This is a paper for discussion. It does not reflect the views of the Committee and should not be cited.

TOX/2024/25

Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT)

Advice on the risk to human health from consumption of bivalve molluscs (shellfish) harvested from UK waters associated with marine biotoxins

Introduction

1. The Food Standards Agency (FSA) is considering the current advice and monitoring programme for marine biotoxins and whether there is a need to update or change existing legislative standards.

2. The main purpose of this work is to identify any emerging marine biotoxins in UK waters, including considerations on increasing occurrence with increasing temperatures due to climate change. The views of the Committee on the Toxicity of Chemicals in Food, Consumer Products and the Environment (COT) were sought on whether any of these emerging marine biotoxins would pose a risk to human health.

3. A scoping paper on emerging biotoxins (TOX/2023/59) was presented to the COT at the December 2023 meeting. This paper provided an overview of potentially emerging biotoxins, brief summaries of any available toxicological information, occurrence data, with an emphasis on UK waters, and any additional relevant information, such as proposed or current limits/monitoring and considerations in other countries.

4. To assist the Committee in reaching a conclusion on which marine biotoxins potentially pose a risk to UK consumers, Members requested that the Secretariat

1

This is a paper for discussion. It does not reflect the views of the Committee and should not be cited.

produce a) a table providing the main toxicological information of the marine biotoxins discussed in the scoping paper for easier comparison and b) a table of the main toxicological information of currently regulated marine biotoxins. This would help the Committee compare non-regulated biotoxins to those already monitored, and to enable Members to put the potential risk of emerging biotoxins into perspective.

5. The Committee requested that the table should include a summary of the toxicological endpoint(s), the lethal doses, and information regarding the occurrence of each biotoxin. Due to difficulties in fitting all required information into one single table, each biotoxin has been placed into an individual table summarising the requested information on occurrence, lethal doses, adverse effects, health-based guidance values (HBGVs), human intoxications, and any comments deemed relevant. Annex A provides information regarding the identified emerging biotoxins, Annex B provides information regarding regulated biotoxins.

6. All information regarding emerging biotoxins has been extracted from the original scoping paper (TOX/2023/59) and its references. All information regarding regulated biotoxins has been extracted from the appropriate EFSA scientific opinion.

7. In addition, a table (Annex C) has been included providing estimated adult exposures (78.6 kg bodyweight) to unregulated marine biotoxins, based on EFSA's shellfish portion size of 400 g, and a fish portion of 140 g, as suggested by the Ministry of Agriculture Fisheries and Food portion size book. Due to the limited nature of the occurrence data, the exposure assessment was done as an approximate estimate to aid Members in prioritisation rather than aiming to provide a full exposure assessment. The occurrence data used in the exposure assessment has previously been discussed in the scoping paper and summarised in Annex A. The original sources of the occurrence data for the respective biotoxins were a combination of surveillance studies, submissions by member states in response to EFSAs calls for data, country specific monitoring data, and research projects including laboratory-based studies and field studies.

2

This is a paper for discussion. It does not reflect the views of the Committee and should not be cited.

8. Please note, pinnatoxin (TOX/2023/37) and pectenotoxin (TOX/2023/58) have been discussed separately and have not been included in the tables.

Questions on which the views of the Committee are sought:

- i. Does the Committee consider there to be enough information to conclude on which marine biotoxins potentially pose a risk to UK consumers, based on the toxicology and occurrence data?
- ii. Based on the available information does the Committee consider it possible to comment on which marine biotoxins pose the highest risk to UK consumers (provide a risk ranking)?
- iii. Are there any data gaps, or any further information the Committee would like to highlight?
- iv. Does the Committee have any other comments.

Secretariat

July 2024

TOX/2024/25 – Annex A

Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT)

Advice on the risk to human health from consumption of bivalve molluscs (shellfish) harvested from UK

waters associated with marine biotoxins

The following table(s) summarise key occurrence data, and toxicological information, of the currently non-regulated marine

biotoxins, as discussed in the scoping paper (TOX/2023/59).

Table 1: Brevetoxin	(BTX), Toxicological endpoin	nt(s): Neurotoxicity
---------------------	------------------------------	----------------------

Occurrence Data (Concentration/ Species/Country)	HBGVs/Maximum levels permitted	Lethal dose (LD₅₀/LD₁₀₀/MLD) in animals	Human Intoxications	Adverse effect(s)/Symptoms	Comments
82 to 345 μg/kg (BTX-2 + BTX-3; Mussels; France).	No regulatory limits in Europe.	LD₅₀ Mice (i.p. administration; after	A few hundred intoxications reported but true	Neurological/neurotoxic shellfish poisoning (NSP)	Dermal exposure or inhalation can result in irritant
880 to 49,000 μg BTX-2 equivalents/kg (Shellfish; Mexico, New Zealand, USA).	USA action level ≥ 0.8 mg BTX-2 equivalents/kg shellfish.	 24 hours). 170 - >300 μg/kg bw (BTX-3), 200 - 400 μg/kg bw (BTX-(B)2) 211 μg/kg bw (S- deoxy-BTX-B2), 	number probably underestimated (ANSES,2021). No human fatalities or persistent symptoms	Humans Nausea, vomiting, diarrhoea, parasthesia, cramps, bronchoconstriction, paralysis, seizure, and coma. Recreational Irritant effect from inhalation/dermal exposure.	effects. Inhalation occurs predominantly through breathing in aerosol from wave action. *MU: the amount of
580 to 6000 μg BTX- 3 equivalents/kg	Australia/New Zealand	Mice (oral administration)	reported (EFSA,	Animals	raw extract that kills 50% of mice within

(Fish; Mexico, New Zealand, USA).	Maximum level 20 MUs*/100g, BTX analogue not specified.	 6600 mg/kg (BTX-2) 520 mg/kg bw (BTX-3). 	2010; CEFAS, 2014).	Depolarization of neuronal and muscle cell membranes resulting in impairment of the central and peripheral nervous system, including neurovegetative effects,	930 minutes/15.5 hours.
	ANSES proposed guidance level	Mice (i.v. administration) • 94 μg/kg bw (BTX-3)		neuromuscular effects, cardiorespiratory symptoms and central signs such as ataxia, seizure and decreased body temperature.	
	180 μg BTX-3 equivalent/kg shellfish meat.	 200 µg/kg bw (BTX-2). MLD 		Chromosomal aberrations (BTX-2) DNA damage (BTX-2/3/6/9) Evidence of DNA adduct formation (BTX-2).	
		Mice (i.p. administration) • 100 μg/kg bw (BTX-4; 6-24 hours)			
		 300 – 500 μg/kg bw (BTX-5; time of death not reported). 			

