23	0.48	354	19-Aug-65	45	0.412
536 276	29-Jul-88 29-Jul-88	24 24	0.49	357 358	19-Aug-65 19-Aug-68	45 45	0.456
277	29-Jul-88 01-Aug-88	27	0.52	356 359	19-Aug-88	45	0.486
537	01-Aug-88	27	0.23	355	18-Aug-88	45	0.296
156	01-Aug-88	27	0.37	201	19-Aug-88	45	0.161
158	02-Aug-88	28	1,00	352	19-Aug-88	45	0.210
157 68579/540	02-Aug-88	28 29	0.39	351	19-Aug-88 19-Aug-88	45 45	0.396 0.350
278	03-Aug-68 03-Aug-68	29	0,29	362 363	19-Aug-88	45	0.301
159	03-Aug-88	29	0.30	500	19-Aug-88	45	0,164
279	04-Aug-88	30	0.21	369	19-Aug-88	45	988.0
260	04-Aug-88	30	0.29	366	19-Aug-68	45	0.364
548 549	04-Aug-88	30	0.20	360	19-Aug-68 19-Aug-68	45 45	0.33K 0.16z
549 167	04-Aug-88 05-Aug-88	30 31	0.19 0.17	361 364	19-Aug-88	45	0.712
551	05-Aug-88	31	0.25	105	10-Aug-68	45	0.8
281	05-Aug-88	31	0.19	208	20-Aug-88	48	0.3:
166	07-Aug-88	33	0.28	205	20-Aug-68	48	0.34
554	07-Aug-88	33	0.39	204 383	20-Aug-88 20-Aug-88	48	0.45/ 0.47/
282 283	07-Aug-88 08-Aug-88	33	0.21	361	20-Aug-88	46	
	08-Aug-88	34	0.23	II	1	i	1

Estimated Aluminium Concentrations for the Delabole/Rockhead Area.

		-		ons
Date	Day	Modet	max.	min.
07-Jul-88	2	110.68	125.00	7.90
08-Jul-88	3	18.89	25.00	1.50
88-luL-90	4	1.61	4.68	0.30
10-Jul-88	5	0.71	4.45	0.29
11-Jul-88	6	0.68	4.24	0.29
14-Jul-88	9	0.64	3.66	0.27
18-Jul-88	13	0.59	3.00	0.25
19-Jul-88	14	0.58	2.86	0,24
20-Jul-88	15	0.57	2.72	0.24
21-Jul-88	16	0.56	2.59	0.23
22-Jul-88	17	0.55	2.47	0.23
23-Jul-88	18	i 0.54	2.35	0.22
24-Jul-88	19	0.53	2.24	0.22
25-Jul-88	20	0.52	2.13	0 .2 1
26-Jul-88	21	0.51	2.03	0.21
27-Jul-88	22	0.51	1.93	0.20
28-Jul-88	23	0.50	1.84	0.20
29-Jul-88	24	0.49	1.75	0.19
30-Jul-88	25	0.48	1.66	0.19
31-Jul-88	26	0.47	1.58	0.1 9
01-Aug-88	27	0.47	1.51	0.1 8
02-Aug-0a	28	0.46	1.44	0.18
03-Aug-88	29	0.45	1.37	0.17
04-Aug-88	30	0.44	1.30	0.17
05-Aug-88	31	0.44	1.24	0.1 <i>7</i>
06-Aug-88	32	0.43	1.18	0.16
07-Aug-88	33	0.42	1.12	0.16
08-Aug-88	34	0.42	1.07	0.16
09-Aug-88	35	0.41	1.02	0.15
10-Aug-88	36	0.41	0.97	0.15
11-Aug-88	37	0.40	0.92	0.15
12-Aug-88	38	0.40	0.88	0.14
13-Aug-88	39	0.39	0.84	0.14
14-Aug-88	40	0.38	0.80	0.14
15-Aug-88	41	0.38	0.76	0.13
16-Aug-88	42	0.37	0.72	0.13
17-Aug-88	43	0 . 37	0.69	0.13
18-Aug-88	44	0.36	0.65	0.12
19-Aug-88	45	0.36	0.62	0.12
20-Aug-88	46	0.36	0.59	0.12
21-Aug-88	47	0.35	0.56	0.12
22-Aug-88	48	0.35	0.54	0.11
23-Aug-88	49	0.34	0.51	0.11
24-Aug-88	50	0.34	0.49	0.11

Crowthsr Clayton Associates

91/2737

Comments on the aluminium intake of

The table on the following page *gives* an estimate of the aluminium intake *for* the period up to 24th August, after which date there are insufficient data to be able to make any satisfactory prediction.

I have not seen any data for the premises where resided at the time of the incident and the only data are the estimates for the Delabole/Rockhead Area from which I have derived the data in the table on the following page.

Estimated aluminium intake for Quantity of water drunk in litres/day:

1.14

	···	Aluminium	ntake in mg	160
Date	Day	Model	max.	- min-
07-Jul-88	2	126.18	142.50	9.01
08-Jul-88	3	21.54	28.50	1.71
09-Jul-88	4	1.84	5.33	0.34
10-Jul-88	5	0.80	5.08	0.34
11-Jul-88	6	0.77	4.83	0.33
14-Jul-88	9	0.73	4.17	0.31
18-Jul-88	13	0.68	3.43	0.28
19-Jul-88	14	0.66	3 .2 6	0.28
20-Jul-88	15	0.65	3.10	0.27
21Jul-88	16	0.64	2.95	0.26
22-Jul-88	17	0.63	2.81	0.26
23.Jul-88	18	0.62	2.68	0.25
24-Jul-88	19	0.61	2.55	0.25
25-Jul-88	20	0.60	2.43	0.24
26-Jul-88	21	0.59	2.31	0.24
27-Jul-88	22	0.58	2.20	0.23
28-Jul-88	23	. 0.53	2.09	0.23
29-Jul-88	24	0.56	1.99	0.22
30-Jul-88	25	0.55	1.90	0.22
31-Jul-88	26	0.54	1.81	0.21
01-Aug-88	27	0,53	1.72	0.21
02-Aug-88	28	0.52	1.64	0.20
03-Aug-88	29	0.51	1.56	0.20
04-Aug-88	30	0.51	1.48	0.19
05-Aug-88	31	0.50	1.41	0.19
06-Aug-88	32	0.49	1.34	0.19
07-Aug-88	33	0.48	1.28	0.18
08-Aug-88	34	0.48	1.22	0.18
09-Aug-88	35	0.47	1.16	0.17
10-Aug-88	36	0.46	1.10	0.17
11-Aug-88	37	0.46	1.05	0.17
12-Aug-88	38	0.45	1.00	0.16
13-Aug-88	39	0.44	0.95	0.16
14-Aug-88	40	0.44	0.91	0.16
15 - Aug-88	41	0.43	0.86	0.15
16-Aug-88	42	0.43	0.82	0.15
17-Aug-88	43	0.42	0.78	0.15
18-Aug-88	44	0.42	0.74	0.14
19-Aug-88	45	0.41	0.71	0.14
20-Aug-88	46	0.41	0.67	0.14
21-Aug-88	47	0.40	0.64	0.13
22-Aug-88	48	0.40	0.61	0.13
23-A ug-88	49	0.39	0.58	0.13
24-hug-80	50	0.39	0.55	0.12

Crowthsr Clayton Associates

91/2737

Comments on the aluminium intake of

The table on the following page gives an estimate of the aluminium intake for the period up to 24th August, after which date there are Insufficient data to be able to make any satisfactory prediction.

The only data for samples taken from the premises where resided at the time of the incident are those for 17th August 1988 which show an aluminium concentration of 0.16 mg/l (which is less than the EC MAC of 0.2 mg/l) and which gives an aluminium intake of 0.32 mg for that day; see the table on the following page for more details.

91/2737

Estimated aluminium intake for

Quantity of water drunk in litresIday:

2

Quantity of 110	ioi araini	an nu esiday		2
		Aluminium	intake in mg	100
Date	Day	Model	max.	min.
07-Jul-88	2	221.36	250.00	15.80
08-Jul-88	3	37.79	50.00	3.00
88-lut-90	4	3.22	9.36	0.60
10-Jul-88	5	1-41	8.91	0.59
11-Jul-88	6	1.36	8.48	0.58
14-Jul-88	9	1.28	7.32	0.54
18-Jul-88	13	1.19	6.01	0.49
19-Jul-88	14	1.16	5.72	0.48
20-Jul-88	15	1.14 [5.45	0.47
21-Jul-88	16	1.12	5.18	0.46
22-Jul-88	17	1.10	4.93	0.45
23-Jul-88	18	1.08	4.70	0.44
24-Jul-88	19	1.06	4.47	0.43
25-Jul-88	20	1.05	4.26	0.42
26-Jul-88	21	1.03	4.05	0.41
27-Jul-88	22	1.01	3.86	0.41
28-Jul-88	23	0.99	3.67	0.40
29-Jul-88	24	0.98	3.50	0.39
30-Juj-88	25	0.96	3.33	0.38
31-Jul-88	26	0.95	3.17	0.37
01-Aug-88	27	0.93	3.02	0.36
02-Aug-88	28	0.92	2.87	0.36
03-Aug-88	29	0.90	2.73	0.35
04-Aug-88	30	0.89	2.60	0.34
05-Aug-88	31	0.87	2.48	0.33
06-Aug-88	32	0.86	2.36	0.33
07-Aug-88	33	0.85	2.24	0.32
08-Aug-88	34	0.84	2.14	0.31
09-Aug-88	35	0.82	2.03	0.30
10-Aug-88	36	0.81	1.94	0.30
11-Aug-88	37	0.80	1.84	0.29
12-Aug-88	38	0.79	1.76	0.28
13-Aug-88	39	0.78	1.67	0.28
14-Aug-88	40	0.77	1.59	0.27
15-Aug-88	41	0.76	1.51	0.27
16-Aug-88	42	0.75	1.44	0.26
17-Aug-88	43	0.74	1.37	0.26
18-Aug-88	44	0.73	1.31	0.25
19-Aug-88	45	0.72	1.24	0.24
20-Aug-88	46	0.71	1.18	0.24
21-Aug-88	47	0.70	1.13	0.23
22-Aug-88	48	0.69	1.07	1 11
23-Aug-88	49	0.69	1.02	0.22
24-Aug-88	50	0.68	0.97	0.22

actual intake 0:32 mg

Comments on the aluminium intake of

The table on the following page *gives* an estimate of the aluminium intake for the period up *to* 24th August, after which date there are insufficient data to be able to make any satisfactory prediction.

The only data for samples taken from the premises where resided at the time of the incident are those for 16th August 1988 which show an aluminium concentration of 0.28 mg/l which gives an aluminium intake of 0.56 mg for that day; see the table on the following page for more details.

Estimated aluminium intake for .

