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TOX/2024/03 
 

Committee on the Toxicity of Chemicals in Food, Consumer 
Products and the Environment. 
 

Benchmark dose modelling in a UK chemical risk assessment 
framework.  
 
Introduction 
 
1. In 2021 (TOX/2021/1) as part of a horizon scanning exercise, the 

Committee on Toxicity of Chemicals in Food, Consumer Products and the 

Environment (COT) identified the UK in future may need benchmark dose 

(BMD) modelling guidance. It was stated that in order that there is consistency 

in the implementation and in the interpretation of the BMD outputs, it is 

essential that there is guidance from a UK perspective. A COT (or wider UK) 

guidance document should be put together which would detail, amongst other 

things, a description of BMD modelling, including when it should be used; the 

software available and its respective limitations; and interpretation of the 

outputs. It should also list relevant resources with links. Discussions with 

experts in-the-field would likely be necessary to ensure that the guidance is 

accurate, reliable and future-proof for the Food Standards agency (FSA), COT 

and other relevant government departments (OGD). 

 

2. Whilst carrying out its normal functions the COT is likely to come 

across instances where it will be essential that there is a good understanding 

of BMD modelling. The secretariat, in addition may also need to know how to 

carry out the modelling.  

3. In 2022 (TOX/2022/07), as part of a horizon scanning exercise, the 

possibility of a workshop on BMD modelling was considered but it was agreed 

that a discussion paper would be most appropriate in the first instance. 

 

https://cot.food.gov.uk/sites/default/files/2021-01/TOX-2020-%2011%20Horizon%20scanning%20update.pdf
https://cot.food.gov.uk/sites/default/files/2022-01/TOX-2022-07.pdf
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4. Furthermore, in 2022 Members from COT, the Committee on 

Carcinogenicity of Chemicals in Food, Consumer Products and the 

Environment (COC) and the Committee on Mutagenicity of Chemicals in 

Food, Consumer Products and the Environment (COM) reviewed and 

discussed the recently published draft updated EFSA guidance on the BMD 

Approach; the most notable change being a move to use a Bayesian rather 

than frequentist approach in the modelling. In the discussion it was noted that 

the BMD was considered by EFSA to be scientifically more advanced than the 

NOAEL/LOAEL approach. 

 

5. The Food Standards Agency (FSA) and COT are considering the use 

and practice of BMD as part of its ongoing evaluation of New Approach 

Methodologies (NAMs) in chemical risk assessment, within a UK food safety 

context for the safety of UK consumers.   

 

6. This discussion paper provides information on the theory and practice 

of the BMD approach. The paper draws on previous evaluations by regulatory 

bodies and authorities (e.g. EFSA and US EPA). Furthermore, it includes a 

discussion of the areas of consensus and divergence between organisations 

and expert groups. It also highlights the work of the FSA Computational 

Fellow and describes a case study, that has used BMD modelling to derive a 

HBGV, as a proof of concept. 

 
Background  
 
7. The benchmark dose (BMD) approach was introduced almost 40 years 

ago as a more quantitative and informative estimate of the reference point 

(RP) from dose-response experiments. It was proposed as an alternative to 

the traditionally used No Observed Adverse Effect Level (NOAEL) or Lowest 

Observed Adverse Effect Level (LOAEL) (Crump, 1984).  
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8. The first established “safe dose” based on a BMD approach was for 

methylmercury, loaded onto the U.S. Environmental Protection Agency’s 

(EPA) Integrated Risk Information System (IRIS) in 1995 (Haber et al., 2018). 

In 2005, EFSA first recommended the BMD approach for deriving RPs for 

substances that are both genotoxic and carcinogenic (EFSA, 2005). In 2005, 

the World Health Organisation’s (WHO) International Programme on 

Chemical Safety (IPCS) published their “Principles for modelling dose-

response for the risk assessment of chemicals” (FAO/WHO, 2005) and in 

2006, the Joint Expert Committee on Food Additives (JECFA) began applying 

this approach for the safety evaluation of certain genotoxic and carcinogenic 

contaminants in food (FAO/WHO, 2006). Both the EPA and EFSA now 

recommend using the BMD approach, where appropriate, as the preferred 

methods to identify a RP for both genotoxic and non-genotoxic compounds 

(EFSA, 2017; US EPA, 2012). 

 

9. Guidance on the BMD approach, including the statistical basis of the 

approach as well as technical guidance on its use and implementation have 

been provided by multiple authorities or committees (EFSA, 2022, 2017, 

2009; FAO/WHO, 2020; US EPA, 2012) as well as many other reviews and 

discussions on the topic (Crump, 1984; Gephart et al., 2001; Haber et al., 

2018; Slob, 2002). 

