TOX/2025/23

Committee on the Toxicity of Chemicals in Food, Consumer Products and the Environment

Statement on the derivation of a health-based guidance value for antimony – First Draft

Introduction

1. Post European Union (EU) exit, the Drinking Water Inspectorate (DWI) is reviewing the regulatory standards for some chemicals in drinking water, including antimony. The UK Health Security Agency (UKHSA) sought advice of the Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT) with respect to an appropriate health-based guidance value (HBGV) for antimony.

2. Two discussion papers on the relevant available evidence of antimony toxicity were presented and discussed at the October 2024 and February 2025 meetings. A first draft statement summarising the Committee's conclusions is attached as Annex 1 to this paper.

Questions for the Committee

- 3. The Committee is asked to consider:
 - i. Does the Committee have any comments on the general structure and content of this draft statement?
 - ii. Is the table in Annex A of the statement useful or does the Committee think it should be removed?
 - iii. Is the Committee content with its conclusions presented within this draft statement?
 - iv. Does the Committee have any other comments on this draft statement?

Secretariat

April 2025

Annex 1 to TOX/2025/23

Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment

Statement on the derivation of a health-based guidance value for antimony First draft statement

Secretariat April 2025

Executive Summary

1. Post European Union (EU) exit, the Drinking Water Inspectorate (DWI) is reviewing the regulatory standards for some chemicals in drinking water, including antimony. The UK Health Security Agency (UKHSA) sought advice of the Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT) with respect to an appropriate health-based guidance value (HBGV) for antimony.

2. The World Health Organization (WHO), the US Agency for Toxic Substances and Disease Registry (ATSDR) and Health Canada have used the same study (Poon et al., 1998) to derive different HBGVs. The differences are primarily due to variations in the interpretation of the study findings, particularly in the choice of the No Observed Adverse Effect Level (NOAEL).

3. The COT agreed that the Poon et al. (1998) study was the most appropriate study to use to derive a HBGV for antimony. The COT determined that the NOAEL of 6,000 micrograms per kilogram of body weight per day (µg/kg bw/day), based on decreased body weight gain and reduced food and water consumption in adult rats, was

the point of departure. An uncertainty factor (UF) of 300 was recommended, resulting in a tolerable daily intake (TDI) of 20 μg Sb/kg bw/day as a HBGV for antimony.

Background and scope of discussion

4. The UKHSA advises the DWI on potential health risks from chemicals in drinking water. Post EU exit, the DWI is reviewing the regulatory standards for some chemicals in drinking water, including antimony. UKHSA sought advice from the COT with respect to an appropriate HBGV for antimony, which would inform the consideration of an appropriate drinking water regulatory limit for antimony.

5. The COT has previously reviewed the dietary exposure to antimony in infants and young children aged 4 to 18 months as part of the 2014 survey of metals and other elements in infant foods (COT, 2017). The COT has also reviewed dietary exposure to antimony in various population subgroups as part of the 2006 UK Total Diet study of metals and other elements (COT, 2006). For these reviews, the COT used the WHO TDI of 6 μ g/kg bw/day for the evaluation (WHO, 2003).

6. More recently Health Canada (2024) and ATSDR (2019) have considered antimony and derived lower HBGVs. WHO, ATSDR and Health Canada all derived their HBGVs from the same study (Poon et al., 1998), however, they diverge in their interpretation of the study results and the selection of the NOAEL.

7. Two antimony discussion papers (<u>TOX/2024/38</u> and <u>TOX/2025/04</u>) were presented to the COT at the October 2024 and February 2025 meetings respectively. The COT assessed the Poon et al. (1998) study and its interpretations, as well as other available evidence in order to determine an appropriate HBGV to support an update to the antimony drinking water standard in the UK.

Properties of antimony and sources in drinking water

8. Antimony (Sb, CAS number: 7440-36-0) is a silvery white metal naturally present in the Earth's crust (Sundar and Chakravarty, 2010). The most common source of antimony in drinking water appears to be dissolution from metal plumbing and fittings (WHO, 2003). Antimony compounds can exist in trivalent (Sb³⁺) and pentavalent (Sb⁵⁺) states, with trivalent antimony being considered more toxic than pentavalent antimony. In drinking water, pentavalent antimony is the more prevalent form of antimony. However, some evidence suggests that both can coexist and cycle between each other under certain conditions (<u>Health Canada, 2024</u>). For further information on the properties of antimony, see <u>TOX/2024/38</u> and <u>TOX/2025/04</u>.

Oral toxicity data for antimony

Poon et al. 1998 study and interpretation

9. In the study by Poon et al. (1998), groups of 15 male and 15 female Sprague-Dawley rats were exposed to 0, 0.5, 5, 50, or 500 parts per million (ppm) antimony as antimony potassium tartrate (APT, 99.95% pure) in drinking water for 13 weeks. Based on average water consumption and body weight data, the investigators calculated antimony doses of 0, 60, 560, 5,580 and 42,170 μ g/kg bw/day in males and 0, 60, 640, 6,130 and 45,690 μ g/kg bw/day in females. An additional group of 10 male and 10 female rats was exposed to 0 or 500 ppm (0 and 42,170 μ g/kg bw/day for males and 45,690 μ g/kg bw/day for females) for 13 weeks followed by a 4-week recovery period.

10. A dose-dependent reduction (15-17%) in serum glucose levels in females exposed to doses greater than or equal to 640 µg Sb/kg bw/day was observed. Lower glucose values were also observed in the males; however, these were not statistically different from controls.

11. Other toxicological endpoints were identified by the study at the highest antimony doses in males and females (42,170 or 45,690 µg Sb/kg bw/day). These included a

decrease in water and food consumption, a decrease in body weight gain (significant in males starting at week 6 and females at week 12), haematological changes which differed between males and females, decreases in serum creatinine levels and alkaline phosphatase levels, and liver effects including changes in activity of some liver enzymes such as ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST).

12. Anisokaryosis in the liver was observed in all antimony-exposed groups, with a dose-related increase in the severity observed.

13. Other hepatic effects included an increase in hepatocellular portal density in all antimony-exposed groups, but this was considered mild in males and females at greater than or equal to 560 and 640 µg Sb/kg bw/day respectively. Minimal nuclear hyperchromicity was also observed at these levels but with no consistent dose-response relationship.