Quantity of water drunk in litres/day:

2

Quantity of wat	er drunk	nk in litres/day: 2					
		Aluminiun	itake in mg/	Wy.			
Date	Day	Model	max.	ma.			
07-Jul-88	2	221.36	250.00	15.80			
08-Jul-88	3	37.79	50.00	3.00			
09-Jul-88	4	3.22	9.36	0.60			
10-Jul-88	5	1.41	8.91	0.59			
11-Jul-88	6	1.36	8.48	0.58			
14-Jul-88	9	1.28	7.32	0.54			
18-Jul-88	13	1.19	6.01	0.49			
19-Jul-88	14	1.16	<i>5.7</i> 2	0.48			
20-Jul-88	15	1.14	5.45	0.47			
21Jul-88	16	1.12	5.18	0 .4 6			
22-Jul-88	17	1.10	4.93	0.45			
23-Jul-88	18	1.08	4.70	0.44			
24-Jul-88	19	1.06	4.47	0.43			
25-Jul-88	20	1.05	4.26	0.42			
26-Jul-88	21	, 1. 03	4.05	0.41			
27Jul-88	22	1.01	3.86	0.41			
28-Jul-88	23	0.99	3 . 67	0.40			
29-Jul-88	24	0.98	3.50	0.39			
30-Jul-88	25	0.96	3.33	0.38			
31-Jul-88	26	0.95	3.17	0.37			
01-Aug-88	27	0.93	3.02	0.36			
02-Aug-88	28	0.92	2.87	0.36			
03-Aug-88	29	0.90	2 . 73	0.35			
04-Aug-88	30	98.0	2.60	0.34			
05-Aug-88	31	0.87	2.48	0.33			
06-Aug-88	32	0.8€	2.36	0,33			
07-Aug-88	33	0.85	2.24	0.32			
08-Aug-88	• 34	0.84	2.14	0.31			
09-Aug-88	35	0.82	2.03	0.30			
10-Aug-88	36	0.81	1.94	0.30			
11-Aug-88	37	0.80	1.84	0.29			
12-Aug-88	38	0.79	1.76	0.28			
13-Aug-88	39	0.78	1.67	0.28			
14-Aug-88	40	0.77	1.59	0.27			
15-Aug-88	41	0.76	1.51	0.27			
16-Aug-88	42	0.75	1.44	0.26			
t7-Aug-88	43	0.74	1.37	0.26			
18-Aug-88	44	0.73	1.31	0.25			
19-Aug-88	45	0.7 %	1.24	0.24			
20-Aug-88	46	0.71	1.18	0.24			
21-Aug-88	47	0.70	1,13	0.23			
22-Aug-88	48	0.69	1.07	0.23			
23-Aug-88	49	0.69	1.02	0.22			
24-Aug-88	50	0.68	0.97	0 <u>.22</u>			

ctual intake 0.56 mg

91/2737

Crowther Clayton Associatea

Comments on the aluminium intake of .

The table on the following page *gives* an estimate of the aluminium intake for the period up to 24th August, after which date there are insufficient data to be able to make any satisfactory prediction.

The only data for samples taken from the premises where . resided at the time of the incident are those for 16th August 1988 which show an aluminium concentration of 0.28 mg/l which gives an aluminium intake of 0.48 mg for that day; see the table on the following page for more details.

Estimated aluminium intake for Quantity of water drunk in litres/day:

1.7

Quantity of war	iei aiuiik	mines/day.		1./
		Aluminium	ntake in mg	
Date	Day	Model	max.	min.
07-Jul-88	2	188.16	212.50	13.43
88-Jul-88	3	32.12	42.50	2.55
09-Jul-88	4	2.74	7.95	0.51
10-Jul-88	5	1.20	7.57	0.50
11-Jul-88	6	1.15	7.21	0.49
14-Jul-88	9	1.09	6.22	0.46
18-Jul-88	13	1.01	5.11	0.42
19-Jul-88	14	0.99	4.86	0.41
20-Jul-88	15	0.97	4.63	0.40
21-Jul-88	16	0.95	4.41	0.39
22-Jul-88	17	0.94	4.19	0.38
23-Jul-88	18	0.92	3.99	0.38
24-Jul-88	19	0.90	3.80	0.37
25-Jul-88	20	0.89	3.62	0.36
26-Jul-88	21	0.87	3.44	0.35
27-Jul-88	22	0.86	3.28	0.34
28-Jul-88	23	0.84	3.12	0.34
29-Jul-88	24	0.83	2.97	0.33
30-Jul-88	25	0.82	2 .a3	0.32
31-Jul-88	26	0.80	2.69	0.32
01-Aug-88 02-Aug-88	27	0.79	2.56	0.31 0.30
02-Aug-88	28 29	0.78	2.44 2.32	0.30
04-Aug-88	29 30	0.77	2.21	0.30
05-Aug-88	31	0.76 0.74	2.21	0.29
05-Aug-88	32	0.74	2.00	0.28
07-Aug-88	33	0.73	1.91	0.27
08-Aug-88	34	0.72	1.82	0.26
09-Aug-88	35	0.71 0.70	1.73	0.26
10-Aug-88	36	0.69	1.65	0.25
11-Aug-88	37	0.68	1.57	0.25
12-Aug-88	38	0.67	1.49	0.24
13-Aug-88	39	0.66	1.42	0.24
14-Aug-88	40	0.65	1.35	0.23
15-Aug-88	41	0.65	1.29	0.23
16-Aug-88	42	0.64	1.23	0.22
17-Aug-88	43	0.63	1.17	0.22
18-Aug-88	44	0.62	1.11	0,21
19-Aug-88	45	0.61	1.06	0.21
20-Aug-88	46	0.ഖ	1.01	0.20
21-Aug-88	47	0.60	0.96	0.211
22-Aug-88	48	0.59	0.91	0.1 9
23-Aug-88	49	0.58	0.87	0.19
24-Aug-88	50	0.58	0.83	0.19

ictual intake 0.48 mg

Sulphate concentrations for the Delabole/Rockhead Area,

Data on sulphate for the Delabole and Rockhead Area.

·		Suiphale	Concentration	is f			Sujohaje	oncentration	s l
Date	Day		Model Data	Estimated	Date	Day	SWW Data	odel Data	Estimated
	0				07-Aug-88	33	18.3	181	
	1				07-Aug-88	33	17.9	18	i i
07-Jul-88	2			600	08-Aug-80	34	18.8	18	
07-Jul-88	2		600	81	08-Aug-88	34	19.0	18 18	1
88-lul-80 88-lul-80	3		181 1 8 1	139 42	88-guA-80 88-guA-80	34 34	18.3 18.7	18 18	l l
09-Jul-88	4		161	22	09-Aug-88	35	17.8	17	
09-Jul-88	4		45	23	09-Aug-68	35	18.5	17	1
09-Jul-68	4		45	47	09-Aug-88	35	17.5	17	
09-Jul-88	4	60.0	45		10-Aug-88	36	18.6	17	. [
10-Jul-88	5	27.0	28		10-Aug-88	36	19.4	17	
10-Jul-88	5	30.0	26	(10-Aug-88	36	19.1	I?	
10-Jul-88	5	28.0	20	l t	11-Aug-88	37	19.6	17 17	
10-Jul-88	5	27.0	28	1 1	11-Aug-88	37 38	18.9 19.4	17	1
10-Jul-88 10-Jul-88	5 5	47.0 28.0	28 28		12-Aug-88 12-Aug-88	38	18.7	17	ļ
10-Jul-88	5	47.0	26 28	ļ	12-Aug-88	38	18.5	17	
10-Jul-88	5	52.0	28		14-Aug-88	40	18.3	17	
10-Jul-88	5	57.0	28		14-Aug-88	40	19.1	17	
11-Jul-88	6	33.0	27		14-Aug-88	. 40	18.3	17	
11-Jul-88	6	36.0	27	; <u> </u>	14-Aug-88	40	18.0	17	[
14-Jul-88	9	25.0	26		15-Aug-88	41	18.6	16) i
14-Jul-88	9	25.0	26		15-Aug-88	41	18.4	16 16	
18-Jul-88	13	25.0	24) '	15-Aug-88 16-Aug-88	41 42	18.3 19.5	16	\
18-Jul-88 18-Jul-88	13	25.2 25.3	24 24	1	16-Aug-88	42	19.5	16	
20-Jul-88	15	29.9	23	\	16-Aug-88	42	20.7	16	[
20-301-88	13	32.6	24	[{	15-Aug-88	42	19.7	16	[]
20-Jul-88	15	28.6	23	[16-Aug-88	42	18.0	18	ļ i
21-Jul-88	16	25.9	23	i i	16-Aug-88	42	21.1	16	1
21-Jul-88	16	26.3	23	1	16-Aug-88	42	17.8	16	<u> </u>
21-Jul-88	16	19.4	23	} !	16-Aug-88	42	17.0	18 16]
22-Jul-88	17	15.8	22		16-Aug-88	42	18.0 17.3	16	ļ
22-Jul-88 22-Jul-88	17 17	15.0 t4.7	22 22	Į į	16-Aug-88 16-Aug-88	42 42	19.7	16	
22-Jul-88	±7	16.9	22	1 [16-Aug-88	42	19.2	16	ţ
22-Jul-88	17	15.1	22		16-Aug-88	42	17.2	16	
23~Jul-88	10	17.5	22	ł (16-Aug-88	42	18.9	16	·}
23-Jul-88	18	19.1	22		17-Aug-88	43	16.6	Iß	
23-Jul-88	18	18.3	22	}	17 Aug-88	43	16.4	16]
24-Jul-88	19	18.9	22	l	17-Aug-88	43	16.4 16.7	16	ļ
24-Jul-88	19 19	17.8 19.2	1 -	1	17-Aug-88 17-Aug-86	43	16.7	16	
24-Jul-88 25-Jul-88	20	19.2	22 21] '	17-Aug-88	4:3	t6.8	16	Į.
26-Jul-88	•	18.8	21	Į l	17-Aug-88	43	17.2	16	i
26-Jul-88	21	19.5	21	1	17-Aug-88	43	17.1	16	{
26-Jul-88	21	10.6	21	k	18-Aug-88	44	12.4	15	1
27-Jul-88		23	21	1	18-Aug-88	44	16.3	16	
27-Jul-88		23			18-Aug-88	44	16.1	16 16	
27-Jul-88]	18-Aug-88	44	16.2 13.4	16 I8	
27-Jul-88					19-Aug-88	45 45		16	
27-Jul-88					19-Aug-88 19-Aug-88	1 .		16	
28-Jul-88 28-Jul-88			II .		19-Aug-88		,	16	
26-Jul-88					19-Aug-88		L	16	i
29-Jul-88			1	1	19-Aug-88		11.8	16	- 1
29-Jul-88				T C	19-Aug-88	4:	t4.5	16	
01-Aug-86		22.5	i	7	19-Aug-88	•		16	
01-Aug-88					19-Aug-88		1	16	
01-Aug-88					19-Aug-88			10 16	
02-Aug-88				1	19-Aug-88			16	
02-Aug-88				1	19-Aug-88 19-Aug-88				
03-Aug-86	- 1				19-Aug-88				
03-Aug-88	1				19-Aug-88	•		10	
04-Aug-60					20-Aug-88		1	11	6
04-Aug-86			-	1	20-Aug-86			f	
04-Aug-Bi	- 1 -				20-Aug-86			1	1
05-Aug-Bl	3 31	I	1		20-Aug-80			1 1	
05-Aug-8					20-Aug-88		<u> </u>	1 1	1
05-Aug-8					A	4			5
07-Aug-8	8 5	19.	3	3	ال	+4	المستوال	<u>`</u>	

page 56

The quantity of sulphate ingested by

The results of the analyses on all the samples collected by South West Water Authority from the Delabole/Rockhead Area (Area B in this report) show sulphate concentrations below the EC Maximum Allowable Concentration of 250 mg/l.

