Annex A

Discussion papers presented to the COT on the hepatotoxic effects of green tea catechins

Table 1 – A table of discussion papers that have been presented to the COT on the hepatotoxic effects of green tea catechins.

Discussion Paper reference and Date	Paper Title
TOX/2021/47 (07/09/2021)	The Safety of Green Tea Catechins
	(Reserved).
<u>TOX/2022/51</u> (06/09/2022)	The safety of green tea catechins – First
	draft statement.
<u>TOX/2023/05</u> (07/02/2023)	The safety of green tea catechins –
	Second draft statement.
<u>TOX/2023/26</u> (16/05/2023)	The safety of green tea catechins –
	Third draft statement.

Annex A to COT Statement 08/2024

November 2024

Annex B

Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment

Statement on the Hepatotoxicity of Green Tea Catechins – Summary tables of cited toxicity studies

1. This Annex is to be read in conjunction with the Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment's (COT) Statement on the Hepatotoxicity of Green Tea Catechins available at https://doi.org/10.46756/sci.fsa.wii944.

2. The European Food Safety Authority (EFSA) published a scientific opinion in 2018 (EFSA, 2018)concluding that catechins from green tea prepared in the traditional way of infusion, or reconstituted drinks giving the equivalent composition of catechins as green tea infusions were, in general, safe; however, at the time EFSA were unable to determine a dose of epigallocatechin-3-gallate from green tea extracts that would be considered safe.

3. To determine whether any new data have become available since the publication of the EFSA Opinion that might be relevant to the safety of the use of GTEs and hepatotoxicity, a literature search was conducted spanning the duration of 2018 to September 2022. Databases searched included PubMed, Google Scholar and LIVERTOX. Search terms used included (green tea extract and hepatotoxicity); (green tea extract and liver toxicity); ("green tea" and hepatotoxicity); ("green tea" and hepatotoxicity); ("green tea" and hepatotoxicity).

4. The purpose of this annex is to provide summary information on the cited

toxicological studies within the statement. There are four tables:

- i. Table 1 summarises the data obtained from the literature that describes the possible Mode of Action for green tea catechins toxicity.
- ii. Table 2 summaries the in vitro toxicity studies that were not previously reported in the EFSA, 2018 Opinion (<u>EFSA, 2018</u>).
- Table 3 summarises the in vivo animal data obtained from new reports and studies published in the literature since the publication of the EFSA Opinion (EFSA, 2018).
- iv. Tabe 4 summarises the human data on hepatotoxicity reported in the literature since the publication of the EFSA Opinion (<u>EFSA, 2018</u>).

Annex B to COT Statement 08/2024

November 2024

Table 1 - Table summarising toxicological data obtained from the literature that describes the possible Mode of Action for green tea catechins hepatotoxicity.

Test item	Model	Concentration	Length of	Results	Reference
			exposure		
dGTE 1	HepG2 cells.	0.001 to 1000 µg/ml	24 hours	Protective against hydrogen	Shil et al.,
(decaffeinated		dGTE 1.		peroxide-induced apoptosis and	(2022)
GTE, 70%				cell death by attenuating	
EGCG).				oxidative stress pathways, similar	
				to EGCG itself.	
dGTE 2	HepG2 cells.	0.001 to 1000 µg/ml	24 hours	Increased cellular and	Shil et al.,
(decaffeinated		dGTE 2.		mitochondrial oxidative stress	(2022)
GTE, 45%				and apoptosis in addition to	
EGCG).				hydrogen peroxide.	
Green tea.	See	See Hoofnagle et al.,	See Hoofnagle	Green-tea related liver injury was	Hoofnagle et
	Hoofnagle et	(2021) summary on	et al., (2021)	found to be strongly associated	al., (2021)*
	al., (2021)	pp.16.	summary on	with the HLA-B*35:01 allele.	
	summary on		pp.16.		
	pp.16.				
EGCG (98%	Female	**Free diet: on the 6 th	6 days	EGCG enhanced lipid	Shi et al.,
purity).	C57BL/6J	day, mice were split into	feeding;	metabolism pathways but did not	(2021)
		3 groups: 0, 400, 800	exposed to	cause liver injury.	