14. In terms of skeletal effects, an increase in myeloid hyperplasia in the bone marrow was observed at ≥5,580 µg Sb/kg bw/day in males and ≥640 µg Sb/kg bw/day in females.

15. Spleen effects included sinus congestion at \geq 560 µg Sb/kg bw/day in males, sinus hyperplasia at 42,170 µg Sb/kg bw/day in males and \geq 640 µg Sb/kg bw/day in females and arterial cuff atrophy at 42,170 µg Sb/kg bw/day in males. In the recovery period, increases in incidence of sinus congestion (males only), arterial cuff atrophy, periarteriolar lymphocyte sheath cell density and sinus haematopoiesis were observed.

16. The study authors concluded 0.5 ppm antimony in drinking water, equivalent to an average intake of 60 μ g Sb/kg bw/day, as the NOAEL for this study, primarily based on the statistically significant dose-dependent decrease in serum glucose levels in females at \geq 640 μ g Sb/kg bw/day.

17. Lynch et al. (1999) reviewed the Poon et al. (1998) study and provided an alternative interpretation of the observed toxicological effects. The authors stated that

the observed effects at lower doses were either adaptive or non-toxicological in nature. They considered that some of the histological findings, particularly in the liver, spleen and thyroid, should not be considered toxicologically relevant and proposed a higher NOAEL. Lynch et al. (1999) proposed that the NOAEL for the study should be set at 50 ppm, equivalent to an average intake of 6,000 Sb μ g/kg bw/day, based on the finding of decreased body weight gain and decreased food and water consumption at the 500 ppm dose level (though they stated that these effects may be due to the nonpalatability of the drinking water).

18. Valli et al. (2000), from the same group as Poon et al. (1998), maintained that the NOAEL of 60 μ g/kg bw/day, as identified by Poon et al. (1998), was appropriate given the observed liver and spleen histology and serum biochemistry alterations. Valli et al. (2000) stated that the higher NOAEL of 6,000 μ g/kg bw/day proposed by Lynch et al. (1999) underestimated the potential for early signs of toxicity and was not sufficiently protective.

Further oral antimony studies with NOAELs less than 6000 µg/kg bw/day

19. Marmo et al. (1987), Rossi et al. (1987) and Angrisani et al. (1988) reported findings from an antimony exposure study in NOS Albino normotensive rats.

20. Rossi et al. (1987) reported a NOAEL in maternal rats of 70 μ g Sb/kg bw/day. This was due to a significant dose-dependent decrease in maternal body weight by gestation day 20 following prenatal oral exposure to antimony trichloride. It should be noted, however, that basal maternal body weights for each treatment group on day 0 of gestation prior to exposure were approximately 7% lower than the control group. Thus, the reported 8 to 10% deficit (in the low- and high- dose groups respectively) from controls seen on gestation day 20 represents a relatively small change from the 7% deficit at the start of gestation. The pup lowest observed adverse effect level (LOAEL) was reported as 700 μ g Sb/kg bw/day due to decreases in body weight (Rossi et al., 1987).

21. Additional findings reported by Marmo et al. (1987) noted decreased vasomotor reactivity due to both prenatal and postnatal oral exposure to antimony trichloride. Additional findings reported by Angrisani et al. (1988) showed postnatal exposure to antimony trichloride did not affect maternal or pup body weights or systolic arterial blood pressure.

22. In a study conducted by Kanisawa and Schroeder (1969), life term oral exposure to 5 ppm antimony as potassium tartrate (equivalent to 350 µg Sb/kg bw/day) in mice did not result in a significant difference in the incidences of spontaneous tumours or malignant tumours compared to controls. The authors identified 350 µg Sb/kg bw/day as the NOAEL for this study.

23. In a lifetime exposure study conducted by Schroeder et al. (1970), a significant reduction in survival rates and reduced non-fasting glucose levels were identified when rats were exposed to 430 μ g Sb/kg bw/day potassium tartrate in their drinking water. The authors reported a LOAEL of 430 μ g Sb/kg bw/day based on these effects.

24. Annex A provides further detail on the available antimony toxicity studies with comments on the Committees consideration of the reported NOAELs.

HBGVs established by WHO, ATSDR and Health Canada

25. WHO selected a NOAEL of 6,000 μ g Sb/kg bw/day from the Poon et al. (1998) study, as recommended by Lynch et al. (1999), for decreased body weight gain and reduced food and water intake. A UF of 1,000 (100 for interspecies and intraspecies differences and 10 for the short duration of the study) was applied to the NOAEL resulting in the TDI of 6.0 μ g/kg bw/day (WHO 2003).

26. ATSDR selected a NOAEL of 60 µg Sb/kg bw/day for decreases in serum glucose levels in female rats observed in the Poon et al. (1998). A UF of 100 (10 for extrapolation from animals to humans and 10 for human variability) was applied to

derive an intermediate-duration (15 – 365 days) oral Minimal Risk Level (MRL) of 0.6 μg/kg bw/day (ATSDR 2019).

27. Health Canada also selected a NOAEL of 60 μ g Sb /kg bw/day from the study by Poon et al. (1998), based on observed histopathological changes in the liver (anisokaryosis) and alterations in serum biochemistry indicative of liver effects. A UF of 300 was applied (10 for interspecies variation, 10 for intraspecies variation and 3 for the use of a subchronic study) resulting in a TDI of 0.2 μ g/kg bw/day (Health Canada, 2024).

28. More information on the derivation of the HBGVs for WHO, ATSDR and Health Canada is available in the COT discussion paper <u>TOX/2024/38</u>.

Discussion

29. The COT determined that the effects on serum glucose levels in female rats observed in Poon et al. (1998), which informed the NOAELs selected by ATSDR and Health Canada, showed limited dose-response. The Committee also noted that an intraperitoneal study by the National Toxicology Program (NTP) which examined antimony at higher doses and with greater bioavailability did not observe these effects (NTP 1992).

30. The Committee further agreed that the liver changes observed in Poon et al. (1998), which also informed the NOAEL selected by Health Canada, were minor and not indicative of adverse effects as there was no evidence of increase in liver weight across a large range of doses. The changes in the levels of liver enzymes were deemed to be minor and inconsistent with a hepatotoxic effect. The Poon et al. (1998) study showed no clear evidence of changes in thyroid hormone effects and there was also difficulty in interpreting spleen findings due to high background variation and the findings were not considered to be of toxicological significance.