Table 2: Cyclic imines (CIs) (Excluding PnTX and portimine), Toxicological endpoint(s): Neurotoxicity (SPX and GYM)

Occurrence Data (Concentration/ Species/Country)	HBGVs/Maximum levels permitted	Lethal dose (LD₅₀/LD₁₀₀/MLD) in animals	Human Intoxications	Adverse effect(s)/Symptoms	Comments
SPX:	CRLBM/EURL	LD ₅₀ :	No intoxications	Animals	EFSA calculated a
Norway,	proposed guidance	Mice (i.p.	reported.	Prostration and respiratory distress (mice	margin of exposure
Spain,	level 400 µg sum of	administration)		recovered).	(MOE) between the
Italy.	SPXs/kg shellfish	 40 μg/kg bw 			lowest oral LD ₅₀
	meat.	(SPX mixture;		Rapid systemic neurotoxicity and death.	values for SPX (50
Toxin producing					and 500 µg/kg bw)
organism:		crude extract),		Inhibition of the muscarinic and nicotinic	in mice and the
Scotland,				acetylcholine receptors (mAChR, nAChR) in	estimated 95 th
Italy,				the central and peripheral nervous system	percentile of

Ireland. PtTX and GYM not detected in Europe. GYM found in imported shellfish.	 8 μg/kg bw (SPX C; fed mice), 6.9 μg/kg bw (13- desmethyl SPX C; fed and fasted mice), 27.9 μg/kg bw (13-desmethyl SPX C), 8 μg/kg bw (20- methyl SPX G; fed mice), 32.2 μg/kg bw (13,19- didesmethyl SPX C), 450 μg/kg bw (GYM A; crude extract), 96 μg/kg bw (GYM A; >95% pure), 80 μg/kg bw (GYM A), 	and the neuromuscular junction (SPX and GYM).	exposure (0.06 µg/kg bw) from consumption of shellfish currently on the market. The MOE ranged from 1000-10000. EFSA concluded that the estimated exposure to SPXs did not raise concern for the health of the consumer. (The LD _{50s} can be found in Table 8, for SPX-C).
--	---	---	--

• 800 µg/kg bw
(GYM-B),
Overall, 500-
1005 µg/kg bw
(SPX).
Mice (oral administration) • 1000 μg/kg bw
(SPX; crude
extract),
• 176 and 780
μg/kg bw (SPX
C; fed),
• 53 and 500 μg/kg
bw (SPX C;
fasted),
• 157 and 1005
μg/kg bw (13-
desmethyl SPX
C; fed),
• 125, 500, 591
and 625 µg/kg
bw (13-
desmethyl SPX
C; fasted),

 a 157 and
• 157 and
625µg/kg bw (20-
methyl SPX G;
fed),
• 88 and 500 μg/kg
bw (20-methyl
SPX G; fasted),
• 755 and 4057
μg/kg bw (GYM
A; >95% pure).
Mice (i.c.
administration)
• 3 µg/kg bw
(GYM-A).
LD100
Mice (i.p.
administration)
• 250 µg/kg bw
(SPX B,D).
Mice (oral
administration)
• 625 µg/kg bw
(SPX C; fed),

• 400 µg/kg bw
(SPX C; fasted),
• 780 µg/kg bw
(13-desmethyl
SPX C; fed),
• 400 μg/kg bw
(13-desmethyl
SPX C; fasted),
• 500 μg/kg bw
(20-methyl SPX
G; fed),
• 400 μg/kg bw
(20-methyl SPX
G; fasted).
MLD
Mice (i.p.
administration)
• 700µg/kg bw
(GYM A; crude
extract).

Table 3: Palytoxin (PITX), Toxicological endpoint(s):

Occurrence Data (Concentration/ Species/Country)	HBGVs/Maximum levels permitted	Lethal dose (LD₅₀/LD₁₀₀/MLD) in animals	Human Intoxications	Adverse effect(s)/Symptoms	Comments
300 to 625 µg/kg shellfish meat	No regulatory limits set.	LD₅₀ (i.p. administration)	Intoxications reported.	Humans	

(PITXs; Mussels and sea urchins; France; Greece; Italy; Spain;).	EFSA ARfD for sum of PITX and ostreocin- D: 0.2 μg/kg bw. NRL for Marine Biotoxins provisional limit 250 μg/kg shellfish. ANSES Short term toxicity reference value for PITX 0.08 μg/kg bw per day.	 Rabbit: 0.025 µg/kg bw, Dog: 0.33 µg/kg bw, Monkey: 0.078 µg/kg bw, Mouse: 0.45 µg/kg bw, Rats: 0.089 µg/kg bw, Guinea pigs 0.11 µg/kg bw, Mice (oral administration) 510-767 µg/kg bw, Rat (oral administration) 40 µg/kg bw (> 24 hours). 	Some reports of severe cases including fatalities from consumption of contaminated shellfish. (Deeds and Schwartz 2009 in EFSA,2009), Poisoning cases reported where exposure occurred through injured skin and inhalation. For some cases reported involvement of PITX not confirmed (CEFAS,2014).	Myalgia and weakness, possibly accompanied by fever, nausea and vomiting, and rhabdomyolysis, characterised by injury to skeletal muscle, muscle breakdown and leakage of myocytes into plasma. Renal failure and disseminated intravascular coagulation. Death. Skin, eye and respiratory irritation. Animals Reduced intracellular pH. Rabbits increased metabolism of arachidonic acid and the production of eicosanoids; arachidonic acid metabolised to prostaglandins, releasing norepinephrine and contracting the aorta. Mice Scratching, stretching of hind limbs, significant weight loss, lower back and concave curvature of the spinal column, muscle spasms, respiratory distress, dyspoea and progressive muscular paralysis. Histopathological changes in the heart, kidney, liver, pancreas, intestines and lymphoid tissues. Reduced lymphocytes in tissues (0.25 μg/kg bw PITX five times a week up to 29 times). Increased plasma concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) (≥ 36 μg/kg bw). Changes to blood sodium and chloride levels. Increased blood potassium levels.	
---	---	---	---	---	--

	Tumour promotion (two-stage mouse skin carcinogenesis model)	
	<i>In Vitro</i> Cytotoxic (EC ₅₀ s of 5 x 10^{-10} M and 2 x 10^{-7} M for rat and cattle erythrocytes, respectively) PITX and ovatoxins-a (OVTX) affect the integrity of the intestinal barrier (at concentrations of 0.5 and 5 ng/mL in Caco-2 cells).	
	Increased IL-8 (PITX, OVTX-a AND OVTX-d).	