	mice	mg EGCG/kg bw per	EGCG for 24		
	(n=8/group).	day.	hours.		
EGCG (98%	Female	Fixed diet: 50% of the	6 days	EGCG caused dose-dependent	Shi et al.,
purity).	C57BL/6J	average food intake,	feeding;	hepatotoxicity, associated with	(2021).
	mice (n=8).	limited to < 2g each	exposed to	overactivation of linoleic and	
		mouse per day. On the	EGCG	arachidonic acid oxidation	
		6 th day, mice were	(intragastric)	pathways, which increased the	
		randomly divided into	for 24 hours.	accumulation of pro-inflammatory	
		three groups: dieting,		lipid metabolites, which thus	
		dieting + 400		contributed to liver injury.	
		mg/EGCG/kg bw per			
		day and, dieting + 800			
		mg/EGCG/kg bw per			
		day.			
NA	In silico	NA	NA	The binding free energy	Pandey et al.,
	docking.			calculations showed that some	(2020).
				EGCG metabolites exhibited	
				strong predicted binding affinity	
				to NQO1 and would thus lead to	
				inhibition.	

NA	Literature	'High doses' is not	Length of	EGCG toxicity observed at high	Sergi (2020).
	review of	further defined.	exposure not	concentrations was related to	
	EGCG toxicity	However, the 0.8 g	further	pro-oxidative properties	
	in children.	EGCG/day EFSA TDI	defined.	attributed to catechol structures,	
		was cited.		which are able to form a	
				superoxide anion radical.	
GTE	Literature	GTE containing 25-90%	Length of	Categorised cases into three	Teschke and
	review on	EGCG with other	exposure not	groups: idiosyncratic HILI,	Xuan (2019).
	suspected	constituents (in dietary	further	intrinsic HILI or liver adaptation.	
	liver injury	supplements).	defined.		
	associated			Mechanistic steps leading to liver	
	with GTE from			injury have not been elucidated,	
	1999 to June			although there is evidence that	
	2019.			GTE may cause idiosyncratic	
				HILI in susceptible users, as well	
				as intrinsic HILI that is dose	
				dependent. Authors noted that	
				idiosyncratic HILI can be: a)	
				metabolic (1 week to several	
				months exposure), lacking	
				hypersensitivity issues with	

				delayed response to re-exposure	
				to GTE or; b) immunologic type	
				(few weeks exposure), presents	
				hypersensitivity issues with	
				prompt response to re-exposure	
				(1-2 doses).	
EGCG (93%	C57BL/6J	Mice were dosed at up	3 days.	Hepatic inflammation, necrosis	James et al.,
purity).	mice (n=11-	to 750 mg/kg bw per day		and haemorrhage were	(2018).
	18/group).	via intragastric		observed; associated with	
		administration.		increased oxidative stress and	
				decreased superoxide dismutase	
				and glutathione peroxidase	
				levels.	
EGCG	Literature	In vitro cells (MCF-7 and	In vitro cells	EGCG modulates DNA	Yiannakopoulu
	review on the	MDA-MD-23; breast	(MCF-7 and	methylation by attenuating the	(2015)
	modulation of	cancer cell lines): 0 – 50	MDA-MD-23;	effect of DNMT1; however, the	
	DNA	EGCG µmol/L.	breast cancer	exact mechanism of DNMT1	
	methylation by		cell lines): 3 or	inhibition is not fully understood.	
	GTCs	In vitro cells (KYSE 510;	6 days.		
		human oesophageal			

cancer cell line): 5 – 10	In vitro cells	
EGCG µmol/L.	(KYSE 510;	
	human	
	oesophageal	
	oesophageal cells): 12- 144	
	hours.	