31. The Committee agreed with the Lynch et al. (1999) interpretation that the significant body weight changes observed at the highest dose in Poon et al. (1998) was critical effect. Therefore, the COT determined a NOAEL of 6,000 μ g/kg bw/day for this study.

32. With respect to other oral studies with doses less than the NOAEL determined by COT for the Poon et al. (1998) study, the COT noted that the baseline maternal body weight in the study by Rossi et al. (1987) at gestation day 0 was approximately 7% lower in treated groups compared to controls. Consequently, the observed 8–10% reduction in maternal body weight at gestation day 20 used as the basis for the maternal NOAEL was considered a relatively small change, given the pre-existing baseline differences. The Committee noted that the NTP intraperitoneal study observed body weight effects only at the highest dose (9,600 µg Sb/kg bw/day).

33. The COT further observed that while decreased pup body weight was reported in the Rossi et al. (1987) study in the high dose group, the investigation by Angrisani et al. (1998) antimony exposure found no significant changes in pup body weight. With the lower initial maternal body weights in the treated groups reported in the Rossi et al. (1987) study, it was suggested that the observed lower body weight in prenatally exposed pups could be secondary to the lower maternal body weights of this group rather than a direct effect of antimony on pups. For these reasons, the lower NOAEL and LOAEL (when compared to the 6,000 µg Sb/kg bw/day NOAEL from the Poon et al. (1988) study) relating to maternal and pup body weight reported in the Rossi et al. (1987) study were discounted.

34. There were concerns regarding the reliability of the studies by Kanisawa and Schroeder (1969) and Schroeder (1970) and challenges interpreting their data. Furthermore, the nature of these studies does not allow for the demonstration of a dose-response, therefore the NOAELs and LOAELs reported in these studies were also discounted.

Overall Conclusion

35. Overall, the COT concluded that the NOAEL of 6,000 µg Sb/kg bw/day, from the Poon et al. (1998) study based on decreased body weight gain and reduced food and water consumption in adult rats, was the appropriate point of departure to use as the basis of a HBGV for antimony.

36. The Committee also highlighted that the pentavalent form of antimony, which is predominant in drinking water, exhibits lower toxicity compared to the trivalent form. As Poon et al. (1998) utilized the trivalent form of antimony (antimony potassium tartrate) in their study, a HBGV derived from the NOAEL of 6,000 μ g Sb/kg bw/day was considered a sufficiently protective for antimony in drinking water.

37. The Committee recommended a UF of 300, comprising a factor of 10 for interspecies variation, 10 for intraspecies variation, and 3 for subchronic to chronic extrapolation. This results in a TDI of 20 μ g Sb/kg bw/day.

COT Month 2025

Statement 2025/XX

List of abbreviations and their full meanings

µg Sb/kg bw/day	Micrograms of antimony per kilogram of body weight per day
APT	Antimony Potassium Tartrate
ATSDR	Agency for Toxic Substances and Disease Registry
bw	Body Weight
СОТ	Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment
DWI	Drinking Water Inspectorate
EROD	Ethoxyresorufin-O-deethylase
EU	European Union
GST	Glutathione-S-transferase
HBGV	Health-based guidance value
LOAEL	Lowest Observed Adverse Effect Level - the lowest dose in a study at which adverse effect(s) are observed.
mg	Milligram
hð	Microgram
MRL	Minimal Risk Level - an estimate of the daily human exposure to a substance that is likely to be without appreciable risk of adverse non-cancer health effects over a specified duration of exposure
NOAEL	No Observed Adverse Effect Level - the highest administered dose at which no adverse effect has been observed.
NTP	National Toxicology Program
POD	Point of Departure
ppm	Parts per million
Sb	Antimony

TDI	Tolerable Daily Intake - an estimate of the amount of a contaminant, expressed on a body weight basis (e.g., mg/kg body weight) that can be ingested over a lifetime without appreciable health risk.
UF	Uncertainty factor
UKHSA	United Kingdom Health Security Agency
WHO	World Health Organization

References

Angrisani, M., Lampa, E., Lisa, M., Matera, C., Marrazzo, R. and Scafuro, M., 1988. Vasomotor reactivity and postnatal exposure to antimony trichloride. Current therapeutic research, 43(1), pp.153-159.

Agency for Toxic Substances and Disease Registry (ATSDR) (2019) Toxicological profile for antimony. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA. <u>ATSDR Antimony Tox Profile</u>

Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT) (2017) Statement on the results of the 2014 survey of metals and other elements in infant foods. <u>2014infantmetalssurveystatement.pdf (cot.food.gov.uk)</u>

Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT) (2006) Statement on the results of the 2006 UK Total Diet Study of metals and other elements. [ARCHIVED CONTENT] COT statement on the 2006 UK total diet study of metals and other elements | Food Standards Agency (nationalarchives.gov.uk)

Health Canada (2024) Antimony: Environmental and health assessment. Health Canada, Ottawa. <u>Guidelines for Canadian Drinking Water Quality: Guideline Technical</u> Document – Antimony - Canada.ca

Kanisawa, M. and Schroeder, H.A., 1969. Life term studies on the effect of trace elements on spontaneous tumours in mice and rats. Cancer Research, 29(4), pp.892-895.

Lynch, B.S., Capen, C.C., Nestmann, E.R., Veenstra, G. and Deyo, J.A., 1999. Review of subchronic/chronic toxicity of antimony potassium tartrate. Regulatory Toxicology and Pharmacology, 30(1), pp.9-17. <u>https://doi.org/10.1006/rtph.1999.1312</u>

Marmo, E., Matera, M.G., CUPARENCU, B., ROSSI, F., ACAMPORA, R. and VACCA, C., 1987. Prenatal and postnatal metal exposure: effect on vasomotor reactivity

development of pups: experimental research with antimony trichloride, thallium sulfate, and sodium metavanadate. Current therapeutic research, 42(5), pp.823-838.

NTP 1992. NTP report on the toxicity studies of antimony potassium tartrate in F344/N rats and B6C3F1 mice (drinking water and intraperitoneal injection studies). Research Triangle Park, NC: NTP Tox 11. NIH Publication No. 92-3130.