 

Benchmark Dose Modelling in Chemical Risk assessment 
 
Identifying a Reference Point from Toxicity studies 
 
10. Hazard characterisation is a key step in the risk assessment pathway. 

It attempts to establish the nature and severity of (an) adverse effect(s) 

associated with exposure to a chemical, with particular attention paid to the 

relationship between the dose and effect (COT, 2020). Toxicity studies, 

carried out to characterise these adverse effects, are typically designed to 

identify a dose that can be used as a starting point for human health risk 

https://www.epa.gov/iris
https://cot.food.gov.uk/assessingchemicalrisksinfood
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assessment. This dose is often referred to as the RP or the Point of Departure 

(PoD) (COT, 2020; EFSA, 2009). 

 

11. Traditionally, RPs have been determined using the (NOAEL) or 

(LOAEL). The NOAEL (historically also sometimes referred to as a No 

Observed Effect level, NOEL) is a means of establishing a RP by determining 

the highest dose of a substance at which no (statistically) significant adverse 

effects are observed (FAO/WHO, 1990). While some variation exists in the 

statistical approaches, determination of the NOAEL typically involves multiple 

pairwise comparisons of the data at different doses, to an appropriate control 

data set. This approach can be used for data types including continuous data 

(i.e. data measured on a continuum, e.g., organ weight or blood biomarker 

concentration) or Dichotomous Data, also known as Quantal Data (i.e. Data 

where an effect may be classified into one of two possible outcomes, e.g., 

dead or alive, with or without incidence of a specific symptom such as 

tumours). Where statistically significant effects are detected at all dose levels 

tested, the lowest dose used in the study (i.e. the LOAEL) may be selected as 

the RP. In this case additional uncertainty factors are often recommended if 

the RP is used to produce a corresponding HBGV, in recognition of the fact 

that a lower dose may still cause an adverse effect. Conversely, if no 

statistically significant effect is observed at any of the dose levels, the highest 

dose is typically selected as the NOAEL (EFSA, 2022). 

 

12. An alternate to the NOAEL/LOAEL is the BMD approach (Crump, 

1984). The BMD is a dose level, estimated from a fitted dose-response curve 

or curves, associated with a pre-specified change in response (the benchmark 

response, BMR) relative to the control group (background response). Instead 

of comparing individual groups (doses), the BMD approach considers all the 

available dose-response data to estimate the shape of the overall dose-

response relationship for a particular endpoint (Figure 1). It is possible to 

derive confidence levels of the BMD response from the dose-response 
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modelling with the BMD lower confidence level (BMDL) typically taken as the 

RP for establishing HBGVs (EFSA, 2022). 

 

 
 

Figure 1. Illustration of the BMD approach using hypothetical 
continuous data (Figure taken from EFSA, 2017). Hypothetical 

experimental mean response data (triangles) are plotted along with their 

confidence intervals. The solid curve represents the fitted dose-response 

model. The curve determines the point estimate of the BMD, generally defined 

as a dose that corresponds to a low but measurable change in response, and 

here representing a benchmark response (BMR) of 5%. The dashed curves 

represent, respectively, the upper and lower 95% one-sided confidence 

bounds for the effect size as a function of dose. Their intersections with the 

horizontal line are at the lower and upper bounds of the BMD, denoted BMDL 

and BMDU, respectively.  

 

13. Both the U.S. EPA and EFSA now recommend using the BMD 

approach, where appropriate, as the preferred means to identify a RP for 
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deriving a HBGV. This is also the stated preference of the JECFA and JMPR 

(Joint FAO/WHO Meeting on Pesticide Residues).  

 
Selected Previous Publications 
 

14. The selected publications represent the existing guidance offered by 

both EFSA and the US EPA regarding implementation and recommended 

best practices for BMD modelling in chemical risk assessment, with specific 

reference to their respective BMD software, PROAST and BMDS. EFSA have 

published a number of opinions on BMD modelling since 2009 and although 

the US EPA have not published their own opinion document, their preferred 

practices can be inferred from their 2012 Technical Guidance Document for 

the application of their BMDS Benchmark Dose software. 

 

EFSA 2005 - Opinion of the Scientific Committee on a request from 
EFSA related to A Harmonised Approach for Risk Assessment of 
Substances which are both Genotoxic and Carcinogenic 
 
15. In 2005, EFSA’s Scientific Committee (SC) proposed a harmonised 

approach for risk assessments for substances that have both genotoxic and 

carcinogenic properties. EFSA expressed reservations about extrapolating 

from the typically high doses of genotoxic and carcinogenic substances to 

much lower levels to which humans are occasionally exposed.  