*These results are based on a systematic review by Hu et al., (2018). Regulatory Toxicology and Pharmacology 95 (2018) 412-433.

**Concentrations were assumed to have been expressed per kg body weight, but the methodology did not clarify this in detail.

Abbreviations: dGTE – Decaffeinated green tea extract; DNA - Deoxyribonucleic acid; DNMT1 - DNA-methyltransferase 1; EGCG - epigallocatechin-3-gallate; GTC – Green tea catechins; GTE – Green tea extract; HepG2 - human liver cancer cell line; HILI – Herb-induced liver injury; NA – Not applicable; NQO1 - NAD(P)H dehydrogenase [quinone] 1.

Table 2 – In vitro tovicity	studies that were not previously	y reported in the EFSA, 2018 Opinion.
z = 11 vitio toxicity	Studies that were not previously	

Test item	Model	Concentration	Length of exposure	Results	Reference
EGCG	Bovine	Incubated with	1 hour at 37ºC.	Oxidative damage under the	Furukawa et al.,
	thymus DNA	EGCG (0, 1, 2, 3, 4		action of metal ions and H ₂ O ₂ -	(2003)
		and 5 μ M) and 20		induced oxidative stress.	
		µM metal ions.			
EGCG	HL-60	0, 50, 100, 150, 200	1 hour at 37ºC.	Low concentration of EGCG	Furukawa et al.,
		and 250 µM		can cause oxidative DNA	(2003)
				damage in human cells and	
				H ₂ O ₂ plays a critical role in	
				EGCG-induced DNA damage.	
EGCG	Human	Increasing	24-hour incubation.	At the maximum dose, the	Bertram et al.,
(>98% purity)	lymphocytes	concentrations: 10-		survival rate decreased by	(2003)
		100 µM.		25%.	
EGCG	Nalm6 cells	Increasing	24-hour incubation.	At the maximum dose,	Bertram et al.,
(>98% purity)		concentrations: 10-		Survival rate decreased by	(2003)
		100 µM.		50%.	

Abbreviations: DNA - Deoxyribonucleic acid; EGCG - (-)- Epigallocatechin-3-gallate; H₂O₂ – Hydrogen peroxide; HL – Human leukaemia cell.

Table 3 – Toxicological table summarising in vivo animal data obtained from new reports and studies published in the literature since the publication of the EFSA Opinion (EFSA, 2018).

Test item	Model	Concentration	Length of	Results	Reference
			exposure		
Green tea fat	Male and	150 mg EGCG per	6-week period	Did not result in a significant	Cho et al., (2021)
burner capsule	female wild	capsule: 250 or 500		elevation of ALT levels over	
	type mice	mg/kg bw per day		the treatment period.	
	(n=3-4 per	via oral gavage.			
	dose group)				
Green tea fat	Male and	150 mg EGCG per	6-week period	In the high dose female mice,	Cho et al., (2021)
burner capsule	female PD-1 ⁻	capsule: 250 or 500		GTE induced a delayed onset	
	/-	mg/kg bw per day		increase in serum ALT levels	
	(C57BL/6J)	via oral gavage in		and an increase in CD8+ T	
	mice (model	conjunction with		cells.	
	for IDILI)	anti-CTLA-4			
	(n=3-4 per	antibody at a dose		Whilst in the high dose male	
	dose group)	of 300 µg on days -		mice, a smaller increase in	
		3 and -1 prior to		ALT was observed in day 7.	
		treatment and then			
		weekly to sustain			
		CTLA-4 inhibition.			