Poon, R., Chu, I., Lecavalier, P., Valli, V.E., Foster, W., Gupta, S. and Thomas, B., 1998. Effects of antimony on rats following 90-day exposure via drinking water. Food and Chemical Toxicology, 36(1), pp.21-35. <u>https://doi.org/10.1016/S0278-6915(97)80120-2</u>

Rossi, F., Acampora, R., Vacca, C., Maione, S., Matera, M.G., Servodio, R. and Marmo, E., 1987. Prenatal and postnatal antimony exposure in rats: effect on vasomotor reactivity development of pups. Teratogenesis, carcinogenesis and mutagenesis, 7(5), pp.491-496. <u>https://doi.org/10.1002/tcm.1770070507</u>

Schroeder, H.A., Mitchener, M. and Nason, A.P., 1970. Zirconium, niobium, antimony, vanadium and lead in rats: life term studies. The Journal of nutrition, 100(1), pp.59-68. . <u>https://doi.org/10.1093/jn/100.1.59</u>

Sundar, Shyam and Jaya Chakravarty. "Antimony toxicity." International journal of environmental research and public health vol. 7,12 (2010): 4267-77. doi:10.3390/ijerph7124267. <u>https://doi.org/10.3390/ijerph7124267</u>

Valli, V.E., Poon, R., Chu, I., Gupta, S. and Thomas, B.H., 2000. Subchronic/chronic toxicity of antimony potassium tartrate. Regulatory Toxicology and Pharmacology: RTP, 32(3), pp.337-8. <u>https://doi.org/10.1006/rtph.2000.1414</u>

WHO (2003) Antimony in drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality. World Health Organization, Geneva. <u>Antimony in Drinking water – WHO</u>

Annex A

Statement on the derivation of a health-based guidance value for antimony to support development of UK Drinking Water Standards

Author and year	Study details	Dose level	Findings	No observed adverse effect level (NOAEL)	Comments on the NOAEL
Poon et al. (1998)	Species: Sprague- Dawley rats. Route of exposure: Oral-Drinking water. Initial study duration: 13 weeks.	Initial Study Original Dose: 0, 0.5, 5, 50, or 500 ppm antimony potassium tartrate. Initial Study Recalculated Dose Levels:	Dose-dependent decrease in serum glucose levels in females at ≥640 µg Sb/kg bw/day. Decrease also noted in males but not statistically significant. decrease in water and food consumption, a decrease in body weight gain (significant in males starting at week 6	Poon et al. (1998) recommende d NOAEL: 60 μg Sb/kg bw/day. Lynch et al. (1999) recommende d NOAEL:	Poon et al. (1998) recommended NOAEL: NOAEL is based on decreased in serum glucose levels in females at ≥640 µg Sb/kg bw/day. However, the Committee determined that these effects showed limited dose-response. The Committee noted that an NTP intraperitoneal study did not

Table 1. Summary of antimony toxicity studies and comments on the derived NOAELs.

	0, 60, 560,	and females at week 12),	6,000 Sb µg/kg	observe these effects despite
Initial	5,580 and	haematological changes	bw/day.	higher concentrations and
No/Sex: 15	42,170 µg/kg	which differed between		greater bioavailability of
male and 15	bw/day in	males and females,		antimony.
female.	males and 0,	decreases in serum		
Follow up	60, 640, 6,130	creatinine levels and alkaline		Lynch et al. (1999)
etudy	and 45,690	phosphatase levels, and		recommended NOAEL:
duration: 12	µg/kg bw/day	liver effects including		NOAEL is based on decreased
	in females.	changes to liver enzyme		body weight gain and
fellowed by a		activity all observed at the		decreased food and water
	Follow up	highest antimony dose		consumption at the 500 ppm
4-weeк	Study Original	(42,170/45,690 µg Sb/kg		dose level. The COT agrees
recovery	Dose: 0 or	bw/day in males and		that this is an appropriate
period.	500 ppm.	females respectively).		NOAEL for this study and is
Follow up				the appropriate point of
No/Sex : 10		Dose-related increase in the		departure to use as the basis
male and 10		severity of anisokaryosis		of a HBGV for antimony.
female		observed in all antimony-		
		exposed groups.		
		Increased hepatocellular		
		portal density in all		

	antimony-exposed groups		
	and minimal nuclear		
	hyperchromicity at ≥560/640		
	μg Sb/kg.		
	increased myeloid		
	hyperplacia in the hone		
	nyperplasia in the bone		
	marrow was observed at		
	≥5,580 µg Sb/kg bw/day in		
	males and ≥640 µg Sb/kg		
	bw/day in females.		
	Sinus congestion at >6/0 ug		
	Sb/kg bw/day observed in		
	females. Sinus congestion at		
	≥560 µg Sb/kg bw/day and		
	sinus hyperplasia and		
	arterial cuff atrophy at		
	42,170 µg Sb/kg bw/day		
	observed in males.		
	In the recovery period,		
	increases in incidence of		

			sinus congestion (males		
			only), arterial cuff atrophy,		
			periarteriolar lymphocyte		
			sheath cell density and sinus		
			haematopoiesis were		
			observed.		
Marmo et	Species:	Original	Prenatal and Postnatal	70 µg Sb/kg	See Rossi et al. (1987)
al. (1987)	NOS Albino	Dose <u>:</u> 1 and	exposure: Decreased	bw/day.	
	normotensive	10 mg/L	antihypotensive response to		
	rats.	antimony	norepinephrine and	Pup LOAEL:	
		trichloride.	hypotensive response to	700 µg Sb/kg	
	Route of		isoprenaline at both dose	bw/day.	
	exposure:	Recalculated	levels in 60-day old rats. The		
	Oral-Drinking	Dose Levels:	hypotensive response to		
	water.	70 and 700 µg	acetylcholine was decreased		
	Ctudy	Sb/kg bw/day.	at the highest dose of		
	Study		antimony trichloride in 60-		
	duration:		day old rats.		
	Maternal				
	exposure: -		No change in		
	1st day of		antihypotensive or		
	pregnancy				

until weaning	hypotensive responses was	
(22nd day	seen in 30-day old rats.	
after delivery)		
or from PND1	Postnatal exposure: - 60-	
to PND 22.	day-old offspring in the high-	
	dose group showed reduced	
Pups: - From	antihypotensive	
weaning until	responses to carotid artery	
30 or 60 days	occlusion and	
of age.	norepinephrine injection, as	
	well as reduced hypotensive	
No/Sex: 30	responses to isoprenaline	
per group.	and acetylcholine.	
Rat offspring:	In 30-day-old offspring in the	
- 10 pups/	high-dose group, reduced	
group, equal	hypotensive responses to	
sex ratio.	isoprenaline and	
	acetylcholine were also	
	observed	
	In the low-dose group, 60-	
	day-old rats had reduced	