I could find no data for sulphate concentrations for the period from 6th July to 8th July 1988 inclusive, but there are data for the aluminium concentrations on 7th and 8th July 1988.1 have therefore calculated *the* equivalent theoretical sulphate concentration for the aluminium concentrations for the 7th and 8th July. These values can only be approximate since the sulphate concentrations are not necessarily the stoichiometric equivalent of the aluminium far example, the water naturally contains roughly 16-20 rng sulphate/litre which is not associated with any aluminium, and some of the aluminium may have precipitated as the hydroxide leaving the associated sulphate still in solution. However, these are the only data available and it enables an approximate evaluation of sulphate intake to be made for the first two days when the theoretical and statistical model for sulphate concentration is less reliable because of the shortage of data.

The data are:

			ic Sulphate Concentration
07-Jul-88			~~·
07-Jul-88			
08-Jul-88	3	22.6	120
08-Jut-88	3	4.39	23.4
09-Jul-88	4	0.49	2.6
09-Jul-88	. 4	0.75	4.0
09-Jul-88	4	5.29	28.2

Ail other data reported for sulphate concentration in the Delabole/Rockhead Area, including those samples taken from the and residences. are also for values below the EC MAC of 250 mg/l. In the case of the residence, a sample taken on 17th August 1988 from the cold water tap was not analysed for sulphate - presumably because there was no reason to suppose that the sulphate was high - and another sample taken on 9th March 1989 had a sulphate concentration /cf20.5 mg/l.

In estimating the total sulphate concentration I have added 19 mg/l to the stoichiometric values shown in the table above since, as noted above, the water naturally contains roughly 16-20 mg/l sulphate: thus the maximum value for7th July, used in my estimation for total sulphate ingested, is 600 mg/l. This is the only occasion on which, according to the SWWA data I have seen, the sulphate value exceeded the EC MAC. In making my estimates based on the mathematical model I have used the higher vatues for sulphate from the table above so, on the basis of the evidence I have seen, my estimates σ sulphate ingestion err on the high side.

On the basis of the available data the only day on which might have ingested concentrations of sulphate in excess of the MAC was on 7th July when the quantity consumed, based on the estimate as described above, would have been 0.684 grams.

page 57

The quantity of sulphate ingested by

The results of the analyses on all the samples collected by South West Water Authority from the Delabole/Rockhead Area (Area B in this report) show sulphate concentrations below the EC Maximum Allowable Concentration of 250 mg/l.

I could find no data for sulphate concentrations for the period from 6th July to 8th July 1988 inclusive, but there are data for the aluminium concentrations on 7th and 8th July 1988. I have therefore calculated the *equivalent* theoretical sulphate concentration for the aluminium concentrations for the 7th and 8th July. These values can only be approximate since the sulphate concentrations are not necessarily the stoichiometric equivalent of the aluminium for example, the water naturally contains roughly 16-20 mg sulphate/litre which is not associated with any aluminium, and some of the aluminium may have precipitated as ?hehydroxide leaving the associated sulphate still in solution. However, these are the only data available and it enables an approximate evaluation of sulphate intake to be made for the first two days when the theoretical and statistical model for sulphate concentration is less reliable because of the shortage of data.

The data are:

Date	Day	Aluminium in mg/l	Calculated Stoichiometric Sulphate Concentration
07-Jul-88	2	109	58 1
07-Jul-88	2	7.9	42
08-Jul-88	3	22.6	120
08-Jul-88	3	4.39	23.4
09-Jul-88	4	0.49	2.6
09-Jul-88	4	0.75	4.0
09-Jul-88	4	5.29	28.2

All other data reported for sulphate concentration In the Delabole/Rockhead Area, including those samples taken from the and residences, are also for values below the EC MAC of 250 mg/l. In the case of the residence, a sample taken on 17th August 1988 from the cold water tap was not analysed fur sulphate- presumably because there was no reason to suppose that the sulphate was high - and another sample taken on 9th March 1989 had a sulphate concentration of 20.5 mg/l.

In estimating the total sulphate concentration! have added 19 mg/l to the stoichiometric values shown In the table above since, as noted above, the water naturally Contains roughly 16-20 mg/l sulphate; thus the maximum value for 7th July, used in my estimation for total sulphate ingested, is 600 mg/l. This is the only occasion on which, according to the SWWA data! have seen, the sulphate value exceeded the EC MAC. In making my estimates based on the mathematical model! have used the higher values for sulphate from the table above so, an the basis of the evidence! I have seen, my estimates of sulphate ingestion err on the high side.

On the basis of the available data the only day on which might have ingested concentrations of sulphate in excess of the MAC was on 7th July when the quantity consumed, based on the estimate as described above, would have been 1.2 grams.

page 58

The quantity of sulphate ingested by

The results of the analyses on all the samples collected by South West Water Authority from the Delabole/Rockhead Area (Area B in this report) show sulphate concentrations below the EC Maximum Allowable Concentration of 250 mg/l.

I could find no data for sulphate concentrations for the period from 6th July to 8th July 1988 inclusive, but there are data for the aluminium concentrations on 7th and 8th July 1988. I have therefore calculated the equivalent theoretical sulphate concentration for the aluminium concentrations for the 7th and 8th July. These values can only be approximate since the sulphate concentrations are not necessarily the stoichiometric equivalent of the aluminium for example, the water naturally contains roughly 16-20 mg sulphate/litre which is not associated with any aluminium, and some of the aluminium may have precipitated as the hydroxide leaving the associated sulphate still in solution. However, these are ?he only data available and it enables an approximate evaluation of sulphate Intake to be made for the first two days when the theoretical and statistical model for sulphate concentration is less reliable because of the shortage of data.

The data are:

Date	Day	Aluminium in mg/l	Calculated Stoichiometric Sulphate Concentration
07-Jul-88	2	109	581
07-Jul-88	2	7 . 9	42
08-Jul-88	3	22.6	120
08-Jul-88	3	4.39	23.4
09-Jui-88	4	0.49	2.6
09-Jul-88	4	0.75	4.0
09-Jul-88	4	5.29	28.2

All other data reported for sulphate concentration in the Delabole/Rockhead Area, including those samples taken from the and residences, are also for values below the EC MAC of 250 mg/l. In the case of the residence, a sample taken on 17th August 1988 from the cold water tap was not analysed for sulphate presumably because there was no reason to suppose that the sulphate was high and another sample taken on 9th March 1989 had a sulphate concentration of 20.5 mg/l.

In estimating the total sulphate concentration I have added 19 mg/l to the stoichiometric values shown in the table above since, as noted above, the water naturally contains roughly 16-20 mg/l sulphate; thus the maximum value for 7th July, used in my estimation for total sulphate ingested, is 600 mg/l. This is the only occasion on which, according to the SWWA data I have seen, the sulphate value exceeded the EC MAC. In making my estimates based on the mathematical model I have used the higher values for sulphate from the table above so, on the basis of the evidence I have seen, my estimates of sulphate ingestion err on the high side.

On the basis of the available data the only day on which might have ingested concentrations of sulphate in excess of the MAC was on 7th July when the quantity consumed, based on the estimate as described above, would have been 1.2gwms.

91/2737

The quantity of sulphate ingested by

The results of the analyses on all the samples collected by South West Water Authority from the Delabole/Rockhead Area (Area B in this report) show sulphate concentrations below the EC Maximum Allowable Concentration of 250 mg/l.

I could find no data for sulphate concentrations for the period from 6th July to 8th July 1988 inclusive, but there are data for the aluminium concentrations on 7th and 8th July 1988.1 have therefore calculated the equivalent theoretical sutphate concentration for the aluminium concentrations for the 7th and 8th July. These values can only be approximate since the sulphate concentrations are not necessarily the stoichiometric equivalent of the aluminium - for example, the water naturally contains roughly 16-20 mg sulphate/litre which is not associated with any aluminium, and some of the aluminium may have precipitated as the hydroxide leaving the associated sulphate still in solution. However, these are the only data available and it enables an approximate evaluation of sulphate intake to be made for the first two days when the theoretical and statistical model for sutphate concentration is less reliable because of the shortage of data.

The data are:

Date	Day	Aluminium in mg/l	Calculated Stoichiometric Sulphate Concentration
07-Jul-88	2	109	581
07-Jul-88	. 2	7.9	42
08-Jul-88	3	22.6	120
08-Jul-88	3	4.39	23.4
09-Jul-88	4	0.49	2.6
09-Jul-88	. 4	0.75	4.0
09-Jul-88	4	5.29	28.2

All other data reported for sulphate concentration in the Delabole/Rockhead Area, inctuding those samples taken from the and residences, are also for values below the EC MAC of 250 mg/l. In the case of the August 1988 from the cold water tap was not analysed for sulphate - presumably because there was no reason to suppose that the sulphate was high - and another sample taken on 9th March 1989 had a sulphate concentration of 20.5 mg/l.

In estimating the total sulphate concentration! have added 19 mg/l to the stoichiometric values shown in the table above since, as noted above, the water naturally contains roughly 16-20 mg/l sulphate: thus the maximum value for 7th July, used in my estimation for total sulphate ingested, is 600 mg/l. This is the only occasion on which, according to the SWWA data I have seen, the sulphate value exceeded the EC MAC. In making my estimates based on the mathematical model I have used the higher values for sulphate from the table above so, on the basis of the evidence! have seen, my estimates of sulphate ingestion err on the high side.

On the basis of the availabte data the only day on which concentrations of sulphate in excess of the MAC was on 7th July when the quantity consumed, based on the estimate as described above, would have been 1.02 grams.

Data on pH in samples from the Delabole/Rockhead Area.