 Table 4: Saxitoxin (STX), Toxicological endpoint(s): Neurotoxicity

Occurrence Data (Concentration/ Species/Country)	HBGVs/Maximum levels permitted	Lethal dose (LD ₅₀ /LD ₁₀₀ /MLD) in animals	Human Intoxications	Adverse effect(s)/Symptoms	Comments
Toxin producing algae: Norway, Portugal, France, Germany, Italy, Turkey, Egypt.	EU 800 μg STX equivalents/kg shellfish meat. FAO/IOC/WHO provisional ARfD of 0.7 μg STX equivalents/kg bw. EFSA ARfD 0.5 μg STX equivalents/kg bw. ANSES	LD₅₀ Mice (i.p. administration) • 10 µg/kg bw. Mice (oral administration) • 260-263 µg/kg bw.	Intoxications reported, including fatalities from respiratory arrest. Children have a higher mortality rate.	 Paralytic shellfish poisoning (PSP). Humans Mild symptoms: slight tingling sensation, numbness, mostly around the lips but spreading to face and neck, headache, dizziness, nausea. Moderately severe symptoms: incoherent speech, progression of prickling sensation to arms and legs, stiffness, non-coordination of limbs, general weakness and feeling of lightness, slight respiratory difficulties and rapid pulse.	EFSA proposed TEFs based on acute toxicity in mice. The TEFs range from 0.1-1; for all TEFs please see paragraph 83 of <u>TOX/2023/59</u> .

TRV	Severe to extremely severe symptoms:
~ 0.1 µg/kg bw.	muscular paralysis, pronounced respiratory
0.1 µg/ng bw.	difficulties to fetal respiratory paralysis.
OHA	Death from respiratory arrest.
-	Death non respiratory arrest.
TDI	
0.05 μg/kg bw per day.	Recreational
	Skin and eye irritation.
Interim drinking	
water guidance	Animals
levels	Cat, Rabbit.
1 μg/L (Australia, New	
Zealand and OHA)	Decreased respiratory activity, weakening of
3 µg/L (Brazil,	muscle contractions, decreased action
Australia, and WHO).	potential amplitude and longer latency time in
	peripheral nervous system (1-2 µg STX/kg
Recreational	bw). Respiratory depression and death (4-5 μg
guidance values	STX/kg bw). Hypertension (> 1 µg STX/kg bw).
75 μg/L (Washington	
State)	Neurotoxicity, changes in total antioxidant
10 µg/L (OHA).	capacity, production of reactive oxygen species
10 µg/2 (011/4).	in the brain and liver, decrease in glutamate
OFINIA	
OEHHA	cysteine ligase, aversive memory
Interim notification	performance, increase in GST and amino acid
level	neurotransmitters, acute alterations of
0.6 µg/L.	dopamine.
	Rats
	Reduction in bodyweight and feed intake (6
	μg/kg neoSTX)
	Zebra fish: sublethal reversible morphological
	and sensory motor effects.
	Fish
	Reduced growth and survival during larval
	development.
	In Vitro

DNA damage in fish neuronal cells (3 µg/L STX equivalent).	
Mechanism of toxicity Binding to voltage-gated sodium channels, clocking conductance, acting on nerve and muscle fibres.	

Table 5: Tetrodotoxin (TTX), Toxicological endpoint(s): Neurotoxicity

Occurrence Data	HBGVs/Maximum	Lethal dose	Human	Adverse effect(s)/Symptoms	Comments
(Concentration/ Species/Country)	levels permitted	(LD ₅₀ /LD ₁₀₀ /MLD) in animals	Intoxications		
Species/Country) TTX and analogues: 0.0003 to 0.541 mg/kg (gastropods and bivalves; France; Spain; Italy; Greece; The Netherlands; Ireland; UK). TTX most common analogue in all regions.	No maximum levels in the EU. EFSA ARfD 0.25 μg/kg bw. Kasteel et al. (2017) ARfD 1.33 μg/kg bw. Finch et al. (2018) ARfD 10.1 nmol/kg (3.2 μg/kg). Unknown 110 μg TTX equivalent/kg shellfish meat (Reference not found,	In animals LD₅₀ Mice (i.p. administration and s.c. administration) • 8-13 µg/kg bw Mice (oral administration and intragastric administration) • 232 µg/kg bw and 532 µg/kg bw LD100 Mice (oral administration) • 1000 µg/kg bw MLD • 2 mg (40 µg/kg	Some human case reports. Onset of symptoms within 10-45 minutes of ingestion, although delayed responses of 3- 6 hours have also been reported. (EFSA, 2017; Lago et al, 2015).	HumansPerioral numbness and paraesthesia, with or without GI symptoms to lingual numbness, early motor paralysis, incoordination, slurred speech with normal reflexes, to generalised flaccid paralysis, aphonia and fixed/dilated pupils to hypoxia, hypotension, bradycardia, cardiac dysrhythmias and unconsciousness. Death, caused by respiratory failure and cardiac collapse.Animals Skeletal muscle fasciculation, apathy, lethargy, ataxia, ascending progressive paralysis and death.Mice: urine production significantly decreased (at 75 μg/kg and 125 μg/kg daily). Exposure at the highest concentration resulted in changes to the kidney and myocardium.	TTX and STX are additive. ARfD for TTX could alternatively be set at the same level as that for STX, equating to 0.43 µg/kg for TTX (Finch et al. 2018). No antidote for TTX. MLD: EFSA were unable to retrieve the underlying data/original source.
	taken from a review by Katikou 2019 citing the	bw, 50 kg		In Vitro	

study Kasteel et a 2017).	l. Japanese adult).	Inhibited neuronal electric activity (in rat primary cortical cultures and human-induced pluripotent stem cell-derived iCell neurons).
		Spindle fibre aberration in the human lymphocyte chromosome aberration test (following exposure of with crude extracts from skin/liver of the porcupine fish containing TTX at 0.5 mg/mL).

 Table 6:
 Novel azaspiracids (AZAs), Toxicological endpoint(s):

Occurrence Data (Concentration/ Species/Country)	HBGVs/Maximum levels permitted	Lethal dose (LD ₅₀ /LD ₁₀₀ /MLD) in animals	Human Intoxications	Adverse effect(s)/Symptoms	Comments
Japan	No information available.	No information available.	None reported	No information available.	None.

 Table 7:
 Novel PSP analogues domoic acid analogues, Toxicological endpoint(s):

Occurrence Data (Concentration/ Species/Country)	HBGVs/Maximum levels permitted	Lethal dose (LD ₅₀ /LD ₁₀₀ /MLD) in animals	Human Intoxications	Adverse effect(s)/Symptoms	Comments
No information available.	No information available.	No information available.	None reported.	No information available.	None.

Table 8: Cyanobacteria toxin(s), **Toxicological endpoint(s)**: Depending on cyanotoxin, ranging from neurotoxicity, hepatotoxicity, cytotoxicity to dermal toxicity and irritation.