			responses to norepinephrine		
			and isoprenaline, while 30-		
			day-old rats showed		
			responses similar to		
			controls.		
Rossi et al.	Species:	Original	Both doses <u>:</u> Maternal body	Maternal	NOAEL is based on dose-
(1987)	NOS Albino	Dose <u>:</u> 1 and	weight decreased	NOAEL: 70 µg	dependent decrease in
	normotensive	10 mg/L	significantly in a dose-	Sb/kg bw/day.	maternal body weight by
	rats.	antimony	dependent manner by the		gestation day 20 following
		trichloride.	20th day of gestation.	Pup LOAEL:	prenatal oral antimony
	Route of			700 µg Sb/kg	exposure. The COT noted that
	exposure:	Recalculated	High dose: Pups had	bw/day	the baseline maternal body
	Oral-Drinking	Dose Levels <u>:</u>	decreased BW; No		weight in the study by Rossi et
	water.	70 and 700 µg	macroscopic teratogenic		al. (1987) at gestation day 0
		Sb/kg bw/day.	effects have been observed.		was approximately 7% lower
	Study				in treated groups compared to
	duration:		Antimony exposure dia not		controls. Consequently, the
	Prenatal: 1st		significantly affect maternal		observed 8–10% reduction in
	day of		and pup systolic arterial		maternal body weight at
	pregnancy		blood pressure, length of		destation day 20 used as the
	until weaning		gestation, and number of		basis for the meternal NOAE
			newborns per litter.		

(22nd day		was considered a relatively
after delivery).		small change, given the pre-
		existing baseline differences.
Postnatal:		With the lower maternal body
22nd to 60		weights in the treated groups
days in		reported in the Rossi et al.
drinking		(1987) study, it was suggested
water.		that the observed lower pup
No/Sex: 30		body weight could be
per group.		secondary to the lower
P 9 P .		maternal body weights seen in
Rat offspring:		this group rather than direct
- 10 pups/		effect of antimony on pups.
group, equal		The Committee also noted that
sex ratio.		the NTP intraperitoneal study
		observed body weight effects
		only at the highest dose (9,600
		µg Sb/kg bw/day). For these
		reasons, the lower NOAEL
		and LOAEL relating to
		maternal and pup body weight

					reported in the Rossi et al.
					(1987) study were discounted.
Angrisani et	Species:	Original	Postnatal exposure to	Maternal	See Rossi et al. (1987)
al. (1987)	NOS Albino	Dose: 1 and	antimony trichloride did not	NOAEL: 70 µg	
	normotensive	10 mg/L	affect maternal or pup body	Sb/kg bw/day.	
	rats.	antimony	weights or systolic arterial		
		trichloride.	blood pressure.	Pup LOAEL:	
	Route of			700 µg Sb/kg	
	exposure:	Recalculated	No macroscopic teratogenic	bw/day.	
	Oral-Drinking	Dose Levels:	effects have been observed.		
	water.	70 and 700 µg			
		Sb/kg bw/day	Antimony exposure did not		
	Study		significantly affect the length		
	duration:		of gestation, and number of		
	Postnatal:		newborns per litter.		
	From PND1 to				
	PND60.				
	No/Sex: 30				
	per group				

	Rat offspring: - 10 pups/ group, equal sex ratio.				
Kanisawa and Schroeder (1969)	Species: Mice (White Swiss, Charles River CD-1). Route of exposure: Oral-Drinking water. Study duration: Lifetime exposure.	Original Dose : 5 ppm Antimony Potassium Tartrate. Recalculated Dose Level: 350 µg Sb/kg bw/day.	Compared to control, significant differences in the incidences of spontaneous tumors and malignant tumors did not appear. Female mice had shorter life spans when given antimony than their controls. Fatty degeneration of liver noticed in both control (22.2%) and antimony fed groups (15.9 %).	350 µg Sb/kg bw/day.	The COT raised concerns regarding the reliability of the data and challenges interpreting the data. Furthermore, the nature of this study does not allow for the demonstration of a dose- response, therefore the NOAEL was discounted.

	No/Sex: Control mice – 71; Antimony treatment – 76.				
Schroeder	Species:	Original	Negligible effects on growth	LOAEL: 430	The COT raised concerns
et al.	Long Evan	Dose: 5 ppm	and mature weight.	µg Sb/kg	regarding the reliability of the
(1970)	Rats.	- Antimony	Antimony was not	bw/day.	data and challenges
		Potassium	tumorigenic.		interpreting the data.
	Route of	Tartrate			Furthermore, the nature of this
	exposure:	(APT).	Decrease in survival rate.		study does not allow for the
	Oral-Drinking		Antimony, however, was		demonstration of a dose-
	water.	Recalculated	innately toxic, males		response, therefore the
		Dose Level:	surviving 106 days and		LOAEL was discounted
	Study	430 µg Sb/kg	females 107 days less than		
	duration: 2	bw/day.	the controls at median life		
	years.		spans, and 70 and 165 days		
	No/Sex: Not		less when 90% were dead;		
	reported		Hearts of males fed		
			antimony weighed 18.9%		

	less than their respective		
	controls, whereas the hearts		
	of females weighed 3.5%		
	more.		
	Decreased non-fasting		
	sorum ducasa lavala. Non		
	fasting glucose levels were		
	lower than fasting ones in		
	the antimony group.		
	Glycosuria was found in		
	23% of 90 controls, 43% of		
	23 in the antimony group.		
	In both sexes, significant		
	differences in the serum		
	cholesterol levels occurred		
	when compared to their		
	controls. Antimony was		
	found to accumulate in		
	various tissues like kidney,		
	liver, heart, lung and spleen,		

			with significant increases in		
			concentration over time.		
NTP (1992)	Species:	Original	High dose: Body weights	4,800 µg Sb/kg	The dose was given
	B6C3F1 Mice Route of exposure: Intraperitoneal injection. Study duration : 13 weeks. No/Sex: 10 Males per group. 10 Females per group.	Dose: 0, 1.5, 3, 6, 12 and 24 mg/kg antimony potassium tartrate; 3 times per week. Recalculated Dose Levels: 0, 600, 1,200, 2,400, 4,800 and 9,600 µg Sb/kg bw/day.	were reduced by about 10% compared to controls (not statistically significant). Hematological analyses revealed decreases in red blood cell counts and hemoglobin of both sexes of high-dose mice at week 7 and again at week 13 for the red blood cell counts. In association with these changes was increased absolute and relative spleen weight.	bw/day.	intraperitoneally therefore this study was not used for the determination of the appropriate NOAEL for oral antimony consumption.