Uale	Day	рН	Dale	Day	ρН
07-Jul-88	2	4.1	08-Aug-88	34	8.5
07-Jul-88 08-Jul-88	2	4.7 KO	08-Aug-88 08-Aug-88	34 34	8.1 8.0
C8-Jui-88	3	6.0	08-Aug-88	34	8.8
09-Jui-88	4	7.8	09-Aug-88	35	7.9
09-Jul-88	4	8.8	09-Aug-88	35	7.7
88-lul-90 88-lul-90	4	7.0 5.9	09-Aug-88	35 35	84
09-Jul-88	4	6.0	09-Aug-88 10-Aug-88	36	8.2 8.7
10~Jul-88	5	7.0	10-Aug-88	36	8.6
10-Jul-88	5	9.1	10-Aug-88	36	8.5
10-Jul-88	5	5.7	11-Aug-88	37	7.9
10-Jul-88 10-Jul-88	5 5	7 2 7.0	11-Aug-88 12-Aug-88	37 38	8.9 8.2
10~Jul-88	5	10.0	12-Aug-88	38	8.8
10-Jul-88	5	6.6	12-Aug-88	38	8.0
10-Jul-88	5	8.5	14-Aug-88	40	9.2
10-Jul-88 11-Jul-88	5 6	9.0	14-Aug-88	40	8.5
11-Jul-88	6	7.5 7.5	14-Aug-88 14-Aug-88	40 40	9.1 9.2
14-Jul-88	9	7.5	15-Aug-88	41	9.2
14-Jul-88	9	7.4	15-Aug-88	41	9.3
18-Jul-88	13	7.9	15-Aug-88	41	9.5
18-Jul-88 18-Jul-88	13 13	9.1 <i>8.2</i>	16-Aug-88 16-Aug-88	42 42	8.5 a.1
20-Jul-88	15	J 6.2	16-Aug-88	42	7.9
20-Jul-88	15	9.1	16-Aug-88	. 42	8.0
20-Jul-88	15	7.6	16-Aug-88	42	8.0
20-Jul-88	15	8.1	16-Aug-88	42	7.9
21-Jul-88 21-Jul-88	16 16	0.0 7.9	16-Aug-88 16-Aug-88	42 42	8.8 9.0
21-Jul-88	16	8.5	16-Aug-88	42	8.9
22-Jul-88	17	8.4	16-Aug-88	42	7.8
22-Jul-88	17	6.4	16-Aug-88	42	7.9
22-Jul-88 22-Jul-88	17 17	9.2° as	16-Aug-88 16-Aug-88	42 42	8.0 8.1
22-Jul-88	17	8.6	16-Aug-88	42	8.0
23-Jui-88	10	a4	17-Aug-88	43	9.2
23-Jui-88	18	7.9	17-Aug-88	43	8.7
23-Jui-88 24-Jui-88	18 19	8.7	17-Aug-88	43 43	8.0 a.1
24-Jui-88	19	7.6 8.3	17-Aug-88 17-Aug-88	43	9.5
24-Jui-88	19	a4	17-Aug-88	43	8.6
25-Jul-88	20	7.2	17-Aug-88	43	9.4
26-Jul-88	21	8.0	17-Aug-88	43	7.8
26-Jul-88 26-Jul-88	21 2t	8.0 6.3	17-Aug-88	43 43	8.3 9.3
27-Jul-88	22	9.t	17-Aug-88	43	7.6
27-Jul-88	22	8.8	17-Aug-88	43	7.7
27-Jul-88	22	9.2!	17-Aug-88	43	7.9
27-Jul-88	22	aa a3		43 44	8.1 7 0
27-Jul-88 28-Jul-88	22	8.6	18-Aug-88 18-Aug-88	44	7.9 7.7
28-Jul-88	23	8.9	18-Aug-88	44	7.7
28-Jul-86	23	8,6	18-Aug-88	44	7.7
29-Jul-88	24	8.2	19-Aug-88	45	7.5
29-Jul-88 01-Aug-88	24 27	8.2 7.1	19-Aug-88 19-Aug-88	45 45	8.2 7.8
01-Aug-88	27	7.6	19-Aug-88	45	7.7
01-Aug-88	27	7.7	19-Aug-88	45	7.6
02-Aug-88	28	7.19	19-Aug-88	45	7.7
02-Aug-88	28	9.2 7.9	19-Aug-88	45	7.6 9.3
03-Aug-88 03-Aug-88	29 29	8.0	19-Aug-88 19-Aug-88	45 45	7.7
Y	29	7.9	19-Aug-88	45	7.7
03-Aug-88 04-Aug-88 04-Aug-88	30	7.t5	19-Aug-88	45	7.3
04-Aug-88	30	7.B	19-Aug-88	45	7.7
V4-Aug-66	30	7.6	19-Aug-68	45 45	7.6 7.8
04-Aug-88 05-Aug-88	30	8.0 7.7	19-Aug-88 19-Aug-88	45	7.3
05-Aug-88	31	7.1	20-Aug-88	48	8.8
05-Aug-88	31	7.6	20-Aug-88	48	8.8
07-Aug-88	33	8.1	20-Aug-88	48	8.7
07-Aug-88 07-Aug-88	33	8.1 819	20-Aug-88 20-Aug-88	48i 4F3	8.7 8.6
Ur-Aug-66	1 33	0.5	I so-vad-oo	L -11/	

Crowther Clayton Associates

91/2737

pH of water consumed by

pH is not a substance which can be consumed and for which the quantity *ingested* can be calculated as it can for aluminium or sulphate; pH is a measure of the acidity and alkalinity balance in water.

The range for pH in drinking water specified in the EC Directive are

lower limit 5.5.

With the exception of 3 samples, two with pH 'values of 4.1, 4.7 taken on the 7th and and one with a value of 10 taken on 10th Jupe 1988 all samples are within this range.

The significance of pH lies more in its effect on pipes and other fittings in the water supplier's and the consumer's water distribution system than on the health & consumers. Many normal beverages are outside the EC Drinking Water pH limits, for example soft drinks such as Coca Cola and lemonade. I show an *the* graph & the pH of samples in the Delabole/Rockhead Area (Area B) the relative position of lemonade which typically has a pH in the region of 3.

Crowther Clayton Associates

91/2737

pH of water consumed by

pH is not a substance which can be consumed and for which the quantity ingested can be calculated as it can for aluminium or sulphate; pH is a measure of the acidity and alkalinity balance in water.

The range for pH in drinking water specified in the EC Directive are

upper limit '9.5;

lower limit 5.5.

With the exception of 3 samples, two with pH values of 4.1, 4.7 taken on the 7th and and one with a value of 10 taken on 10th June 1988 all samples are within this range.

The significance of pH lies more in its effecton pipes and other fittings in the water supplier's and the consumer's water distribution system than on the health of consumers. Many normal beverages are outside the EC Drinking Water pH limits, for example soft drinks such as Coca Cola and lemonade. I show on the graph of the pH of samples in the Delabole/Rockhead Area (Area 8) the relative position of lemonade which typically has a pH in the region of 3.

Crowther Clayton Assoelates

91/2737

pH of water consumed by

pH is not a substance which can be consumed and for which the quantity ingested can be calculated as it can for aluminium or sulphate; pH is a measure of the acidity and alkalinity balance in water.

The range for pH in drinking water specified in the EC Directive are

upper limit

9.5:

lower limit

5.5:

With the exception of 3 samples, two with pH values of 4.1, 4.7 taken on the 7th and and one with a value of 10 taken on 10th Jume 1988 all samples are within this range.

The significance of pH iies more in its effect on pipes and other fittings in the water supplier's and the consumer's water distribution system than on the health of consumers. Many normal beverages are outside the EC Drinking Water pH limits, for example soft drinks such as Coca Cola and lemonade. I show on the graph of the pH of samples in the Delabole/Rockhead Area (Area B) the relative position of lemonade which typically has a pH in the region of 3.

91/2737 Crowther Clayton Assodates

pH of water consumed by

pH is not a substance which can be consumed and *for* which the quantity ingested can be calculated as it *can* for aluminium or sulphate; pH is a measure of the acidity and alkalinity balance in water.

The range for pH in drinking water specified in the EC Directive are

upper limit

9.5;

lower limit

5.5.

With the exception of 3 samples, two with pH values of 4.1, 4.7 taken on the 7th and and one with a value of 10 taken on 10th June 1988 all samples are within this range.

The significance of pH Lies more in Its effect on pipes and other fittings in the water supplier's and the consumer's water distribution system than on the health of consumers. Many normal beverages are outside the EC Drinking Water pH limits, for example soft drinks such as Coca Cola and lemonade. I show on the graph of the pH of samples in the Delabole/Rockhead Area (Area 6) the relative position of lemonade which typically has a pH in the region of 3.

Estimated lead concentrations for the Delabole/Rockhead Area.

The above graph should be treated with caution. Where data from analyses showed a lead Concentration of "less than" a particular value (concentrations are variously shown in the SWW analytical records as <80 μ g/l, <50 μ g/l, <30 μ g/l or <10 μ g/l) I have shown them on the above graph at the "less than" value itself, for example, <50 μ g/l is shown on the graph as 50 μ g/l.

Crowther Clayton Associates

Estimation of lead values in the drinking water fur the Delabole/Rockhead Area.

91/2737

(see graph on the previous page and the table on the following page).

Most of the data for the lead analyses are for a value below the limit of detection of the analytical method used, and as a consequence the data are not 'hard' data.from which neither a dispersion model nor a statistical model can be developed. Out of some 148 measurements only about nine are actual values. In preparing the data for lead I have therefore assumed values to be the 'less than' value, so, for example, if a value of <.05 mg/l is shown in the SWW records I have used a value of 0.05 mg/l in preparing the graph, table and consumption level by

The data are insufficient to calibrate any rational model α to prepare a reasonable statistical relationship so, in order' to estimate values for those six or so days on which there was no lead sample, I have assumed a simple linear relationship between consecutive values and interpolated. These are the values shown in the table headed "Estimated values for lead concentrations in mg/I for the Delabole/Rockhead Area" which have been used to prepare the graph on the previous page.

Estimated values for lead concentrations in mg/l for the Delabole/Rockhead Area.