 

16. EFSA noted that the selection of mathematical model was crucial and 

could lead to wide variation in the predicted threshold for safety. This often led 

to differing conclusions for the same substance, depending on the model 

chosen. They also noted that such approaches had little basis in rationality, as 

it was often unknown if the model chosen reflected the underlying biological 

processes. 
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17. EFSA recommended using a margin of exposure (MOE) approach 

using a reliable RP for the substance under consideration. They 

recommended the use of BMD modelling as a reliable means to obtain an RP. 

They concluded that BMD modelling was the superior approach as it used all 

the information obtained over the range of doses in the dataset chosen from 

which to establish the health-based guidance value. EFSA further 

recommended the use of the BMDL10 which would represent an estimate of 

the lowest dose which is 95% certain to cause no more than a 10% cancer 

incidence in rodents (EFSA, 2005). 

 

EFSA 2009 - Guidance of the Scientific Committee on Use of the 
benchmark dose approach in risk assessment  
 
18. In their 2009 guidance, EFSA considered the utility and practical 

application of BMD as a generalised tool for risk assessment. They 

concluded, that since BMD incorporates all the available dose-response data 

and provides a quantification of uncertainties in the dose-response, a BMD 

approach represents a scientifically more advanced method compared to the 

traditional NOAEL approach for deriving a RP. They also noted that while the 

BMD approach had occasionally been employed in risk assessments up to 

that point, no systematic approach to the use of the BMD existed. 

 

19. EFSA reconfirmed both their view that an MOE approach was the most 

appropriate for risk assessment of substances that are both genotoxic and 

carcinogenic (EFSA, 2005) and the use of the BDML as the generally 

accepted RP. More generally, for chemical risk assessment, EFSA proposed 

that a default Benchmark response (BMR) value of 10% be used for quantal 

data and 5% for continuous data from animal studies, although this default 

BMR may be modified based on statistical or toxicological considerations. 

 

20. EFSA rejected the suggestion that larger or additional uncertainty 

factors are needed if the BMDL is used as the RP. They concluded that 
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HBGVs derived from the BMDL are expected to be as protective as those 

from the NOAEL approach, on average over many risk assessments. EFSA 

concluded that it was not necessary to repeat previous evaluations of safety 

using the new BMD approach. They concluded, based on similar reasoning, 

that the BMD and NOAEL would be, on average, as protective as one another 

over many risk assessments. 

 

21. EFSA also recommended that any future updates to test guidelines, 

such as the OECD guidelines, should include a consideration of the BMD 

approach. 

 

US EPA 2012 - Benchmark Dose (BMDS) Technical Guidance Document  
 
22. In their 2012 document, the US EPA technical panel presented step-

by-step guidance for the understanding and application of existing BMD 

methods in risk assessment. This included guidance on evaluating studies 

and endpoint types suitable for modelling, selecting appropriate BMR levels, 

model fitting and BMD computation, judging the fit of the model, and 

calculating the BMDL. Finally, the document provided several demonstrations 

of BMD and BMDL derivations from scientific data. 

 

23. The guidance discussed general approaches for selecting the BMR 

levels but stopped short of recommending any particular value for the BMR 

being modelled. Instead, it recommended a flexible approach based on 

thorough consideration of the statistical and biological characteristics of the 

dataset and the applications for which the resulting BMDs/BMDLs will be 

used. The guidance recommended that selections be made on a case-by-

case basis, and justification should be provided for each BMR selection. For 

quantal data however it suggested an extra risk of 10% as the BMR for 

standard reporting (to serve as a basis for comparisons across chemicals and 

endpoints). This is because the 10% response is near the limit of sensitivity in 

most cancer bioassays and in some noncancer bioassays. 
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24. Similarly, the guidance recommended a case-by-case approach for 

choosing an appropriate model or models to use in computing the BMD. In the 

absence of information about the biological basis of the dose response 

relationship, the document provides guidance on model selection and model 

fitting, as well as information on determining goodness-of-fit, and comparing 

models to decide which to use for obtaining the BMD and BMDL. The 

guidance provided general recommendations, including that α = 0.1 be used 

to compute the critical value for goodness-of-fit and that a graphical display of 

the model fit be examined as well. For comparison of models and selection of 

the model to use for BMD computation, the use of Akaike’s Information 

Criterion (AIC) is recommended.  