NTP (1002)	Species	Original	Mortality was observed in 4	1 200 ug Sh/kg	The dose was given
NTF (1992)	Species.	Original		1,200 µg Sb/kg	
	F344/N rats.	Dose: 0, 1.5,	of 10 male rats in the	bw/day.	intraperitoneally therefore this
		3, 6, 12 and	highest dose groups.		study was not used for the
	Route of	24 mg/kg			determination of the
	exposure:	antimony	A reduction in body weight		appropriate NOAEL for oral
	Intraperitoneal	potassium	was seen in both male		antimony consumption.
	injection.	tartrate; 3	(18%) and female (11%) rats		
	Study	times per	from these groups.		
	duration: 13	week.	Relative liver weight was		
	weeks.	Recalculated	increased in male and		
	No/Cov	Dose Levels:	female rats from all dose		
	NO/Sex:	0, 600, 1,200,	groups (maximum increase		
	10 Males per	2,400, 4,800	of 20% for males and 40%		
	aroup.	and 9,600 µg	for females at 9600 μg		
		Sb/kg bw/day.	Sb/kg bw/day).		
	10 Females				
	per group.		Dose-related increases in		
			serum alanine		
			aminotransferase and		
			sorbitol dehydrogenase		

			were also observed in male		
			and female rats.		
			Hepatocellular degeneration and necrosis were observed in male rats and in female rats. Kidney degeneration		
			highest dose group in		
			fomalo rate (2/10)		
Sunagawa	Species:	Original	Metallic antimony high dose:	LOAEL:	The LOAEL is higher than the
(1981)	Wistar rats.	Dose <u>:</u> Metallic	decreased body weight gain.	418,000 µg	NOAEL from Poon et al.
	Route of exposure: Oral-Feeding. Study duration: 24 weeks.	Antimony: 0, 0.5, 1.0, 2.0%. Antimony Trioxide: 0, 1.0, 2.0%. Recalculated	Metallic antimony high dose: decreased hematocrit and hemoglobin. Antimony trioxide all dose: decreased erythrocyte levels.	Sb/kg bw/day.	(1998) that the COT determined was the appropriate point of departure to use as the basis of a HBGV for antimony.

	No/Sex: 5 per dose.	Metallic Antimony: 0, 500,000, 1,000,000, 2,000,000 µg Sb/kg bw/day. Antimony Trioxide: 0, 418,000, 836,000 µg Sb/kg bw/day.	Metallic antimony mid and high dose: slight cloudy swelling in hepatic cords. Antimony trioxide all dose: slight cloudy swelling in hepatic cords.		
Hiraoka (1986)	Species: Wistar rats. Route of exposure: Oral-Feeding. Study duration: 12 weeks.	Original Dose: Metallic Antimony: 0.1% (w/w), 1.0% (w/w) o. Antimony Trioxide: 1.0% (w/w).	BW gain decreased for all. The weight of the rats of each 1.0%-Sb and 1.0%- Sb2O3 groups was lighter than that of 0.1%-Sb group. Recovery animal- increased in weight up to the normal level. Some significant	700,000 µg Sb/kg bw/day.	The NOAEL is higher than the NOAEL from Poon et al. (1998) that the COT determined was the appropriate point of departure to use as the basis of a HBGV for antimony.

		changes of the organ weight	
12 weeks	Recalculated	and the ratio between organ	
recovery.	Dose Levels:	weight and body weight of	
	Metallic	the rats, after the	
NO/SEX: 12	Antimony:	administration of Sb and	
males per	85,000,	Sb2O3 [,] 1 0%-Sb [,] decreased	
group.	850,000 µg	haemtocrit	
	Sb/kg bw/day.		
		0.1%-Sb: no changes in Hb,	
	Antimony	AST and albumin to globulin	
	Trioxide:	ratio. 0.1%-Sb: increased	
	700,000 µg	ALT.	
	Sb/kg bw/day.		
		1.0%-Sb: decreased total	
		protein levels; High	
		concentrations of antimony	
		were found in liver, spleen,	
		lungs, hairs and bone and	
		the highest concentration	
		was detected in the blood of	
		the rats.	

				75 000	
Miranda et	Species:	Original	Maternal and fetal body	75,000 µg	The LOAEL is higher than the
al. (2006)	Wistar rats.	Dose: 0, 75,	weights were reduced in the	Sb/kg/day.	NOAEL from Poon et al.
		150,	high-dose group (18% and		(1998) that the COT
	Route of	300 mg SbV/k	10%, respectively, at		determined was the
	exposure:	g bw/day	300,000 µg Sb/kg/day).		appropriate point of departure
	Subcutaneous	Meglumine			to use as the basis of a HBGV
	injection.	antimoniate.	Embryo lethality was also		for antimony.
			observed in this dose group		,
	Study	Recalculated	(decreased number of live		
	duration <u>:</u>	Dose Levels:	fetuses).		
	GD1 – 20.	0, 75,000,			
	N	150,000 or	The frequency of dilated		
	NO/Sex: 19-	300.000 µg	ureter was increased in		
	21/group.	Sb/kg/day	fetuses from the 150,000		
		<i>c</i> ,	and 300,000 µg Sb/kg/day		
			dose groups.		
			Skeletal variations were also		
			seen in the mid- and high-		
			dose groups (misaligned		
			sternebrae, supernumerary		

			ribs, misshapened		
			basiooccipital bone).		
			Transplacental transfer of antimony was confirmed by fetal blood analysis with fetal blood concentrations measured to be roughly one-		
			third of the concentrations		
			found in maternal blood.		
Hext et al.	Species:	Original	Absolute and relative liver	1,408,000 µg	The NOAELs are higher than
(1999)	Wistar rats.	Dose: 0,	weights were increased by	Sb/kg bw/day	the NOAEL from Poon et al.
		1,000, 5,000,	approximately 10% in	(male rats) and	(1998) that the COT
	Route of	20,000 ppm	female rats fed 20,000 ppm	1,570,000 µg	determined was the
	exposure:	antimony	antimony trioxide; Elevated	Sb/kg bw/day	appropriate point of departure
	Oral-Feeding.	trioxide.	red cell count in high-dose	(female rats).	to use as the basis of a HBGV
	Study		male rats (+4%) and a		for antimony.
	duration: 90	Recalculated	decreased mean cell volume		
	davs	Dose Levels:	in high-dose female rats (-		
		Males: 0,	2%); Triglyceride content		
		70,000, 353,000,	was increased (+30%) and		