Northern Ireland	MCs:	LD ₅₀	Fatalities due to	Humans	For cyanotoxin
(Lough Neagh).		Mice (i.p.	MC exposure		studies there's a lack
	EFSA	administration)	(WHO,2020)	MCs	of available
MCs:	TDI of 0.04 µg/kg bw	 32.5-158 μg/kg 		Most commonly gastroenteritis	standards/purified
<100 µg/kg fresh	per day.	bw (MC-LR),		Intrahepatic haemorrhage Fatalities (after mistreated water used in	toxins. Extracts were often used, which are
weight (Fish muscle;	ANSES	• 111-650 µg/kg		dialysis).	poorly characterised.
Europe).	Subchronic TRV 1 ng/kg bw per day.	bw (MC-RR),		BMAA	Available data on
45 to 142 µg MC-		• 110 and ~171		Implicated in neurodegenerative diseases:	MCs indicated an up
LR/kg fresh weight	WHO Provisional TDI of 0.04	µg/kg bw (MC-		Amyotropic lateral sclerosis, Parkinsonism-	to 30-fold difference
(Saltwater mussels; Greece).	µg/kg bw.			dementia complex, and Alzheimer's.	in acute toxicity, following i.p
Greece).	µg/kg bw.	YR),		Animals	administration
NOD:	ОНА	 140 and 171 			compared to the oral
	TDI of 0.05 µg/kg (for	µg/kg bw (MC-		MCs	route.
80 to 817 µg/kg dw	MC-LR specifically).	WR),		Lung effects (thickening of the alveolar	
(Shellfish; Finland;				septum, disruption of cell junctions, alveolar	For further
Poland).	ATX:	• 100 and ~249		collapse, and lung apoptosis).	information and references for LD50
BMMA:	WHO	µg/kg bw (MC-		Serum profile changes (increase in	values see Table
900 to 14,000µg/kg	No formal TDI set. NOAEL 98 µg/kg bw	FR),		transaminases, decrease in total proteins).	3.3.1.1 Data on MC acute toxicity in
(Oysters; France;	per day.	• 249 µg/kg bw		Effects on the nervous system (cognitive	mammals expressed
Sweden; Greece).	CYN:	(MC-AR),		impairment, lesions, oxidative injury, inflammation in brain regions).	as LD50 values (Testai et al., 2016).
2 DAB:	on.	• 39 µg/kg bw			(163181 61 81., 2010).
	WHO	(MC-LA),		Reproductive and developmental effects	
1,100 to 9,700 µg/kg	TDI of 0.03 µg/kg bw.			(decreased sperm number and motility,	
(Mussels; France).	ANSES	• 91 µg/kg bw		abnormal sperm morphology, lesions in the testes, testicular atrophy, change in serum	
DAB:	subchronic TRV of	(MC-LY),		hormone concentrations, impact on the	
	$0.14 \ \mu g/kg bw per day$	• 50–70µg/kg bw		ovaries) (OEHHA, 2021).	
1,300 to 8,800	ОНА	(NOD),		Tumour promotion in rodents: Possible	
µg/kg(Oysters; France)	applied EPAs oral RfD	• 40-749 µg/kg		carcinogen to humans (Group 2B).	
	0.03 µg/kg per day				
AEG:		bw (includes,			
	ATX-a:				

1,400 to 1,700 µg/kg (Mussels and Oysters; France). ATX/CYN: detected in fish (Excl. Europe).	OHA TDI of 0.1 μg/kg per day.	 -Anatoxin-a, ±Anatoxin-a, +Anatoxin-a, and Anatoxin-a) 100-352 (24h) and 45.5-189 (7 d) µgequiv/kg bw (CYN), 116 µg crude extract/kg bw (CYN). 9 other MC variants range from ~90 to 750 µg/kg bw. Rat (i.p administration) 72-122 µg/kgbw (MC- LR), 5.3 µg/kg bw (±Anatoxin-a) 		Inhibition of PP1 and PP2A leading to cytoskeleton alterations, lipid peroxidation, oxidative stress, apoptosis, resulting in hepatic centro-lobular toxicity with intrahepatic haemorrhagic areas due to damage of sinusoidal capillaries (MC-LR, > 32 µg/kg bw). ATX Rapid death. ATX-a Increased heart rate and blood pressure, fatigue, eventual muscle paralysis and potential death. BMAA Neurotoxic in rats and monkeys Long term histopathological changes in the brain of adult rodents Alterations of the intermediate metabolites, i.e. d-glucose, lactate, 3-hydroxybutyrate, acetate, creatine, in neonatal rats. NOD Reproductive toxicity: loss of spermatogenesis, apoptotic changes in spermatogonia (pyknotic and shrunken), atrophic change in the prostate epithelium with apoptosis (nuclear dusts). CYN Increased liver and kidney weight, hepatic and renal toxicity. Maternal toxicity including vaginal bleeding and blood in tail tips, hepatocytes. necrosis and kidney lesions, alterations of haematological parameters, and death. In Vitro	
--	-------------------------------------	---	--	--	--

Mice (oral administration), • 5-10.9 mg/kg bw (MC-LR), • 16.2 mg/kg bw (+Anatoxin-a), • 4400-6900 (2-6 days) µg _{equit} /kg bw (CYN). Rat (oral administration) • >5mg/kg bw (MC-LR). Mice (i.v. administration) • 28 µg/kg bw (MC-LR), • 6 30 µg/kg bw (GSH-MC-LR conjugate), • 267 µg/kg bw (Cys-MC-LR conjugate), • 267 µg/kg bw (Cys-MC-LR	MCs Induction of oxidative stress and apoptosis in human cell lines (MC-LR). BMAA Neurotoxic in rodent and leech cells, and human cell lines. Disturbs undifferentiated cells (B1 and C cells) at 100 μ M, promotes proliferation, affects the organisation of neuroblasts. Increased the release of proinflammatory cytokines (IL-1 β , IL-6, TNF α) Promotes cell death, induces subcellular changes in neurons and Mueller Glial Cells (at concentrations of 0.4 μ M (3 days) and 0.4,1 and 10 μ M (3 and 9 days)). NOD Micronuclei containing centromeres in HepG2 cells (5 and 10 μ g/mL for 24h) Increased basal DNA strand breaks in HepG2 cells (1-10 μ g/mL up to 24h) Enhanced 8-oxo-dG, a common biomarker of oxidative DNA damage, in primary cultured hepatocytes (2 and 10 μ g/mL).
---	---

 304 µg/kg bw (GSH-MC-YR conjugate), 217 µg/kg bw (Cys-MC-YR conjugate).
 Rat (i.v. administration) 80 μg MC-LR equiv/kg bw (MC-LR and RR), 400 μg/kg bw (±Anatoxin-a), 85 μg/kg bw (+Anatoxin-a).