Page or			CS.		
Sample	Day	Date	Mean.	Aax.	viin.
484	3	08-Jul-88	0.04	0.04	0,04
114	4	09-Jul-88	0.058	0.2	0.01
115	5	10-Jul-88	0.051	0.22	0.03
260	6	11-Jul-88	0.067	0.1	0.05
	7	12-Jul-88	0.046	0,068	0.035
ĺ	a	13-Jul-88	0.025	0.036	0.02
125	9	14-Jul-88	0.005	0.005	0.005
	10	15-Jul-88	0.005	0.006	0.005
	If ,	16-Jul-88	0.005	0.007	0.005
	12	17-Jul-88	0.006	0.008	0,005
500	13	18-Jul-88	0.006	0.009	0.005
	14	19-Jul!88	0.006	0.007	0.005
267	15	20-Jul-88	0.005	0.005	0.005
511	16	21Jul-88	0.05	0.05	0.05
139	17	22 ⁻ Jul-88	. 0.05	0.05	0.05
519	18	23-Jul-88	0.05	0.05	0.05
520	19	24-Jul-88	0.05	0.05	0.05
143	20	25-Jul-88	0.05	0.05	0.05
145	21	26-Jul-88	0.05	0.05	0.05
274	22	27-Jul-88	0.05	0.05	0.05
531	23	28-Jul-88	0.05	0.05	0.05
276	24	29-Jul-88	0.05	0.05	0.05
	25	30-Jul-88	0.05	0.05	0.05
	26	31-Jul-88	0.05	0.05	0.05
156	27	01-Aug-88	0.05	0.05	0.05
157	28	02-Aug-88	0.05	0.05	0.05
159	29	03-Aug-88	0.05	0.05	0.05
549	30	04-Aug-88	0.039	0.05	.0.005
281	31	05-Aug-88	0.05	0.05	0.05
	32	06-Aug-88	0.05	0.05	0.05
282	33	07-Aug-88	0.05	0.05	0.05
556	34	08-Aug-88	0.05	0.05	0.05
489	35	09-Aug-88	0.037	0.05	0.01
286	36	10-Aug-88	0.05	0.05	0.05
563	37	11-Aug-88	0.05	0.05	0.05
173	38	12-Aug-88	0.05	0.05	0.05
	39	13-Aug-88	0.05	0.05	0.05
570	40	14-Aug-88	0.05	0.05	<i>0</i> 🕽 5
177	41	I 5-Aug-88	0.05	0.05	<i>0.</i> 05
291	42	16-Aug-88	0.051	0.08	0.005
341	43	17-Aug-88	0.043	0.05	0.005
345	44	18-Aug-88	0.08	0.08	0.08
105	45	19-Aug-88	0.087	0.209	0.08
381	46	20-Aug-88	0.03	0.03	0.03

In Area B.

The EC Maximum Allowable Concentrations (MAC) for copper, zinc and lead are

copper: 3,000µg/lie 3 mg/l. zinc : 5,000µg/lie 5 mg/l.

lead : $50 \mu g/I$ ie 0.05 mg/l.

Intake of Copper and Zinc.

All samples for copper and zinc show levels for these two metals at levels very substantially below the EC *MAC* - sometimes as much 3 orders of magnitude below the MAC.

Intake of Lead.

I have examined analyses of 148 samples taken between 7th July and 20th August 1988 In which 5 samples taken on four different days exceeded the MAC, all but one of which exceedances were between 9th and 11th July. Of the remaining 143 samples 28, taken on three different days (viz. 16th, 18th and 19th August 1988) are recorded as being less than $80\mu\,g/l$ (ie <0.08 mg/l). I presume that different methods of analysis have been used and that the limit of sensitivity of these analyses vary between 0.08mg/l and 0.005 mg/l (since the results are variously recorded as being <0.08, <0.05, <0.03, <0.01 and <0.005 mg/l). It is therefore not possible to say with certainty that on those 28 occasions the lead concentration did not exceed $50\,\mu\,g/l$. Since the remaining 115 samples (about 78%) are below - and often very much below the MAC it is likely that some or all of the samples shown as being <0.08 mg/l were, actually, less than the MAC.

The concentrations of copper and zinc were thus always well below the acceptable levels.

The concentration of lead was also mostly welt below the EC level, the exceptions being the five samples shown in the table on the following page and some uncertainty on those 28 occasions when the concentration was recorded as $<80 \,\mu\text{g}/\text{l}$.

I have estimated possible lead intake, using the data available and Interpolating where no data exist, and show the results in the table on the following page. In making the estimates I have used a lead concentration of $80\,\mu\text{g/l}$ on the three days when the *result of* analysis is recorded as <0.08 mg/l. In the case of the other five analyses which exceed the MAC there are insufficient data for any sensible modelling so I have simply given an estimate based on the mean, maximum and minimum values for the relevant days.

Data on lead analyses in samples from the Delabole/Rockhead Area

1. SWW samples from the Delabole/Rockhead Area in which the lead exceeded the EC MAC of 50 micrograms/litre.

No.	Page or Sample	Date	Lead
7	113	09-Jul-88	0.2
2	114	09-Jul-88	0,06
3	121	10-Jul-88	0.22
4	265	11-Jul-88	0.1
5	369	19-Aug-88	0.209

2. SWW samples from the Delabole/Rockhead Area in which the lead concentration could have been above the EC MAC.

	Page or			
No.	Sample	Date	Lead	Sample
1	297	16-Aug-88	< 0.08	
2	298	16-Aug-88	< 0.08	
3	s.9921	16-Aug-88	<0.08	
4	299	16-Aug-88	<0.08	
5	300	16-Aug-88	< 0.08	
6	296	16-Aug-88	<0.08	
7	292	16-Aug-88	< 0.08	
8	343	18-Aug-88	< 0.08	
9	3 4 6	18-Aug-88	<0.08	
10	344	18-Aug-88	< 0.08	
11	345	18-Aug-88	< 0.08	
12	356	19-Aug-88	< 0.08	
13	353	19-Aug-88	< 0.08	,
14	354	19-Aug-88	<0.08	
15	357	19-Aug-88	80.0>	
16	358	19-Aug-88	<0.08]
17	359	19-Aug-88	< 0.08	
18	355	19-Aug-88	< 0.08	
19	352	19-Aug-88	< 0.08	ļ ·
20	351	19-Aug-88	<0.08	!
21	362	19-Aug-88	<0.08	
22	363	19-Aug-88	<0.08	
23	200	19-Aug-88	4.08	ł
24	366	19-Aug-88	< 0.08	
25	360	19-Aug-88	<0.08	
26	361	19-Aug-88	< 0.08	
27	364	19-Aug-88	<0.08]
28	105	19-Aug-88	< 0.08	

Estimation of the lead intake by Quantity of water drunk in litres/day:-

1.14

Page or		/	Lead Intake in mg/day.			
Sample	Day	Date			Ndin.	
484	3	08-Jul-88	0.046	0.046	0.046	
114	4	09-Jul-88	0.066	0.228	0.011	
115	5	10-Jul-88	0.058	0,251	0.034	
260	6	11-Jul-88	0.076	0.1 14	0.057	
	7	12-Jul-88	0.052	0.078	0.040	
	8	13-Jul-88	0.029	0.041	0.023	
125	9	14 -J ul-88	0.006	0.006	0.006	
	10	15-Jul-88	0.006	0.007	0.006	
	11	16-Jul-88	0.006	0.008	0.006	
	12	17-Jul-88	0.007	0.009	0,006	
500	13	18-Jul-88	0.007	0.010	0.006	
	14	19-Jul-88	0.007	0.008	0.006	
267	15	20-Jul-88	0.006	0.006	0.006	
511	16	21 - Jul-88	0.057	0.057	0.057	
139	17	22-Jul-88	0.057	0.057	0.057	
519	. 18	23-Jul-88	0.057	0.057	0.057	
520	19	24-Jul-88	0.057	0.057	0.057	
143	20	25-Jul-88	0.057	0.057	0.057	
145	21	26-Jul-88	0.057	0.057	0.057	
274	22	27-Jul-88	0.057	0.057	0.057	
531	23	28-Jul-88	0.057	0.057	0.057	
276	24	29-Jul-88	0.057	0.057	0.057	
	25	30-Jul-88	0.057	0.057	0.057	
l	26	31-Jul-88	0.057	0.057	0.057	
156	<i>2</i> 7	01-Aug-88	0.057	0.057	0.057	
1 57	28	02-Aug-88	0.057	0.057	0.057	
159	29	03-Aug-88	0.057	0.057	0.057	
549	30	04-Aug-88	0.044	0.057	0.006	
281	31	05-Aug-88	0.057	0.057	0.057	
	32	06-Aug-88	0.057	0.057	0.057	
282	33	07-Aug-88	0.057	0.057	0.057	
556	34	08-Aug-88	0.057	0.057	0.057	
489	35	09-Aug-88	0.042	0.057	0.011	
286	36	10-Aug-88	0.057	0.057	0.057	
563	37	11-Aug-88	0.057	0.057	0.057	
173	38	12-Aug-88	0.057	0.057	0.057	
1	39	13-Aug-88	0.057	0.057	0.057	
570	40	14-Aug-88	0.057	0.057	0.057	
177	41	15-Aug-88	0.057	0.057	0.057	
291	42	16-Aug-88	0.058	0.091	0.006	
341	43	17-Aug-88	0.049	0.057	0.006	
345	44	18-Aug-88	0.091	0.091	0.091	
105	45	19-Aug-88	0,099	0.238	ł.	
381	46	20-Aug-88	0.034	0.034	0.034	
L	1	1 300	T = 2.2.2		<u> </u>	

Estimation of the lead intake by Quantity of water drunk in litres/day:-

2

Page or			Lead Int	ake in mg/c	lav.
Sample	Day	Date	/lean	Max.	Min.
484	3	08-Jul-88	0.080	0.080	0.080
114	4	09-Jul-88	0.116	0,400	0.020
115	5	10-Jul-88	0.102	0.440	0.060
260	6	11-Jul-88	0.134	0.200	0.100
	7	12-Jul-88	0.092	0.136	0.070
1	8	13-Jul-88	0.050	0.072	0.040
125	9	14-Jul-88	0.010	0.010	0.010
	10	I5-Jul-88	0.010	0.012	0.010
	11	16-Jul-88	0.010	0.014	0.010
	12	17-Jul-88	0.012	0.016	0 . 01 <i>0</i>
500	13	18-Jul-88	0.012	0.018	0.010
Ì	14	19-Jul-88	0.012	0.014	0.010
267	15	20-Jul-88	0.010	0.010	0 . 01 <i>0</i>
511	16	21-Jul-88	0.100	0.100	0.100
139	17	22-Jul-88	0.100	0.100	0 .1 00
519	, 18	23-Jul-88	0.100	0.100	0.100
520	19	24-Jul-88	0,100	0.100	0.t 00
143	20	25-Jul-88	0,100	0.100	0.1 00
145	21	26-Jul-88	0.100	0.100	0.100
274	22	27-Jul-88	0.100	0.100	0.100
531	23	28-Jul-88	0.100	0.100	0.1 00
276	24	29-Jul-88	0.100	0.100	0.100
	25	30-Jul-88	0.100	0.100	0.100
	26	31-Jul-88	0.100	0.100	0.100
156	27	01-Aug-88	0.100	0.100	0.100
157	28	02-Aug-88	0,100	0.100	0.100
159	29	03-Aug-88	0.100	0.100	0.100
549	30	04-Aug-88	0.078	0.100	0.01 0
281	31	05 - Aug-88	0.100	0.100	0.100
I	32	06-Aug-88	0,100	0.100	0 .1 00
282	33	07-hug-88	0.100	0.100	0.100
556	34	08-Aug-88	0.100	0.100	0.100
489	35	09-Aug-88	0.074	0.100	0.020
286	36	10-Aug-88	0.100	0.100	0.100
563	37	11-Aug-88	0.100	0.100	0.100
173	38	12-Aug-88	0.100	0.100	0.1 00
	39	13-Aug-88	0.100	0.100	0.100
570	40	14-Aug-88	0.100	0.100	0.100
177	41	15-Aug-88	0.100	0.100	0.100
291	42	16-Aug-88	0.102	0,160	0.010
341	43	17-Aug-88	0.086	0.100	0.01a
345	44	18-Aug-88	0.160	0.160	0.160
105	45	19-Aug-88	0.174	0.418	0.160
381	46	20-Aug-88	0.060	0.060	0.060