	1,408,000 µg	alkaline phosphatase activity	
No/Sex: 12	Sb/kg bw/day.	was decreased (-12%) in	
Males per		high-dose male rats. High-	
group.	Females: 0,	dose female rats exhibited	
12 Females	81,000,	an increase in plasma	
	413,000,	cholesterol (+13%), a	
per group.	1,570,000 µg	decrease in alkaline	
	Sb/kg bw/day.	phosphatase activity (-36%)	
		and an increase in aspartate	
		aminotransferase activity	
		(+52%). Alkaline	
		phosphatase activity was	
		also decreased (-23%) in	
		female rats given 5,000 ppm	
		of antimony trioxide in the	
		diet.	
		In high-dose female rats,	
		urine volume was increased	
		(+79%) and specific gravity	
		was decreased (-1%).	
		Urinary pH was increased in	

			male rats given 1,000 ppm		
			(+5%) or 20,000 ppm (+5%)		
			but was similar to the control		
			value in the 5,000-ppm		
			group. Changes in urinary		
			parameters were not dose-		
			related and were considered		
			by the study authors to be		
			incidental.		
				150.000	
Coelho et	Species:	Original Dose:	At the highest dose, MA	150,000 µg	The dose was given via
al. (2014)	Pregnant	0, 75, 150,	reduced the birth weight and	SbV/kg	subcutaneous injection
	female Wistar	300 mg	the number of viable	bw/day.	therefore this study was not
	rats.	SbV/kg	newborns.		used for the determination of
		bw/day of			the appropriate NOAEL for
	Route of	meglumine	In the male offspring, MA did		oral antimony consumption.
	exposure:	antimoniate.	not impair development		
	Subcutaneous		(somatic, reflex maturation,		
	injection.	Recalculated	weight gain, puberty onset,		
		Dose Levels:	open field test), sperm		
	Study	0, 75,000,	count, or reproductive		
	duration:	150,000,	performance.		

	Gestation Day	300,000 µg			
	0-PND 21.	SbV/kg	Except for a minor effect on		
		bw/day.	body weight gain and		
	No/Sex:		vertical exploration in the		
	Control - 14;		open field, MA also did not		
	Treatment -		affect the development of		
	16 per dose.		female offspring.		
			Measurements of the Sb		
			levels in the blood of MA-		
			treated female rats and their		
			offspring demonstrated that		
			Sb is transferred to the		
			fetuses via the placenta and		
			to the suckling pups via milk.		
Alkhawajah	Species:	Original	Reduction (P<0.05) in foetal	-	The dose was given via
et al.	Sprague	Dose Levels:	birth weight and litter size		intramuscular injection
(1995)	Dawley rats.	1. Sodium	was observed as compared		therefore this study was not
	_	Stibogluconat	to the control.		used for the determination of
	Route of	e (SSG):			the appropriate NOAEL for
	exposure:	30,000,	High dose of SSG & MA: -		oral antimony consumption.
		100,000,	Death of all animals before		

Intramuscular	300,000,	completion of the treatment;	
injection.	900,000 µg	Skeletal anomalies were	
.	Sb/kg bw/day.	restricted to the formation of	
Study		a rudimentary 14th rib.	
duration:	2. Meglumine		
Gestation Day	Antimoniate	Haematoma was only seen	
6-15.	(MA): 30,000,	in the extremities of foetuses	
	100,000,	born to antimony treated	
No/Sex: 10	300,000,	animals.	
per dose.	900,000 µg		
	Sb/kg bw/day.	Treatment of pregnant rats	
		with SSG (30,000 µg Sb/kg)	
	3. Antimony	daily for 10 successive days,	
	Trichloride	starting on day 6 of	
	(SbCl3):	gestation, exhibited a 5.9%	
	100,000 µg	foetal resorption rate. This	
	Sb/kg bw/da.y	effect seems to be dose	
		dependent as doses of	
		100,000 and 300,000 µg	
		Sb/kg caused 14% and	
		21.4% foetal resorption,	
		respectively.	

Injection of N	/IA at the same		
dose levels o	of 30,000,		
100,000 and	300,000 µg		
Sb/kg also c	aused dose		
dependent ir	ncrease in foetal		
resorption ra	tes of 1.2%,		
26.7% and 3	3%,		
respectively.	lt was also		
observed that	at antimony		
trichloride ca	used 36%		
foetal resorp	tion when it was		
injected at a	dose of 100000		
μg/kg.; Visce	eral anomalies		
observed in	the antimony-		
treated anim	als consisted of		
platal, ocular	r (undeveloped		
eyes) and as	symmetrical		
brain hemisp	oheres.		
All tissues th	at were		
analysed (pl	acenta and		

			tissue of dead foetuses) in		
			this study contained		
			antimony in concentrations		
			ranging from 53.4±0.2 to		
			1.61±0.1 µg Sb/g and the		
			effects were dose		
			dependent.		
Omura et	Species:	Original dose:	1. Three mice (1 control, 2	1,000,000 µg	The NOAEL is higher than the
al. (2002)	Wistar rats,	1.Antimony	given 1,200,000 µg/kg-day)	Sb/kg bw/day.	NOAEL from Poon et al.
	CD-1 mice.	Potassium	died due to gavage error;		(1998) that the COT
		Tartrate	Sperm parameters were not		determined was the
	Route of	group: 27.4	affected by neither		appropriate point of departure
	exposure:	mg/kg body	compounds and		to use as the basis of a HBGV
	Oral-gavage	weight.	histopathology results were		for antimony.
	feeding.	2.Low-	essentially negative.		
	Study	Antimony			
	duration: 4	trioxide group:			
	weeks.	12 mg/kg			
		body weight			

No/Sex: Rats:	3.High-		
7 to 8 per	Antimony		
group.	trioxide group:		
	1,200 mg/kg		
Mice: 8-10 per group.	body weight.		
	Recalculated		
	dose levels:		
	1.Antimony		
	Potassium		
	Tartrate		
	group: 10,000		
	µg Sb/kg		
	bw/day.		
	2.Low-		
	Antimony		
	trioxide group:		
	10,000 µg		
	Sb/kg bw/day.		