Green tea	37 Swiss	Group 1 (n = 16)	2-week period	Combined treatment resulted	Rojo et al., (2020)*
polyphenols in	female mice	was treated		in a reduction in mouse	
Polyphenon®	(four	intraperitoneally		survival by 70% with	
(29.2% EGCG;	treatment	with 2.5 mg/kg body		darkened areas in the internal	
total sum of	groups)	weight of ebulin f;		organs (presumed to be	
catechins		Group 2 (n = 7)		bleeding). Hypothesised the	
65.4%) with		received one oral		GTEs enhance the apoptotic	
ebulin f from		(p.o.) dose of Pol60;		effect of ebulin f.	
dwarf elder		Group 3 (n = 11)			
fruits		was administered			
		with both treatments			
		at the same day;			
		Group 4 (n=3)			
		littermates which			
		received no			
		treatment to serve			
		as controls.			
Decaffeinated	Lean male	Doses of either: 1x	Up to two weeks	No significant alterations to	Gurley et al.,
GTE (180 mg	B6C3F1	(equivalent of 1.5	(Monday – Friday)	the liver tissue following	(2019)
EGCG/capsule;	mice (n=5	mg total catechins		administration of	
total sum of		delivered in 300 μ L		decaffeinated GTE. However,	

catechins 225	per dose	of gavage solution);		there was no group receiving	
mg/capsule)	group)	3x (4.5 mg total		a caffeinated preparation for	
		catechins) or 10x		comparison, the study used	
		(15 mg total		historical data from a different	
		catechins) mouse		study for comparison.	
		equivalent doses by			
		gavage.			
EGCG	Literature	Acute oral gavage	Acute oral toxicity in	The most important side	Bedrood et al.,
	review on	toxicity in rats:	rats: death	effects reported were	(2018)
	the	single	observed 72 hours	hepatotoxicity and	
	toxicological	administration 1,868	following	gastrointestinal disorders	
	effects of	EGCG mg/kg bw.	administration.	especially when consumed	
	green tea			on an empty stomach.	
		Acute oral gavage	Acute oral toxicity in	Limited data on using green	
		toxicity in mice:	mice: 48 hours.	tea and its components	
		single		during pregnancy,	
		administration of	Subacute oral	consideration should also be	
		1,500 EGCG mg/kg	gavage toxicity in	taken when co-administrating	
		bw.	rats:	with drugs.	

		Subacute oral	Subacute oral		
		gavage toxicity in	gavage toxicity in		
		rats: 0.5 and 1 g/kg	mice: 5 days.		
		bw.			
			Subacute oral		
		Subacute oral	toxicity in dogs: low		
		gavage toxicity in	dose for 14 days		
		mice: 1,500 EGCG	and higher dose for		
		mg/kg bw per day.	28 days.		
		Subacute oral			
		gavage toxicity in			
		dogs: 300 EGCG			
		mg/kg bw per day,			
		and 500 EGCG			
		mg/kg bw per day.			
Multi-treat	Male albino	Control group,	Varies – one week,	Administration of paracetamol	El-Bakry et al.,
(dietary	rats (strain	paracetamol (2	one month, and/or	or GTE resulted in	(2017)
supplement),	not	g/kg, orally for one	with one month	biochemical and	
300 mg GTE	specified)	week), GTE (8.5	recovery.	histopathological alterations	
		mg/kg, orally for		that indicated hepatotoxicity	

per tablet (30%	(n=9 per	one month),		including augmented	
polyphenol)	dose group)	paracetamol		concentrations of AST and	
		followed by GTE,		ALT, hepatocellular necrosis	
		paracetamol		and degeneration and	
		recovery (for one		degeneration, congestion,	
		month) and,		haemorrhage, inflammation	
		paracetamol		and fibrosis.	
		followed by GTE			
		recovery (for one			
		month).			
EGCG (100%	Adult female	Control (0), 217,	Oral gavage for 14	EGCG induced hepatotoxic	Ramachandran et
purity)	Swiss albino	67.8, 21.1 and 6.6	consecutive days	effects, reversible following	al., (2016)
	mice (n=5	EGCG mg/kg/day.	followed by 14 days	cessation of 14 days after	
	per group)		of observation	treatment.	
			without treatment.		
EGCG (100%	Adult female	Control (0), 108,	Either through oral	Hepatotoxicity. A 14-day	Ramachandran et
purity)	Swiss albino	67.8, 21.1 and 6.6	or intraperitoneal	tolerable dose of 21.1 and	al., (2016)
	mice (n=5	EGCG mg/kg/day.	route for 14	67.8 EGCG mg/kg for	
	per group)		consecutive days	intraperitoneal and oral routes	
			followed by	were identified, respectively.	
			immediate		