Estimation of the lead intake by Quantity of water drunk in litres/day:-

2

Page or	100.70 - 111.	".	Lead Int	ake in mg/c	lav.
Sample	Эау	Date	/lean	Max.	Mdin.
484	3	08-Jul-88	0.080	0.080	0.080
114	4	09-Jul-88	0.116	0.400	0.020
115	5	10-Jul-88	01 02	0,440	0.060
260	6	1 1-Jul-88	0.134	0.200	0.100
	7	12-Jul-88	0.092	0.136	0.070
	8	13-Jul-88	0.050	0.072	0.040
125	9	14-Jul-88	0.010	0.010	0.010
	10	15-Jul-88	0.010	0.012	0.010
	I f	16-Jul-88	0.010	0.014	0.010
	12	17-Jul-88	0.012	0.016	0.010
500	13	18-Jul-88	0.01 2	0.018	0.01 <i>0</i>
	14	19-Jul-88	0.012	0.014	0.010
267	15	20-Jul-88	0.010	0.010	0.010
511	16	21 -Jul-88	0.100	0.100	0.100
139	17	22-Jul-88	0.100	0.100	0.100
519	18	23-Jul-88	0.100	. 0.100	0 .10D
520	19	24-Jul-88	0.100	0.100	0.1 00
143	20	25-Jul-88	0.100	0.1 00	0.too
145	21	26-Jul-88	0.100	0.100	0.100
274	22	27-Jul-88	0.100	O.1 <i>00</i>	0,100
531	23	28-Jul-88	0.100	0.1 00	0.1 <i>00</i>
276	24	29-Jul-88	0.100	0.100	0.100
	25	30-Jul-88	0.100	0,100	0.100
	26	31-Jul-88	0.100	0.1 00	0.100
156	27	01-Aug-88	0.100	0.100	0.1 00
157	28	02-Aug-88	0.100	0.100	0.1 <i>00</i>
159	29	03-Aug-88	0.1 <i>00</i>	0.100	0.100
549	30	04-Aug-88	0.078	0. too	0.010
281	31	<i>0</i> 5-Aug-8 <i>8</i>	0.100	0.100	0.100
	32	06-Aug-88	0.100	0.100	0.100
282	33	07-Aug-88	0.100	0.1 00	0.100
. 556	34	08-Aug-88	0.100	0.100	0.100
489	35	09-Aug-88	0.074	0.100	0.020
286	36	10-Aug-88	0.1 00	0. 100	0.100
563	37	11-Aug-88	0.100		0.1 00
173	38	12-Aug-88	0.100	0,100	0.100
	39	13-Aug-88	0.100	0.1 00	0.100
570	40	14-Aug-88	0.100	0.100	0.100
177	41	15-Aug-88	0.100	1	0.100
291	42	16 - Aug-88	0.102	0.160	0.010
341	43	17-Aug-88	0.086	0.1 00	0.010
345	44	18-Aug-88	0.160	0.160	0.1 60
105	45	19-Aug-88	0.174	0.418	0.160
381	46	, 20-Aug-88	0.060	0.060	0.060

Estimation of the lead intake by Quantity of water drunk in litres/day:-

I.7

⁵ age or		Lead Intake in mg/day.				
Sample	Day	Date	Mean	Max.	Min.	
484	3	08-Jul-88	0.068	0.068	0.068	
114	4	09-Jul-88	0.099	0.340	0.017	
115	5	10-Jul-88	≠0.087	0.374	0.051	
260	6	11-Jul-88	0.114	0.170	0.085	
	.7	12-Jul-88	0.078	0.116	0.060	
	8	13-Jul-88	0.043	0.061	0.034	
125	9	14-Jul-88	0.009	0.009	0.009	
	10	15-Jul-88	0.009	0.010	0.009	
	11	16-Jul-88	0.009	0.012	0.009	
	12	17-Jul-88	0.01 <i>0</i>	0.014	0.009	
500	13	18-Jul-88	0.010	0.015	0.009	
	14	19-Jul-88	0.010	0.012	0.009	
267	15	20-Jul-88	0.009	0.009	0.009	
511	16	21-Jul-88	, 0.085	0.085	0.085	
139	17	22-Jul-88	0.085	0.085	0.085	
519	18	23-Jul-88	0.085	0.085	0.085	
520	19	24-Jul-88	0.085	0.085	0.085	
143	20	25-Jul-88	0.085	0.085	0.085	
145	21	26-Jul-88	0.085	0.085	0.085	
274	22	27-Jul-88	0.085	0.085	0.085	
531	23	28-Jul-88	0.085	0.085	0.085	
276	24	29-Jul-88	0.085	0.085	0.085	
	25	30-Jul-88	0.085	0.085	0.085	
	26	31Jul-88	0.085	0.085	0.085	
156	27	01 -Aug-88	0.085	0.085	0.085	
1 <i>57</i>	28	02-Aug-88	0.085	0.085	0.085	
159	29	03-Aug-88	0.085	0.085	0.085	
549	30	04-Aug-88	0.066	0.085	0.009	
281	31	05-Aug-88	0.085	0.085	0.085	
	32	06-Aug-88	0.085	0.085	0.085	
282	33	07-Aug-88	0.085	1	0.085	
556	34	08-Aug-88	0.085	0.085	0.085	
489	35	09-Aug-88	0.063	0.085	0.017	
286	36	10-Aug-88	0.085	0.085	0.085	
563	37	11-Aug-88	0.085	0.085	0.086	
173	38	12-Aug-88	0.085	0.085	0.085	
	39	13-Aug-88	0.085	0.085	0.085	
570	40	14-Aug-88	0.085	0.085	I	
177	41	15-Aug-88	0.085	0.085	1	
291	42	16-Aug-88	0.087	0.136 0.085	1	
341	43	17-Aug-88	0.073	0.085		
345	44	18-Aug-88	0.136	0.136	0.136	
105	45	19-Aug-88	0.148	0.352	0.051	
381	45	20-Aug-88	0.051	0.031	0.001	

Pag	ا <u>م</u>	Date	Day	ρH ′	Sulphate [/	Aluminium	Copper	Zinc i	Lead
Fag	= ,	07-Jul-88	2	4.3	Julynate 1	41.00	000001		
Į.	5	88-101-90	4	8.4		1.07	0.01	0.08	0.01
II .	6	09-Jul-88	4	4.6		2.71	0.09	0.1 1	0.01
	7	10-Jui-88	5	4.6	62.0	1.07	0.03	0.07	0.03
	á	10-Jul-88	5	8.4	27.0	1.37	<0.01	0.05	< 0.03
L	12	14-Jul-88	9	8.0	32.3	0.81	0.08	0.092	< 0.01
	3	14-Jul-88	9	8 . 5	26.0	0.86	< 0.05	< 0.05	< 0.05
			9	7.1	26.0	1.60	0.09	< 0.05	< 0.05
1)	14	14-Jul-88	9 13	8.0	26.0 26.3	0.59	<0.05	0.11	< 0.05
	15	18-Jul-88	15	8.2	20.3 23.1	0.59 0.54	V0.00	0.11	40.00
ı.	16	20-Jul-88			18.7	0.37	< 0.05	<0.05	< 0.05
	17	21-Jul-88	16	7.4		0.37	<0.05	<0.05	< 0.05
II	18	23-Jul-88	18	8.6	17.7	l	<0.05	<0.05	< 0.05
li .	19	24-Jul-88	19	8.8	19.1	1.00 0 . 66	<0.05	< 0.05	< 0.05
II	21.	25-Jul-88	20	8.2	10.0	0.53	<0.05	< 0.05	< 0.05
	22	26-Jul-88	21	8.8	21.0	l	<0.05	< 0.05	< 0.05
"	23	- 28-Jul-88	22	7.1	21.2	0.40	<0.05	0.05	<0.05
	24	28-Jul-88	23	9.1	21.2	0.33	< 0.05	< 0.05	< 0.05
	26	29-Jul-88	24	6.8	24.4	0.27	<0.05	< 0.05	< 0.05
	27	01-Aug-88	27	7.7	18.5	0.17	<0.05	< 0.05	<0.05
41	28	02-Aug-88	28	8.6	20.4	0.27	<0.05	<0.05	< 0.05
	29	02-Aug-88	28	8.5	20.5	0.26	<0.05	<0.05	< 0.05
	30	03-Aug-88	29	7.5	. 18.6	0.24		< 0.05	< 0.05
II .	32	04-Aug-88	30	7.9	19.5	0.22	< 0.05	<0.05	<0.05
	33	05-Aug-88	31	9.1	20.2	0.23	0.06 <0.05	<0.05	< 0.05
	34	07-Aug-88	33	9.1	17.6	0.40	< 0.05	<0.05	<0.05
	35	08-Aug-88	34	8.4	18.2	0.24	< 0.05	< 0.05	<0.05
	36	09-Aug-88	35	8.8	18.4	0.35	< 0.05	<0.05	<0.05
	37	09-Aug-88	35	7.9	17.8	0.37	<0.05	<0.05	<0.05
1I	39	10-Aug-88	36	8.6	17.3	0.21 0.35	<0.05	< 0.05	<0.05
II.	40	11-Aug-88	37	8.6	20.t	0.35	<0.05	<0.05	< 0.05
11	47	12-Aug-88	38	8.9	19.9		<0.05	< 0.05	< 0.05
10	43	14-Aug-88	40	9.1	18.2	0.61	<0.05	< 0.05	< 0.05
"	44	15-Aug-88	41	9.5	18.6	0.18	<0.05	< 0.05	80.0>
II.	46	16-Aug-88	42	8.9	20.0	0.37	< 0.05	<0.05	30.0>
	47	16-Aug-88	42	7.7	19.4	0,44	< 0.05	< 0.05	<0.08
II .	48	16-Aug-88	42	8.5	19.4	0.22	<0.05	<0.05	30.0>
	49	16-Aug-88	42	8.8	19,7	0.15		<0.05	<0.08
	50	16-Aug-88	42	8.7	19.4	0.14	<0.05 <0.05	<0.05	30.D>
13.	51	16-Aug-88	42	8.8	19.0	0,08 0.31	< 0.05	<0.05	<0.05
	58	16-Aug-88	42	8.9	17.2		<0.05	< 0.05	< 0.05
	61	16-Aug-88	42	8.9	16.5	0.16	<0.05	0.1 1	< 0.05
II	65	17-Aug-88	43	8.8	17.0		<0.05	< 0.05	< 0.05
	72	17-Aug-88	43	8.5		0.31	<0.05	<0.05	< 0.05
	74	18-Aug-88	44	8.2		0.41	<0.05	<0.05	30.0>
	76	18-Aug-88	44	8.9	20.3	0.141	<0.05	<0.05	< 0.08
.	78	18-Aug-88	44	7.7	16.0		<0.05	<0.05	<0.08
	83	18-Aug-88	44	6.8	14.9	0.485		<0.05	<0.08
	84	18-Aug-88	43	7.8	16.2	0.377	<0.05 <0.05	<0.05	<0.08
	85	18-Aug-88	44	7.7	16.0	0.247		< 0.05	<0.08
- 11	104	19-Aug-88	45	8.8	18.9	0.103	< 0.05	<0.05	<0.0
- 11	110	19-Aug-88	45	7.9	19.E		<0.05	< 0.05	<0.0≀
	105	19-Aug-88	45	a. 1	19.2	0.329	< 0.05	<0.05	< 0.0
	106	19-Aug-88	45	8.4		0.432	<0.05	<0.05	<0.0
	107	19-Aug-88	45	8.6	19.2	0.078	< 0.05	<0.05 <0.05	< 0.0
- 18	129	19-Aug-88	45	8.C	16.1	0.600	<0.05		<0.01
	145	22-Aug-88	48			0.31(0.0	0.07 0.13	<0.01
	146	22-Aug-88	48	9.2	17.4	0,210	< 0.01	U. (<)	VO.01