TOX/2024/25 – Annex B

Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT)

Advice on the risk to human health from consumption of bivalve molluscs (shellfish) harvested from UK waters associated with marine biotoxins

The following table(s) summarise_key occurrence data, and toxicological information, of current regulated marine biotoxins extracted from the appropriate EFSA scientific opinion.

Table 9: Saxitoxin, Toxicological endpoint(s): Neurotoxicity

See Annex A: Emerging Biotoxins, Table 4, for further details.

Table 10: Domoic Acid, Toxicological endpoint(s): Neurotoxicity

Occurrence Data (Country/ Species/ Concentration)	HBGVs /Maximum levels permitted	Lethal dose (LD ₅₀ /LD ₁₀₀ / MLD) in animals	Human Intoxications	Adverse effect(s)/Symptoms	Comments
---	--	---	------------------------	----------------------------	----------

UK,	EU	LD ₅₀	Canada	Humans	No data available
Ireland,	20 mg DA/kg	Mice (i.p.	107 cases (47	Amnesic Shellfish Poisoning (ASP) including	on LD ₅₀ in male
France,	shellfish meat.	administration;	men and 60	gastrointestinal symptoms (vomiting, diarrhoea, or	mice.
Spain,		female):	women) met	abdominal cramps) and/or neurological symptoms	
Portugal,	EFSA	 5.8mg/kg bw 	criteria for ASP	(confusion, loss of memory, potential seizure, or	
Denmark,	ARfD	(median lethal	from consuming	coma).	Occurrence data
Norway,	30 µg DA/kg bw.	dose; mussel	mussels; 19		provided as the
Italy,		extracts),	hospitalised, 4	Animals	sum of DA and epi-
Germany,	FAO/IOC/WHO	 2.9-3.6mg/kg 	died. 143 cases	Mice (oral administration)	DA, distinction was
Netherlands.	Provisional ARfD	bw (mussel	had suspected	Scratching (35 mg/kg bw) *, clinical signs (not	possible between
	100 µg/kg bw	extracts),	poisoning with	detailed; 71 mg DA/kg bw; acidified extract), death	the concentration of
Shellfish.	6 mg/adult (person with 60kg bw).	• 3.6-4.0 mg/kg bw (pure toxin).	DA, but this was not confirmed.	(71 to 83mg DA/kg bw; acidified extract).	parent DA and epi- DA.
				Rats (oral administration)	
			Estimated	Flooridity bood on floor inactivity mantiaction	*No effects at
			exposure for clinical symptoms,	Flaccidity, head on floor, inactivity, mastication, seizures, mild to moderate CNS damage, death	doses of 20 and 28
			60-290 mg,	(n=1-4; given 60-80 mg/kg bw DA per os).	mg/kg bw, death
			(equivalent to 0.9-	(11-1-4, given 60-60 mg/kg bw DA per 05).	occurred at 47 and
			4.2 mg/kg bw.	Monkey (oral administration)	104 mg/kg b.w.
			4.2 mg/kg bw).		Several doses
			USA	Mild to moderate histopathological lesions in CNS	between the latter
			11-24 cases of	consistent with neuroexcitation (5 to 10 mg/kg bw).	two levels were
			ASP from EU		devoid of any
			160 µg AZA1	Anorexia, salivation, retching, vomiting, licking, and	effect, suggesting
			equivalents/kg	smacking of lips and empty mastication's (when	other factors were
			shellfish meat	given crude or purified DA; 5 to 10 mg/kg bw).	modifying the
			consuming razor	Diarrhoea and prostration (in animals receiving	toxicity.
			clams. 13 had	mussel extracts; ~6 mg DA/kg bw).	
			mild neurological		In a very early
			symptoms, 7	Mice (i.p. administration)	study (1959),
			sought medical		anthelminthic
			assistance.	Scratching of the shoulders by the hind leg (1mg/kg	effects occurred in
			Highest	bw), convulsions (≥2.0mg/kg) and often death.	3 children at oral
			concentration	Hypoactivity, sedation, akinesia, rigidity, stereotypy,	doses of a DA-like
			detected in clams	loss of postural control and tremors.	compound at 0.4,
			was 140 µg/g		0.64 and 0.8mg/kg
			tissue. For mild	Rats (i.p. administration)	bw.
			symptoms,		

concentrations ranged from 0.05- 0.39 mg/kg bw. Reporting of this incident was queried and causality attributed to DA questioned.	 Withdrawal followed by hyperexcitation and scapular scratching (2 mg/kg bw). Histopathological lesions in the hippocampus (CA3>CA1>CA4), hypothalamus, amygdala, cortex, olfactory system, and retina and showed wet dog shakes, rearing with forelimb extension - "praying", loss of balance and seizures (≥4 mg/kg bw). Increased serum T3 and T4 levels (30 minutes after injection) and TSH levels (5 minutes after injection) and TSH levels (5 minutes after injection) (1mg DA/kg bw). Hypomotility and decreased body weight (0.93 mg DA/kg bw). Symptoms suggestive of hyperreactive syndrome, together with neuronal degeneration in the hippocampal CA1/CA3 areas and gliosis (1.32 mg DA/kg bw). Neuronal injury, astrocytosis, activation of microglia and alterations in fatty acid metabolism (2.25 mg DA/kg bw). Developmental toxicity: death of dams (2.0 mg/kg) and pre-term abortion (50 % of rats in the 1.75 mg/kg group). Induction of c-fos in the central nervous system (0.1 mg/kg bw). Monkey (i.p. administration) Persistent chewing with frothing, gagging, emesis, loss of balance and tremors and excitotoxic central nervous system damage consisting of dendrotoxic and gliotoxic edema and nerve cell degeneration in structures of the limbic system and the retina (4 	
	structures of the limbic system and the retina (4 mg/kg bw DA).	

	Mice (i.v. administration)	
	Developmental toxicity: impairment of hippocampal function and morphology, and delayed cell necrosis in offspring (0.6 mg DA/kg bw on gestational day 13).	
	Rat (i.v. administration)	
	Seizure discharges in the hippocampus, tonic-clonic convulsions, and death (0.5-1.0 mg/kg bw DA).	
	Monkey (i.v. administration)	
	Neuroexcitatory, emetic (0.025-0.2 mg/kg bw). Excitotoxic (0.5 mg/kg bw DA). Clinical signs of neurotoxicity. Nausea, damage to neurons and degeneration in the brain (0.25 to 4mg/kg).	
	Mice (subcutaneous injection)	
	Developmental toxicity: neurobehavioural sequelae in offspring (0.3, 0.6 and 1.2 mg/kg; to pregnant rats on GD13). Motor seizures characterized by scratching, tail flicking, and swimming-like movement (at all doses; 0.10, 0.17, 0.25, 0.33, 0.42, and 0.50 mg/kg). Paralysis (doses \geq 0.33 mg/kg; in 65% of rats), and death (47%) in less than 2 hours. Changes in brain development in the absence of convulsions (neonatal rats injected daily; 5 and 20 µg/kg).	
	<i>In Vitro</i> Increase in the frequency of micronuclei (in Caco-2 Cells)	