			termination after 24		
			h of the last dose.		
EGCG (100%	Adult female	Control (0), 108,	Intraperitoneal route	EGCG induced hepatotoxic	Ramachandran et
purity)	Swiss albino	67.8, 21.1 and 6.6	for 14 consecutive	effects, reversible following	al., (2016)
	mice (n=5	EGCG mg/kg/day.	days followed by 14	cessation of 14 days after	
	per group)		days of observation	treatment.	
			without treatment.		

*The COT were of the opinion that the relevance of these findings to the effects of consumption of green tea or its extracts is questionable.

Abbreviations: ALT - Alanine transaminase; ASR - Aspartate aminotransferase; dGTE – Decaffeinated green tea extract; DNA - Deoxyribonucleic acid; DNMT1 - DNA-methyltransferase 1; EGCG - epigallocatechin-3-gallate; GTC – Green tea catechins; GTE – Green tea extract; HepG2 - human liver cancer cell line; HILI – Herb-induced liver injury; IDILI – idiosyncratic drug0induced liver injury; NA – Not applicable; NQO1 - NAD(P)H dehydrogenase [quinone] 1.

Test item	Model	Concentration	Length of	Results	Reference
			exposure		
EGCG	Women of	(i) 800 mg of EGCG	30–35 days (after	No subject demonstrated	Siblini et al.,
	reproductive	daily; (ii) 800 mg of	the onset of their	signs of drug-induced liver	(2023)
	age (≥18 to	EGCG daily with	next menstrual	injury and no subject showed	
	≤40-years	clomiphene citrate*	cycle).	serum folate level outside the	
	old) with or	100 mg for 5 days;		normal range. Authors	
	without	(iii) 800 mg EGCG		suggest that a daily dose of	
	uterine	daily with letrozole*		800 mg EGCG alone or in	
	fibroids	for 5 days.		combination with clomiphene	
	(n=39; 13			citrate or letrozole (for 5 days)	
	per dose			is well-tolerated and is not	
	group)			associated with liver toxicity or	
				folate deficiency in	
				reproductive-aged women.	
GTE	Post-	843 mg EGCG per	12 months.	Clinically relevant serum AST	Acosta et al.,
	menopausal	day or placebo		and ALT elevations were	(2022)
	women	capsules.		found within 6-9 months of the	
	(n=1,075)			women in the treatment group	

Table 4 – Human data on hepatotoxicity reported in the literature since the publication of the EFSA Opinion (EFSA, 2018).

				with the UGT1A4†	
				heterozygous genotype.	
Green tea	Analysed	690 – 1,315 GTE	Six weeks – 12	Investigated the association	Fallah et al.,
infusions and	cross-	mg/day	months.	between green tea infusions	(2022)
GTE dietary	sectional	(supplements).		and GTE supplement	
supplement	data from			consumption and liver	
	2009-2014 of			biomarkers. Authors observed	
	the USA			green tea consumption was	
	National			associated with reducing the	
	Health and			probability of having one or	
	Nutrition			more abnormal liver	
	Examination			biomarkers. GTE supplement	
	Survey			consumption had no	
				significant effect.	
Green tea	48-year-old-	Green tea	~1.5 L of green tea	Presenting with symptoms	Percevault et al.,
(drink) and	woman	(unknown), royal	per day for 5 years,	suggestive of gastroenteritis,	(2022)
royal jelly with		jelly with	royal jelly with	her AST and ALT levels were	
magnesisum		magnesium twice a	magnesium for 3	8x the ULN. Condition rapidly	
		day.	months.	worsened and underwent liver	
				transplant for fulminant	
				hepatitis.	