page 76

Aluminium concentrations for the Camelford **Area.**

22-Aug-88 0.31 0.21 84 88-guA-22 84 18-Aug-88 94 09.0 88-guA-61 97 70.0 88-guA-61 0.43 94 88-puA-91 SE.D 94 88-guA-e1 97 34E.0 88-guA-81 \$7 0:10 88-guA-81 74Z.D 77 88-guA-81 ÞÞ 776.0 88-guA-81 384.0 ÞÞ 88-guA-81 ₩ 166.0 88-guA-81 ÞÞ 141.0 88-guA-81 44 14.0 88-guA-71 ٤Þ 16.0 88-guA-71 24 15.0 88-guA-8 45 91.0 88-guA-8 45 re.o 88-ⴒი∆-მ 45 80.0 88-guA-3 77 41.0 88-₽₽₩-9 75 91.0 88-guA-8 75 \$2.0 88-g⊔A-8 45 44.0 88-guA-8 45 **46.0** 88-guA-3 lÞ 181 '0 88-guA-# 0۶ 119.0 88-guA-\$ 38 126,0 88-guA-1 Zε 126.0 36 88-guA-(112.0 88-puA-f SE)YE.0 88-guA-(32 0.35(88-puA-{ 34 0.24(88-guA-1 EE 104.0 88-guA-i 15 0.230 88-gu4-Œ 0.22(88-guA-53 0.24C 88-გ∪A-28 0.260 88-guA-28 **D72.0** 88-puA-071.D ΖZ 88-Jul-9 0.270 54 88-101-8 23 DEE.O 88-101-6 53 0.400 88-lut-8 0.530 ız 88-խՆ-Հ 50 099.0 88-101-4 61 000 I 88-101-8 81 0.390 88-lul-1 91 OYE.D 88-IUL-(91 0,540 88-iul-4 13 06910 88-lul--6 09810 88-lul~ 6 018.0 9 88-jul-1.370 9 88-lul~ 1,070 88-luL-Þ 2.710 86-Jul-Þ 07871* 88-lut-41,000 muinimulA Day

Data for aluminium concentrations in mg/l for SWW samples from the Camellord Area.

Estimated aluminium concentrations in mg/l for the Camelford Area.

	J	Estimated Ali	uminium Cond	\
Date	Day	Model	Max	Min
07-Jul-88	2	40.9	41	4t
08-Jul-88	3	12.68	15	1.87
09Jul-88	4	1.80	2.71	1.87
10-Jul-88	5	0.84	1.32	0.533
11-Jul-88	6	0.71	1.30	0.506
12Jul-88	7	0.68	1.27	0.480
13-Jul-88	а	0.66	1.25	0.456
14-Jul-88	9	1.46	1.22	0.433
15-Jul-88	10	0.63	1.20	0.41 1
16-Jul-88	11	0.ವ	1.17	0.390
17-Jul-88	12	0.59	1.15	0.371
18-Jul-88	13	0.58	1.13	0.352
19-Jul-88	14	0.56	1.11	0,334
20-Jul-88	15	0.55	1.08	0 .3 1.7
21-Jul-88	16	0.53	1.06	0.301
22-Jul-88	17	0.52	1.04	0.286
23-Jul-88	18	0.50	1.02	0.271
24Jul-88	19	. 0.49	1.00	0.258
25-Jul-88	20	0.47	0.98	0.245
26-Jul-88	21	0.46	0.96	0.232
27-Jul-88	22	0.45	0.94	0.221
28-Jul-88	23	0.44	0.92	0.209
29-Jul-88	25	0.41	0.89	0.189
30-Jul-88	26	0.40	0.87	0.179
31-Jul-88	27	0.39	0.85	0.170
01-Aug-88	28	0.38	0.84	0.162
02-Aug-88	28	0.38	0.84	0.162
03-Aug-88	29	0.37	0.82	0.153
04-Aug-88	30	0.36	0.80	0.146
05-Aug-88	31	0.35	0.79	0.138
06-Aug -88	32	0.34	0.77	0.131
07-Aug-88	33	0.33	0.76	0.1 25
08-Aug-88	34	0.32	0.74	0.118
09-Aug-88	35	0.31	0.73	0.1 12
10-Aug-88	36	0.30	0.71	0.107
11-Aug-88	37	0.29	0.70	0.101
12-Aug-88	38	0.29	0.68	0.096
13-Aug-88	39	0.28	0.67	0.091
14-Aug-88	40	0.27	0.66	0.087
15-Aug-88	41	0.26	0.64	0.082
16-Aug-88	42	0.25	0.63	0.078
17-Aug-88	43	0.25	0.62	0.074
18-Aug-88	44	0.24	0.61	0.070
19-Aug-88	45	0.23	0.59	0.067
20-Aug-88	46	0.23	0.58	0.063
21-Aug-88	47	0.22	0.57	0.060
22-Aug-88	48	0.22	0.56	0.057

Crowther Clayton Associates

91/2737

Comments on the aluminium intake of

The table on the following page gives an estimate of the aluminium intake for the period up to 22nd August, after which date there are insufficient data to be able to make any satisfactory prediction.

I have not seen any data for the premises where resided at the time of the incident and the only data are the estimates for the Camelford Area from which I have derived the data in the table on the following page.

رpage 180

Estimated aluminium intake in mg/day by Consumption of drinking water in \(\)/day

2

	Estimated Aluminium Intake			
Date	Day	Model	Max	Min
07-Jul-88	2	81.7	82.0	82.0
88-luL-80	3	25.4	29.6	3.74
09 J ul-88	4	3.6	5.4	3.74
10-Jul-88	5	1.7	2.6	1.07
11-Jul-88	6	1.4	2.6	1.01
12-Jul-88	7	i.4	2.5	0.96
t 3-Jul-88	8	1.4	2.5	0.91
14-Jul-88	9	2.9	2 4	0.87
15-Jul-88	10	1.3	2.4	0.82
16-Jul-88	11	1.2	2.3	0.78
17-Jul-88	12	1.2	2.3	0.74
18-Jul-88	13	1.2	2.3	0.70
19-Jul-88	14	1.1	2.2	0.67
20-Jul-88	15	1.1	2.2	0.63
21-Jul-88	16	1,1	2.1	0.60
22-Jul-88	17	1.0	2.1	0.57
23-Jul-88	18	1.0	2.0	0.54
24-Jul-88	19	. 1.0	2.0	0.52
25-Jul-88	20	0.9	2.0	0.49
26-Jul-88	21	0.9	1.9	0.46
27-Jul-88	22	0.9	1.9	0.44
28-Jul-88	23	0.9	1.8	0.42
29-Jul-88	25	0.8	1.8	0.38
30-Jul-88	26	0.8	1.7	0.36
31Jut-88	27	0.8	1.7	0.34
01-Aug-88	28	0.8	1.7	0.32
02-Aug-88	28	0.8	1.7	0.32
03-Aug-88	29	0.7	1.6	0.31
04-Aug-88	30	0.7	1.6	0.29
05-hug-88	31	0.7	1.6	0.28
06-Aug-88	32	0.7	1.5	0.26
07-Aug-88	33	0.7	1.5	0.25
08-Aug-88	34	0.6	1.5	0.24
09-Aug-88	35	0.6	1.5	0.22
10-Aug-88	36	0.6	1.4	0.21
11-Aug-88	37	0.6	1.4	0.20
12-Aug-88	38	0.6	1.4	0.19
13-Aug-88	39	0.6	1.8	0.18
14-Aug-88	40	0.5	1.3	0.17
15-hug-88	41	0.5	1.2	0.16
16-Aug-88	42	0.5	1.3	0.16
17-Aug-88	43	0.5	1.2	0.15
18-Aug-88	44	0.5	1.2	0.14
19-Aug-88	45	0.5	1.2	0.13
20-Aug-88	46	0.5	1.2	0.13
21-Aug-88	47	0.4	1.1	0.12
22-Aug-88	48	0.4	1.1	0.11
	-	<u></u>	المانية والمانية وا	

Sulphate Concentrations for the Camelford **Area**.

Sulphate conc. in mg/l in samples from the Carnelford Area.

Date I	J av ı	1
07-Jul-88	2.	
09-Jul-88	4	[29]
0:9-Jul-88	4	[33]
1:0-Jul-88 1:0-Jul-88	5 5	62.0 27.0
1.4~Jul-88	9	32.3
14-Jul-88	اُو	26.0
14-Jul-88	9	26.0
18-Jui-88	13	26.3
20Jul-88	15	23.1
21-Jul-88 23-Jul-88	16 18	18.7 17.7
2:3-Jul-66 2:4-Jul-88	19	19.1
2:5-Jul-88	20	18.8
2:6-Jul-88	21	21.0
2:8-Jul-88	22	21.2
228-Jui-88	23	21.2
29-Jul-88	24 27	24.4 10.5
01-Aug-88 02-Aug-88	2B	20.4
02-Aug-88	<u>-</u> 28	20.5
03-Aug-88	21	18.6
04-Aug-aa	30	19.5
05-Aug-88	31	20.2 17.6
07-Aug-88 08-Aug-88	33 34	18.2
09-Aug-88	35	18.4
09-Aug-88	35	17.0
10-Aug-88	96	17.3
11-Aug-88	37 }	20.1
12-Aug-88 14-Aug-88	38 40	19.9 18.2
15-Aug-88	41	18.6
16-Aug-88	42	20.0
16-Aug-88	42	19.4
16-Aug-88	42	19.#
16-Aug-88	42	19:7 19.4
16-Aug-88 16-Aug-88	42 42	19.0
16-Aug-88	42	17.2
16-Aug-88	42	16.5
17-Aug-88	43	17.0
18-Aug-88	44	20.3
18-Aug-88	44	16.0 14
	44 44	16
[] .	44	16.0
	45	18.9
	45	19.8
19-Aug-88	45	19.2
19-Aug-88	45	19.5 19.2
19-Aug-88	45	16.1
19-Aug-88 22-Aug-88	48	17.4
22-Aug-00		

NOTE: Values in square brackets-are estimated from the aluminium concentrations.