 Table 11: Okadaic Acid (and OA group toxins), Toxicological endpoint(s): Gastrointestinal (DSP)

Occurrence Data (Country/ Species/ Concentration)	HBGVs /Maximum levels permitted	Lethal dose (LD₅₀/LD₁₀₀/ MLD) in animals	Human Intoxications	Adverse effect(s)/Symptoms	Comments
Denmark, France, Germany, Ireland, The Netherlands, Norway, Portugal, Spain, Sweden, UK. Shellfish. 48 to 6550 µg/kg shellfish.	EU 160 μg OA equivalents/kg shellfish meat. FAO/IOC/WHO ARfD 0.33μg OA equivalents/kg bw.	LD ₅₀ Mice (i.p. administration): • 204 μg/kg bw, • 200 μg/kg bw , • 225 μg/kg. Lethal dose Mice (i.p. administration): • 200 μg/ kg bw. Mice (oral administration): • 400 to 600 μg/kg bw, • Between 1,000 and 2,000 μg/kg bw.	DSP reported in Japan, the Netherlands, Norway, Sweden, Belgium, Portugal, UK, Canada, Chile and New Zealand. Japan 164 people suffering with diarrhoea, nausea, vomiting and abdominal pain from eating mussels or scallops containing mostly DTX1. Intakes estimated 48 µg OA equivalents/perso n for mild symptoms or 80- 280 µg OA equivalents/perso n for severe symptoms.	HumansDiarrhoeic Shellfish Poisoning (DSP): diarrhoea, nausea, vomiting and abdominal pain. Fever, chill, and headache.Animals MiceIntestinal injury (200 μg/kg bw) and liver injury (375 μg/kg bw i.p. administration and 1000-2000 μg OA/kg bw).Hypersection in the small intestine (75, 150 and 250 μg/kg bw), severe mucosal injury, extravasion of serum into lamina propria of villi, degeneration of absorptive epithelium of iliac villi, and desquamation of the degenerated epithelium from the lamina propri.Erosion of the small intestine, stomach, and large intestine (150 μg/kg bw OA) and diarrhoea (90 μg/kg bw).RatsIntestinal injury (375 μg/kg bw) and liver injury (375 μg/kg bw). Swollen villi enterocytes with detachment from basal membrane.	OA group includes OA, DTX1 and DTX2, and DTX3. The analogues tested by member states varied, and in some cases only the sum for the combined OA group-toxins was reported, without information on specific analogues detected. (EFSA,2008), No information available on long term effects or repeated exposure in humans.

Portugal 6 cases from 6 cases from consuming: razor clams: 500 µg OA equivalents /kg flesh. 1 1 case from consuming green crabs: 322 322
μg OA equivalents /kg edible crab parts.
Norway 200 cases from consuming leftovers from crab meals, DTX3 levels at 1,050 to 1,500 µg OA equivalents/kg brown meat.
39 cases from consuming mussels at 550- 650 μg OA equivalents/kg shellfish flesh.
UK 159 cases from consuming mussels at 258- 302 µg OA equivalents/kg shellfish flesh.

 Table 12: Dinophysis toxins, Toxicological endpoint(s): Gastrointestinal (DSP; as part of OA group)

Denmark, France, Germany, Ireland, Spain, Sweden, UK. None specific for DTX. LDs₀ Mice (i.p. administration): • 350 µg/kg bw (DTX2). See Table 3. Humans As part of OA group toxins, See Table 3. Animals Mice (i.p. administration): • 350 µg/kg bw (DTX2). • 350 µg/kg bw (DTX2). • 350 µg/kg bw (DTX2). • 1360 µg/kg bw (DTX2). • 160 µg/kg bw for (DTX1), • 160 µg/kg bw for (DTX1	Occurrence Data (Country/ Species/ Concentration)	HBGVs /Maximum levels permitted	Lethal dose (LD₅₀/LD1₀₀/ MLD) in animals	Human Intoxications	Adverse effect(s)/Symptoms	Comments
≥LOD up to 160 µg	France, Germany, Ireland, The Netherlands, Norway, Portugal, Spain, Sweden, UK. Shellfish. Of 6072 samples: DTX 1. 416 samples ≥ LOD up to 160 µg toxin/kg shellfish meat. 89 samples >160 µg toxin /kg shellfish meat. DTX2 302 samples	DTX. See Table 3 for HBGVs for OA	 Mice (i.p. administration): 350 µg/kg bw (DTX2). Lethal dose Mice (i.p. administration): 160 µg/kg bw for (DTX 1), 200 to 500 µg/kg bw. (DTX 3). Mice (oral administration): 300 µg/kg bw 	See Table 3.	 As part of OA group toxins, See Table 3. Animals Mice (i.p. administration). Intestinal injury (50-500 µg/kg bw for DTX1 and at 375 µg/kg bw for DTX3) Bleeding in the abdomen (DTX3). Mice (oral administration). Light diarrhoea and slight reduced bodyweight. Light erosions to the stomach, intestinal damage (600 and 700 µg/kg). Mice and rats (i.p. administration). Liver injury (375µg/kg bw; DTX1 and DTX3). Mice and rats (oral administration). 	

toxin/kg shellfish meat.			
66 samples >160 μg toxin /kg shellfish meat.			
DTX3			
1495 samples ≥ LOD up to 160 μg toxin/kg shellfish meat.			
149 samples >160 μg toxin /kg shellfish meat.			

 Table 13: Yessotoxins (and analogues), Toxicological endpoint(s):