		3. High- Antimony trioxide group: 1,000,000 µg Sb/kg bw/day.			
Belyaeva (1967)	Species: Rats (not specified). Route of exposure: Inhalation. Study duration: 1.5- 2 months, 4 hours/day. No/Sex: 10- 24/group.	Original Dose: 0 and 209,000 μg Sb/m ³ antimony trioxide. Recalculated Dose Levels: 0 and 209,000 μg Sb/m ³ .	No changes in body weight gain were noted. Fetal body weights remained unchanged. Unspecified lesions were reported in the lungs, liver, kidneys, and pancreas. Reproductive effects, including failure to conceive and uterine metaplasia, were observed. However, a decrease in fertility and reduced number of offspring was found in rats exposed to	209,000 µg Sb/m ^{3.}	The dose was given via inhalation therefore this study was not used for the determination of the appropriate NOAEL for oral antimony consumption.

			209 mg Sb/m³ of antimony		
			trioxide before conception		
			and during gestation.		
REACH	Species:	Original	Increased (non-significant)	49,000 µg	The NOAEL is higher than the
registration	Sprague-	Dose: 0, 100,	incidence in delayed skeletal	Sb/kg bw per	NOAEL from Poon et al.
dossier	Dawley rats.	300 and 1000	development were observed	day.	(1998) that the COT
submitted		mg/kg bw/day	in the mid and high dose		determined was the
to ECHA	Route of	sodium	groups.		appropriate point of departure
(2014)	exposure:	hexahydroxo-			to use as the basis of a HBGV
	Oral-Drinking	antimonate.	When considering skeletal		for antimony.
	water.		malformations overall,		
	Cturdur.	Recalculated	incidence was observed in		
	Study	Dose Levels:	99.3% to 100% of fetuses		
	duration:	0, 49,000,	and 100% of litters including		
	Gestation	148,000,	controls.		
	days 6-19.	493,000 µg			
	No/Sex: 2	Sb/kg bw/day.			
	females per				
	dose.				

Annex References

Alkhawajah, A.M., Jain, S. and Larbi, E.B., 1996. Effects of antimony compounds on foetal development in rats. Journal of Applied Animal Research, 10(1), pp.15-24. <u>https://doi.org/10.1080/09712119.1996.9706126</u>

Angrisani, M., Lampa, E., Lisa, M., Matera, C., Marrazzo, R. and Scafuro, M., 1988. Vasomotor reactivity and postnatal exposure to antimony trichloride. Current therapeutic research, 43(1), pp.153-159.

Belyaeva, A.P., 1967. The effect produced by antimony on the generative function. <u>doi/full/10.5555/19672702376</u>

Coelho, D.R., De-Carvalho, R.R., Rocha, R.C., Saint'Pierre, T.D. and Paumgartten, F.J., 2014. Effects of in utero and lactational exposure to SbV on rat neurobehavioral development and fertility. Reproductive Toxicology, 50, pp.98-107. https://doi.org/10.1016/j.reprotox.2014.10.016

ECHA: REACH registration dossier submitted to ECHA. Registration Dossier - ECHA

Hext PM, Pinto PJ, Rimmel BA. 1999. Subchronic feeding study of antimony trioxide in rats. J Appl Toxicol 19(3):205-209. <u>https://doi.org/10.1002/(SICI)</u>

Hiraoka, N., 1986. The toxicity and organ-distribution of antimony after.

Kanisawa, M. and Schroeder, H.A., 1969. Life term studies on the effect of trace elements on spontaneous tumours in mice and rats. Cancer Research, 29(4), pp.892-895.

Marmo, E., Matera, M.G., CUPARENCU, B., ROSSI, F., ACAMPORA, R. and VACCA, C., 1987. Prenatal and postnatal metal exposure: effect on vasomotor reactivity

development of pups: experimental research with antimony trichloride, thallium sulfate, and sodium metavanadate. Current therapeutic research, 42(5), pp.823-838.

Miranda, E.S., Miekeley, N., De-Carvalho, R.R. and Paumgartten, F.J. (2006). Developmental toxicity of meglumine antimoniate and transplacental transfer of antimony in the rat. Reprod. Toxicol., 21(3): 292–300. https://doi.org/10.1016/j.reprotox.2005.09.010

NTP. 1992. NTP report on the toxicity studies of antimony potassium tartrate in F344/N rats and B6C3F1 mice (drinking water and intraperitoneal injection studies). Research Triangle Park, NC: NTP Tox 11. NIH Publication No. 92-3130.

Omura M, Tanaka A, Hirata M, et al. 2002. Testicular toxicity evaluation of two antimony compounds, antimony trioxide and antimony potassium tartrate, in rats and mice. Environ Health Prev Med 7(1):15-18. <u>http://doi.org/10.1007/bf02898061</u>

Poon, R., Chu, I., Lecavalier, P., Valli, V.E., Foster, W., Gupta, S. and Thomas, B., 1998. Effects of antimony on rats following 90-day exposure via drinking water. Food and Chemical Toxicology, 36(1), pp.21-35. <u>https://doi.org/10.1016/S0278-6915(97)80120-2</u>

Rossi, F., Acampora, R., Vacca, C., Maione, S., Matera, M.G., Servodio, R. and Marmo, E., 1987. Prenatal and postnatal antimony exposure in rats: effect on vasomotor reactivity development of pups. Teratogenesis, carcinogenesis and mutagenesis, 7(5), pp.491-496. <u>https://doi.org/10.1002/tcm.1770070507</u>

Schroeder, H.A., Mitchener, M. and Nason, A.P., 1970. Zirconium, niobium, antimony, vanadium and lead in rats: life term studies. The Journal of nutrition, 100(1), pp.59-68. <u>https://doi.org/10.1093/jn/100.1.59</u>

Sunagawa, S., 1981. Experimental studies on antimony poisoning (author's transl). Igaku kenkyu. Acta Medica, 51(3), pp.129-142.