91/2737 Crowther Clayton Associates

The quantity of sulphate ingested by

The results of the analyses on all the samples collected by South West Water Authority from the Delabole/Rockhead Area (Area B in this report) show sulphate concentrations below the EC Maximum Allowable Concentration of 250 mg/l.

I could find no data for sulphate concentrations on 7th, 8th and 9th July 1988, but there are data for the aluminium concentration on 7th and 9th July. I have therefore calculated the equivalent theoretical sulphate concentration for the aluminium concentrations for these two days using the aluminium concentrations as the basis for the calculation. These values can only be approximate since the sulphate concentrations in the water supply are not necessarily the stoichiometric equivalent of the aluminium - for example, the water naturally contains roughly 16-20 mg sulphate/litre which is not associated with any aluminium, and some of the aluminium may have precipitated as the hydroxide leaving the associated sulphate still in solution. However, these are the only data available and it enables an approximate evaluation of sulphate intake to be made for the two days when the statistical model for sulphate concentration is less reliable because of the shortage of data.

The data are:

Date	Day	Aluminium in mg/l	Calculated Stoichiometric Sulphate Concentration
07-Jul-88	2	41.0	218.7
09-Jul-88	4	1.87	10.0
09-Jul-88	4	2.71	14.5

I used the maximum values to calculate **the** parameters for the mathematical model which then predicted concentrations of sulphate for the period 8th-10th July. 1 **also** assumed a naturally occurring residual sulphate concentration in the water of 19 mg/l. The results **shown** in the table **below.**

		Sulphate Concentration		
Date	Day	Measured by SWW	Predicted by model	
07-Jul -88	2		238	
08-Jul-88	3		146	
09 - Jul-88	4		92.8	
10-Jul-88	5	62.0 & <i>2</i> 7.0	ഖ.8	

On the basis of my calculations using available data from the SWW analyses there is no evidence for sulphate exceeding the MAC of 250 mg/l. The maximum consumption would have been on 7th July when the sulphate concentration could have been 238 mg/l. If this were the would have consumed 476 mg of sulphate on that day.

pH of water samples from the Camelford **Area**.

Date	Day	рН	
07-Jul-88	2	4.3	
85-lut-e0	4	8.4	
09-Jul-88	4	4.6	
10-Jul-88	5	4.6	
10-Jul-88	5	8.4	
14-Jul-88	9	8.0	
II .	L		
14-Jul-88	9	8.5	
14-Jul-88	9.	7.1	
18√ul-88	13	8.0	
20~Jul-88	15	8.2	
21-Jul-88	16	7.4	
23-Jul-88	18	8.6	
24-Jul-88	19	8.8	
25-Jul-88	20	8.2	
88-lul-92	21	a8	
28-Jul-88	22	7.1	
28-Jul-88	23	9.1	
29-Jul-88	24	6.8	
(31-Aug-88	27	7.7	
02-Aug-88	28	8.6	
02-Aug-88	28	8.5	
	29	7.5	
03-Aug-88	1	7.9	
04-Aug-88	30		
05-Aug-88	31	9.1	
07-Aug-88	33	4.1	ļ
08-Aug-88	34		l
09-Aug-88	35		
88-guA-90	3:		l
10-Aug-88	36		ĺ
11-Aug-88			
12-Aug-88	38	8.9	l
14-hug-88	40	9.1	Į
15-Aug-88	41	9.5	Į
16-Aug-88	42	8.9	Ì
16-Aug-88		7.7	I
16-Aug-88	t .		ļ
16-Aug-88	1		I
16-Aug-88			N
16-Aug-88			Ï
16-Aug-88	1		ì
16-Aug-81			1
17-Aug-88			ļ
			ı
17-Aug-88		i	Į
18-Aug-88			
18-Aug-8			
18-Aug-8		1	
18-Aug-8		· 1	
18-Aug-8		4 7.	
18-Aug-8	-	4 7.	
19-Aug-8		5 8.	
19-Aug-8	- 1	5 7.	
19-hug-a	8 4	.5 8.	
19-Aug-8	8 4	. 5	
19-Aug-8		15 8	
19-Aug-8	1	15 8	
22-Aug-8	1	18 9	_
			-

Crowther Clayton Associates

91/2737

pH of water consumed by

pH is not a substance which can be consumed and for which the quantity ingested can be calculated as it can for aluminium or sulphate; pH is a measure of the acidity and alkalinity balance in water.

The range for pH in drinking water specified in the EC Directive are

upper limit 9.5; lower limit 5.5.

With the exception of 3 samples taken on the 7th, 9th and 10th Juffe 1988 respectively all samples are within this range.

The significance of pH lies more in its effect on pipes and other fittings in the water supplier's and the consumer's water distribution system than on the health of consumers. Many normal beverages are outside the EC Drinking Water pH limits, for example soft drinks such as Coca Cola and lemonade. I show, as an example, on the graph of the pH of water samples in the Camelford Area the relative position of lemonade which typically has a pH in the region of 3.

Date	Day	Copper	Zinc	Lead
09-Jul-88	4	0.01	0.08	0.01
09-Jul-88	4	0.09	0.1 1	0.01
10~Jul-88	5	0.03	0.07	0.03
10-Jul-88	5	< 0.01	0.05	< 0.03
14-Jul-88	9	0.08	0.092	< 0.01
14-Jul-88	9	< 0.05	< 0.05	<0.05
14-Jul-88	9	0.09	< 0.05	<0.05
18-Jul-88	13	< 0.05	0.11	< 0.05
21-Jul-88	16	4.05	<0.05	<0.05
23-Jul-88	18	< 0.05	< 0.05	<0.05
24-Jul-88	19	< 0.05	< 0.05	<0.05
25-Jul-88	20	< 0.05	<0.05	< 0.05
26-Jul-88	21	<0.05	< 0.05	< 0.05
28-Jul-88	22	< 0.05	< 0.05	< 0.05
28-Jul-88	23	< 0.05	0.05	<0.05
29-Jul-88	24	<0.05	< 0.05	<0.05
01-Aug-88	27	< 0.05	< 0.05	<0.05
02-Aug-88	28	<0.05	<0.05	<0.05
02-Aug-88	28	<0.05	<0.05	< 0.05
03-Aug-88	29	< 0.05	. <0.05	< 0.05
04-Aug-88	30	e0.05	<0.05	<0.05
05-Aug-88	31	0.06	< 0.05	<0.05
07-Aug-88	33	<0.05	< 0.05	< 0.05
08-Aug-88	34	< 0.05	< 0.05	<0.05
09-Aug-88	35	< 0.05	< 0.05	<0.05
09-Aug-88	35	<0.05	<0.05	< 0.05
10-Aug-88	36	<0.05	< 0.05	<0.05
11-Aug-88	37	<0.05	<0.05	<0.05
12-Aug-88	38	< 0.05	<0.05	< 0.05
14-Aug-88	40	< 0.05	<0.05	<0.05
15-Aug-88	41	< 0.05	< 0.05	< 0.05
16-Aug-88	42	< 0.05	<0.05	< 0.08
16-Aug-88	42	< 0.05	<0.05	< 0.08
16-Aug-88	42	< 0.05	< 0.05	< 0.08
16-Aug-88	42	< 0.05	< 0.05	<0.08
16-Aug-88	42	< 0.05	< 0.05	<0.08
16-Aug-88	42	< 0.05	< 0.05	< 0.08
16-Aug-88	42	< 0.05	< 0.05	< 0.05
16-Aug-88	42	< 0.05	< 0.05	< 0.05
17-Aug-88	43	< 0.05	0.11	< 0.05
17-Aug-88	43	< 0.05	< 0.05	< 0.05
18-Aug-88	44	< 0.05	<0.05	< 0.05
18-Aug-88	44	< 0.05	< 0.05	<0.08
18-Aug-88	44	< 0.05	< 0.05	80.0>
18-Aug-88	44	< 0.05	< 0.05	<0.08
18-Aug-88	44	< 0.05	<0.05	<0.08
18-Aug-88	44	<0.05	<0.05	<0.08
19-Aug-88	45	< 0.05	<0.05	<0.08
19-Aug-88	45	< 0.05	<0.05	<0.08
19-Aug-88	45	<0.05	<0.05	<0.08
19-Aug-88	45	<0.05	<0.05	<0.08
19-Aug-88	45	< 0.05	< 0.05	<0.08
19-Aug-88	45	<0.05	<0.05	<0.05
22-Aug-88	48	0.07	0.01	< 0.0
22-Aug-88	48	< 0.01	0.1:	<0.0°
				<u></u>

91/2737 Crowther Clayton Associates

Intake of copper, zinc and lead by

The EC Maximum Allowable Concentrations (MAC) for copper, zinc and lead are

copper: 3,000 μ g/l ie 3 mg/l. zinc : 5,000 μ g/l ie 5 mg/l. lead : 50 μ g/l ie 0.05 mg/l.

All samples for copper and zinc show levels for these two metals at levels very substantially below the EC MAC - 'sometimes-as much 3 orders of magnitude below the MAC.

Lead also appears to be consistently below the MAC, and usually well below {and sometimes one order of magnitude.below) the MAC. Results of lead analyses are normally reported as <0.05 or <0.005 - ie less than 50μ g/l or less than $5\,\mu$ g/l (and thus within the MAC). However, on three days, 16th, 18th and 19th August 1988, the results of the sample analyses on 16 samples are reported as <0.08 mg/l. I presume that different methods of analysis have been used and that the limit of sensitivity of these analyses vary between 0.08 mg/l and 0.005 mg/l. It is therefore not possible to say with certainty that on those 16 occasions the lead concentration did not exceed 50 μ g/l. However, since every other reported result, using the more sensitive methods, never exceed the MAC, and the acidity of these 16 samples was in the same range as all other satisfactory samples, it is very unlikely that the concentrations of lead ever exceeded the EC MAC values.

The daily intake of copper and zinc was thus always well below the levels acceptable.

The daily intake of lead was also almost certainly well below the levels considered acceptable, the only uncertainty being those 13 occasions when the concentration was recorded as <80 μ g/l. If the level had been 80μ g/l on those three days then intake on those three days would have been,less than 160μ g (<0.16 mg).