Occurrence Data (Country/ Species/	HBGVs /Maximum levels permitted	Lethal dose (LD ₅₀ /LD ₁₀₀ / MLD) in animals	Human Intoxications	Adverse effect(s)/Symptoms	Comments
Concentration)					
Germany,	EU	LD ₅₀ *	No reports of	Humans	Analytical methods
Italy,	1 mg YTX eq./kg	Mice (i.p.	human illness.	No reports on adverse effects in humans.	of identifying levels
Norway,	shellfish meat.	administration;			of toxin in shellfish
Portugal,		male).		Animals	varied including
Spain,	EFSA	 80-462 µg/kg 		Mice (i.p. administration).	ELISA, HPLC, LC-
United Kingdom.	ARfD	bw (YTX),			MS/MS.
	25 µg YTX	• 301 µg/kg bw		Dysphoea and death (\geq 300 µg/kg).	
Shellfish.	equivalents/kg bw	(Di-		Restlessness and jumping before death at lethal	*,** See Table 10,
	3.75 mg YTX eq./kg	desulfoYTX),		doses. Shivering (at 750 and 1000 µg/kg) and	EFSA 2008 for
"not detected" to	shellfish meat.			cramps.	further details
9620 µg YTX					regarding mouse

eq./kg shellfish	Mice (i.p.	Vacuolation in the cardiac muscle, and	strain and
meat.	administration;	intracellular oedema, cardiac damage (500	references.
	female),	μg/kg), swelling of myocardial cells (5-10mg/kg)	
	• 112-750	and alterations of myocardiocytes (1-2 mg/kg	No information
	μg/kg bw	YTX).	available on LD50 of
	(YTX),		YTX-group toxins
	• 444 µg/kg bw	Cytoplasmic protrusions of myocardiocytes,	via the oral route.
	(1a-	rounding of mitochondria and fibre modifications	
	HomoYTX).	(1mg/kg 1a-homoYTX and 45-hydroxyYTX).	***For detail
	, , , , , , , , , , , , , , , , , , , ,	Altered disposal of E-cadherin.	regarding cell type,
	Lethal dose **		species, time
	Mice (i.p.	In Vitro***	frame, and
	administration;	Phosphodi-esterase activation, modulation of	references, see
	sex not reported)	calcium movements at several levels, calcium	Table 9, EFSA
	 100 μg/kg bw 	dependent cAMP and cGMP decrease, altered	2008.
	(1a-	protein disposal, apoptosis and cell death, and	
	HomoYTX),	changes in cell shape (at 10 ⁻⁶ to 10 ⁻¹⁰ M YTX).	
	 ~500 μg/kg 		
	bw (45-		
	HydroxyYTX;		
	55-Carboxy-		
	1a-homoYTX		
	7; 55-		
	CarboxyYTX),		
	 ~220 µg/kg 		
	bw (45,46,47-		
	TrinorYTX),		
	 ~500 μg/kg 		
	bw (1-		
	DesulfoYTX).		

 Table 14: Azaspiracids, Toxicological endpoint(s): Gastrointestinal (similar to DSP)

Occurrence Data (Country/	HBGVs/ Maximum levels	Lethal dose (LD ₅₀ /LD ₁₀₀ /	Human Intoxications	Adverse effect(s)/Symptoms	Comments
Species/	permitted	MLD) in			
Concentration)		animals			
Germany, Ireland, Norway, UK. Shellfish "not detected" to 1630 µg/kg shellfish meat.	EU 160 μg AZA1 equivalents/kg shellfish meat. EFSA ARfD 0.2 μg AZA1 equivalents/kg bw.	 Lethal dose Mice (i.p. administration; male) 200µg/kg bw (purified AZA1), 110 µg/kg bw (AZA2), 140 µg/kg bw (AZA3), 470 µg/kg bw (AZA4), 1000 µg/kg bw (AZA5). Indicative values only due to low number of animals used due to limited pure toxins. 	AZA poisoning reported across the Netherlands, Ireland, Italy, France, and the UK. Netherlands 8 cases, unwell after consuming 8- 10 mussels harvested from the west coast of Ireland. Intakes estimated initially between 6.7 µg (5th percentile) and 24.9 µg (95th percentile) per person, with a median of 14.5 µg per person (2001). Revised estimate in 2005/6 was between 50.1 µg (5th percentile) and 253.3 µg (95th percentile), with a median of 113.4 µg per person.	HumansAZA poisoning (AZP): nausea, vomiting, diarrhoeaand stomach cramps.AnimalsMice (oral administration),Shortened villi, injury to small intestine (600 or700 µg/kg bw; slow recovery after 24h). 38%increase in liver weight after 24h, fine fat dropletsdistributed in liver (500 µg/kg bw).Dose-dependent necrotic lymphocytes in thethymus, spleen, and Peyer's patches of the smallintestine (500 to 700 µg/kg bw),Changes to the small intestine: congestion, waterysubstance in the lumen, small changes to surfaceepithelial cells, atrophic lamina propria spatiallyseparated from epithelial cells (300 µg/kg bw).Lethality (single oral doses; from 250 to 600µg/kg).Decreased body weight, ballooning andgastrointestinal organs containing a lot of gas.Pathological changes: lung (interstitialinflammation and congestion, tumours), stomach(erosion), small intestine (shortened villi, oedema,and atrophic lamina propria) and liver (some	Some longer term repeated-dose toxicity studies (maximum duration 1 year) showed occasional lung tumours. As these tumours were only observed at doses causing severe toxicity, they were considered of little relevance.
			Italy	cases - single or focal necrosis, small	

10 cases.	inflammation, mitosis, or congestion) (50 and 20	
	μg/kg).	
France		
20-30 cases.	In Vitro	
	Increase of Ca 2+ (EC ₅₀ 10 ⁻⁶ to 10 ⁻⁷ M).	
UK	Increase of cAMP (EC ₅₀ 10 ⁻⁶ to 10 ⁻⁷ M).	
12-16 cases.	Decrease in pH (EC₅₀ 10⁻⁶ M).	
	Cytotoxicity ((EC ₅₀ 10^{-6} to 10^{-9} M).	
Cases in Italy,	Altered F-actin cytoskeleton (EC ₅₀ 10 ⁻⁵ and 10 ⁻⁸	
France and UK	M).	
related to	Cell adhesion (EC ₅₀ 10^{-8} to 10^{-9} M).	
consumption of		
mussels or scallops		
imported from		
Ireland. No		
estimates of AZAs		
consumed		
available.		

TOX/2024/25 – Annex C

Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT)

Advice on the risk to human health from consumption of bivalve molluscs (shellfish) harvested from UK

waters associated with marine biotoxins

Table 15: Estimated adult exposures (78.6 kg bodyweight) to unregulated marine biotoxins, based on EFSA's shellfish portion size of 400 g, and a fish portion size of 140 g, as suggested by the Ministry of Agriculture Fisheries and Food portion size book.

Occurrence	HBGVs	Exposure Assessment in Adults
82 to 345 μg/kg (BTX-2 + BTX- 3; Mussels; France).	No regulatory limits set.	0.42 to 1.8 μg/kg bw.
	EFSA	
	ARfD for sum of PITX and	
880 to 49,000 µg BTX-2	ostreocin-D: 0.2 µg/kg bw.	
equivalents/kg (Shellfish;		4.5 to 250 µg/kg bw.
Mexico, New Zealand, USA).	NRL for Marine Biotoxins provisional limit 250 µg/kg shellfish.	
580 to 6000 μg BTX-3		
equivalents/kg (Fish; Mexico,	ANSES	1.03 to 11 μg/kg bw.
New Zealand, USA).	Short term toxicity reference value for PITX 0.08 µg/kg bw per day.	
	3; Mussels; France). 880 to 49,000 μg BTX-2 equivalents/kg (Shellfish; Mexico, New Zealand, USA). 580 to 6000 μg BTX-3 equivalents/kg (Fish; Mexico,	 3; Mussels; France). 880 to 49,000 µg BTX-2 equivalents/kg (Shellfish; Mexico, New Zealand, USA). 580 to 6000 µg BTX-3 equivalents/kg (Fish; Mexico, New Zealand, USA). 580 to 6000 µg BTX-3 equivalents/kg (Fish; Mexico, New Zealand, USA). 580 to 6000 µg BTX-3 equivalents/kg (Fish; Mexico, New Zealand, USA).