ANACA3+®	28-year-old	160 mg green tea	Consumed dietary	Abdominal pain associated	Percevault et al.,
dietary	woman	leaf powder/dose	supplement for 1	with elevated AST >100x the	(2022)
supplement		from four	year.	ULN and ALT >200x the ULN.	
(containing		capsules/day.			
green tea leaf				Patient discontinued	
powder at				supplementation; liver function	
160 mg/dose)				normalised over 1 month after	
				onset of symptoms.	
Dietary	"Middle-aged	Either unavailable or	4-52 weeks.	Hepatocellular lesions.	Assis et al., (2022
supplements	women and	does not provide			
containing	adults"	detailed granularity			
green tea		on the % of EGCG			
		for each dietary			
		supplement.			
GTE and a	47-year-old	Unknown; dietary	"Years"	Drug-induced liver injury.	AZ Big Media,
dietary	woman	supplements			(2021)
supplement		containing varying			
that also		amounts of GTEs.			
contained		Levels undisclosed			
GTE		as part of			
		proprietary blends.			

GTE	90 patients	Not further	Not further	Main symptoms were	Ballotin et al.,
	(mean age	described.	described.	jaundice, fatigue, nausea, and	(2021)
	44, m = 22, f			abdominal pain. The HILI	
	= 68)			patterns were mainly	
				hepatocellular, cholestatic and	
				mixed.	
GTE	8/29 reports	Composition of	Varied; ranged	8 case reports of DILI were	Bessone et al.,
containing	of DILI	supplements were	between 15 and 175	attributed to herbal	(2021)
supplements		not detailed in this	days, with a latency	supplements containing GTE	
		review; however,	period of between 7	(7 were weight loss and 1	
		consumption of	and 175 days.	energy support supplement).	
		supplements was			
		concomitant with			
		use of medicines.			
GTE	40/1,414	Catechin per	Symptoms	40 cases of liver injury were	Hoofnagle et al.,
containing	cases; aged	serving ranged from	developed between	directly attributed to green tea	(2021)
supplements	17 to 69	6.6 – 384 mg;	15 to 448 days	consumption of which 16	
	years of age	EGCG per serving	(median = 72 days).	products were linked to GTE	
		ranged from 1.6 –		induced liver injury. Liver	
		219 mg. Total		injury was typically	
		estimated daily		hepatocellular, with marked	

		doses ranged from		increases in serum ALT and	
		50 to 2,000 mg GTE		AST concentrations.	
		(median = 800 mg)			
GTE	Not further	Median intake if 720	At least 2 weeks.	The reported GTE-related	Woo et al., (2021)
containing	described.	mg EGCG/day		hepatotoxicity in the majority	
supplements				of cases were acute hepatitis	
				with a hepatocellular injury	
				pattern.	
Hydroxycut®	22-year-old	Specific product	2 capsules daily for	Presented with chest-pain	Khetpal et al.,
brand dietary	obese	used by the patient	~3 months.	fatigue and shortness of	(2020)
supplement	female	was unknown.		breath and was diagnosed	
		Previous		with drug-induced liver injury.	
		formulations have		Cessation of Hydroxycut	
		been listed to		intake reduced ALT and AST	
		contain 91 mg per 2		levels.	
		capsules serving of			
		GTE.			
GTE	75 individual	500 to 3,000 mg	Varied.	Review showed a correlation	Oketch-Rabah et
	cases	GTE per day		between the occurrence of	al., (2020)
	associated	(equating to ~250 –		severe hepatotoxicity and the	
				consumption of GTEs.	

	the GTE	1,800 EGCG			
	intake	mg/day)		Typically, liver injury due to	
				GTE exposure manifests	
				within 3 months, but the	
				latency to the onset of	
				symptoms ranges from 10	
				days to 7 months. Most cases	
				present with symptoms of	
				acute hepatitis accompanied	
				by marked hepatocellular	
				enzyme elevations.	
Green tea	2-year-old	2-3 cups of green	5 months	Presented with rash and	D'Agostino et al.,
infusions	child	tea infusions; each		diarrhoea for 5 days and a	(2019)
		cup provided 80-106		fever that persisted for 10	
		mg of polyphenols		days. Final presumptive	
		(equivalent to 36 -		diagnosis was severe acute	
		47.7 g of		hepatitis secondary to green	
		polyphenols in 5		tea infusion toxicity.	
		months).			