Cyclic imines (excluding PnTX and portimine).	SPX: Norway, Spain, Italy. Toxin producing organism: Scotland, Italy, Denmark, Ireland. PtTX and GYM not detected in Europe. GYM found in imported shellfish.	CRLBM/EURL proposed guidance level 400 μg sum of SPXs/kg shellfish meat.	N/A
Palytoxin (PITX).	300 to 625 µg/kg shellfish meat (PITXs; Mussels and sea urchins; France; Greece; Italy; Spain;).	No regulatory limits set. EFSA ARfD for sum of PITX and ostreocin-D: 0.2 µg/kg bw. NRL for Marine Biotoxins provisional limit 250 µg/kg shellfish. ANSES Short term toxicity reference value for PITX 0.08 µg/kg bw per day.	1.5 to 3.2 μg/kg bw.
Saxitoxin (STX).	Toxin producing algae: Norway,	EU	N/A

Portugal,	800 µg STX equivalents/kg shellfish	
France,	meat.	
Germany,		
Italy,	FAO/IOC/WHO provisional ARfD of	
Turkey,	0.7 μg STX equivalents/kg bw.	
Egypt.		
	EFSA	
	ARfD	
	0.5 μg STX equivalents/kg bw.	
	ANSES	
	TRV	
	~ 0.1 µg/kg bw.	
	OHA	
	TDI	
	0.05 μg/kg bw per day.	
	Interim drinking water guidance	
	levels	
	1 μg/L (Australia, New Zealand and	
	OHA)	
	3 μg/L (Brazil, Australia, and WHO).	
	Recreational guidance values	
	75 μg/L (Washington State)	
	10 μg/L (OHA).	
	OEHHA	
	Interim notification level	
	0.6 μg/L.	

Tetrodotoxin (TTX).	TTX and analogues:	No maximum levels in the EU.	0.0015 to 2.8µg/kg bw
	0.0003 to 0.541 mg/kg (gastropods and bivalves;	EFSA ARfD	
	France; Spain; Italy; Greece; The Netherlands; Ireland; UK).	0.25 μg/kg bw.	
		Kasteel et al. (2017) ARfD	
	TTX most common analogue in all regions.	1.33 μg/kg bw.	
		Finch et al. (2018) ARfD	
		10.1 nmol/kg (3.2 µg/kg).	
		Unknown	
		110 μg TTX equivalent/kg shellfish meat.	
		(Reference not found, taken from a review by Katikou 2019 citing the study Kasteel et al. 2017).	
Novel azaspiracids	Japan	No information available.	N/A
(AZAs).			
Novel PSP	No information available.	No information available.	N/A
analogues domoic acid			
analogues.			
Cyanobacteria toxin(s).	Northern Ireland (Lough Neagh)	MCs:	MCs:
		EFSA	0.18µg/kg bw.
	MCs:	TDI of 0.04 µg/kg bw per day.	

<100 µg/kg fresh weight (Fish	ANSES	0.23 to 0.72µg/kg bw.
muscle; Europe).	Subchronic TRV 1 ng/kg bw per	
45 to 142 μg MC-LR/kg fresh	day.	
weight (Saltwater mussels;	WHO	
Greece).	Provisional TDI of 0.04 μg/kg bw.	NOD:
NOD:	ОНА	0.41 to 4.2µg/kg bw.
80 to 817 µg/kg dw (Shellfish;	TDI of 0.05 µg/kg (for MC-LR	
Finland; Poland).	specifically).	BMMA:
		4.6 to 71µg/kg bw.
BMMA: 900 to 14,000µg/kg (Oysters;	ATX:	
France; Sweden; Greece).	WHO	2 DAB:
, , , ,	No formal TDI set.	5.6 to 49µg/kg bw.
2 DAB:	NOAEL 98 µg/kg bw per day.	
1,100 to 9,700 µg/kg (Mussels; France).	CYN:	DAB: 6.6 to 45µg/kg bw.
Trance).	STR.	0.0 to +oµg/kg bw.
DAB:	WHO	AEG:
1,300 to 8,800 µg/kg(Oysters;	TDI of 0.03 μg/kg bw.	7.1 to 8.7µg/kg bw.
France).	ANSES	ATX/CYN:
AEG:	subchronic TRV of 0.14 µg/kg bw	N/A.
1,400 to 1,700 µg/kg (Mussels	per day.	
and Oysters; France).		
ATX/CYN:	OHA applied EPAs oral RfD	
detected in fish (Excl. Europe).	0.03 μg/kg per day.	
	ATX-a:	

OHA	
TDI of 0.1 μg/kg per day.	

References:

Marine biotoxins in shellfish – azaspiracid group[1] - scientific opinion of the panel on contaminants in the food chain (2008) European Food Safety Authority: <u>Marine biotoxins in shellfish – Azaspiracid group[1] - Scientific Opinion of the Panel on Contaminants in the Food chain | EFSA (europa.eu)</u> (Accessed: 09 May 2024).

Marine biotoxins in shellfish – domoic acid (2009) European Food Safety Authority. <u>Marine biotoxins in shellfish – Domoic acid | EFSA (europa.eu)</u> (Accessed: 06 May 2024).

Marine biotoxins in shellfish - okadaic acid and analogues - scientific opinion of the panel on contaminants in the food chain (2008) European Food Safety Authority: <u>Marine biotoxins in shellfish - okadaic acid and analogues - Scientific Opinion of the Panel on Contaminants in the Food chain | EFSA (europa.eu)</u> (Accessed: 06 May 2024).

Marine biotoxins in shellfish – summary on regulated marine biotoxins (2009) European Food Safety Authority: <u>Marine biotoxins in shellfish – Summary on</u> <u>regulated marine biotoxins | EFSA (europa.eu)</u> (Accessed: 08 May 2024).

Marine biotoxins in shellfish – yessotoxin group[1] - scientific opinion of the panel on contaminants in the food chain (2009) European Food Safety Authority: <u>Marine biotoxins in shellfish – Yessotoxin group[1] - Scientific Opinion of the Panel on Contaminants in the Food chain | EFSA (europa.eu)</u> (Accessed: 08 May 2024).