Vital Stem™	50-year-old	Unknown; contained	3.9 g dissolved in	Presented with constriction	Surapaneni et al.,
dietary	woman	GTE, L-leucine,	pomegranate juice	around the common bile duct,	(2018)
supplement		blueberry powder, L-	daily for one month.	elevated ASR and ALT levels.	
		carnosine and			
		Vitamin D3. Levels			
		undisclosed as part			
		of proprietary blend.			
Concurrent	21-year-old	3 capsules twice per	8-weeks.	Acute hepatitis. It was found	Popovic et al.,
consumption	man	day of the weight		that the weight loss	(2018)
of Evlution		loss supplement		supplement also contained	
Nutrition Lean		containing 250 mg		Garcinia cambogia, which has	
Mode		GTE (EGCG		been reported to cause	
Stimulant-		content unknown)		hepatotoxicity, which	
Free Weight		and, 2 capsules		according to authors may	
Loss		twice per day of the		have had a synergistic effect.	
Supplement™		fat burner containing			
and		500 mg GTE			
Evlution		(standard minimum			
Nutrition		of 50% EGCG).			
Trans4orm					

Thermogenic					
Fat Burner™					
Commercially	52-year-old	Product contained		Presented with hepatitis and	Gavrić et al.,
available fat	woman	GTE with unknown		cholestatic idiosyncratic liver	(2018)
burner		concentration of		injury.	
containing		EGCG.			
GTE					
Chili Burn™	57-year-old	972 mg GTE	10 weeks;	Presented with hepatitis	Gavrić et al.,
	woman	(standardised to	consumed 85 pills in	idiosyncratic liver injury.	(2018)
		ECCG 30%) per 2	total.		
		tablets.			
SlimCut	The same	GTE supplement	One month;	Presented with the same type	Gavrić et al.,
	woman (as	containing 45%	consumed 60 pills in	of liver injury as at the	(2018)
	above) now	EGCG.	total.	previous admission.	
	62-year-old				
EGCG	>30 years	400 mg EGCG per	Orally once daily for	EGCG was overall well	Levin et al., (2018)
	old (n=92;	capsule in treated	4-weeks, then one	tolerated but was associated	
	n=47 in	group; 400 mg	capsule twice daily	with hepatotoxic effects in	
	EGCG	mannitol in placebo	for 4-weeks, and	some patients (n=8/47).	
	treatment	group.	then one capsule		

group	ip and	three times daily for	The authors state that doses	
n=45	5 in	40 weeks.	of more than 1,200 mg should	
place	ebo		not be used.	
group	ıp)	After 48 weeks, all		
		patients underwent		
		a 4-week wash-out		
		period.		

*Clomiphene citrate and letrozole are ovarian stimulation medication which was started between cycle days 2-5 for subjects randomised into these treatment groups.

† UGT1A4 – uridine 5'-diphospho-glucuronosyltransferase 1A4 is an enzyme of the glucuronidation pathway that transforms small lipophilic molecules such as steroids, bilirubin, hormones and drugs, into water-soluble, excretable metabolites.

Abbreviations: ALT - Alanine transaminase; ASR - Aspartate aminotransferase; dGTE – Decaffeinated green tea extract; DNA - Deoxyribonucleic acid; EGCG - epigallocatechin-3-gallate; GTC – Green tea catechins; GTE – Green tea extract; HILI – Herb-induced liver injury.