 

25. The document does not advocate the use of any one software 

package. A discussion of the preferred computational algorithms is intended 

however, to provide users a computational or statistical basis to make an 

informed choice in the selection of software. It is recommended that software 

with well-documented methodology be used, such as the EPA’s BMDS 

package, from which it also provides worked example for the purpose of 

practical demonstration.  

 

26. Reporting recommendations from the BMD/BMDL calculations are also 

discussed. This guidance lists several reporting recommendations for the 

BMD and BMDL. Finally, the guidance provided a generalised workflow and 

decision tree that can be adapted and implemented for the purpose of 

chemical risk assessment (Figure 2). A flow chart is provided to help visualise 

how the BMD approach fits within a larger risk assessment framework. In 

addition, a section outlining a “decision tree” is intended to guide the user in 

choosing the most appropriate BMD approach for their particular data and risk 

assessment. 
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Figure 2. Decision tree summarising the generalised step-by-step 
approach to calculate the BMD and associated confidence intervals and 
BMDL (Image from US EPA, 2012). 

 
EFSA 2017 - Update: use of the benchmark dose approach in risk 
assessment 
 
27. EFSA’s 2017 document is an update of the 2009 guidance, informed 

by user experience with BMD application in regulatory risk assessment, and 

includes the latest methodological developments in BMD modelling. The 

update confirms many of the recommendations laid out in the 2009 guidance. 

EFSA reconfirmed their view that a BMD approach is a scientifically more 

advanced method compared to the NOAEL for identifying the RP and that 

HBGVs based on a BMD approach are expected to be as protective as those 

based on the NOAEL approach. 
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28. The most significant updates concern the application of the BMD 

approach in practice. Most notable are the developments in model averaging 

capabilities which EFSA now recommend as the preferred method for 

calculating the BMD confidence interval. A flowchart and worked examples 

have been inserted in this update to guide the reader step-by-step when 

performing a BMD analysis (Figure 3), as well as a chapter on the 

distributional part of dose-response models (DRM) and a template for 

reporting a BMD analysis in a complete and transparent manner. 

 

 
 

Figure 3. Flow chart to establish BMD confidence interval and BMDL for 
dose-response data set of a specified endpoint. AIC: Akaike information 
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criterion; AICnull: AIC value of the Null Model; AICfull: AIC value of the Full 

Model; AICmin: AIC value of the model with the lowest AIC value, the null and 

full models being excluded (Image taken from EFSA, 2017). 

 

29. The set of available default models has been reviewed and updated. 

For continuous data, both the exponential and Hill family of models are 

recommended (4 models total). For quantal data, 8 models are 

recommended: Logistic, Probit, Log-logistic, Log-probit, Weibull, Gamma, 

linearised multistage models (LMS) (two-stage) model and the Latent variable 

models (LVMs). To assess the relative goodness of fit of different 

mathematical models to the dose-response data set, the Akaike information 

criterion (AIC) is now the recommend approach.  

 

30. EFSA propose that a BMD approach can be applied to all chemicals in 

food, independent of the nature or source. They conclude that the BMD 

modelling is also appropriate for dose-response data from epidemiological 

studies, although no explicit guidance is provided for this (EFSA, 2017).  

 

EFSA 2022 - Guidance on the use of the benchmark dose approach in 
risk assessment 
 
31. In 2022, EFSA published new guidance which considered the most 

recent developments in BMD modelling and aimed to better align EFSA’s 

approach with internationally agreed concepts and approaches. 

 

32. EFSA reconfirmed its guidance and reasoning, set out in 2009 and 

2017, regarding the recommendation of the BMD approach in chemical risk 

assessment. The set of default models for BMD analysis has been reviewed 

and updated, allowing a single set of models to be used for both quantal and 

continuous data. Model averaging is again recommended as the preferred 

method for evaluating the results from the choice of available models.  
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33. Of most significance is EFSAs recommendation to change from a 

frequentist to a Bayesian paradigm. Confidence and significance levels are 

replaced, in the Bayesian approach, by probability distributions attached to 

unknown modelling parameters. Credible intervals replace the frequentist use 

of confidence intervals. EFSA note that the Bayesian method allows the 

model to be updated with new or existing knowledge, allowing it to “mimic a 

learning process”. Finally, the step-by-step guidance and flowchart for BMD 

analysis has been updated in light of these changes, and a chapter comparing 

the frequentist and Bayesian paradigms has been inserted (EFSA, 2022). 

 

COT previous discussions 
 
JECFA/JMPR update of Chapter 5, EHC 240 (2020) 
 
34. The COT were provided a summary of chapter 5 (dose-response 

assessment and derivation of health-based guidance values) of the “principles 

and methods for the risk assessment of chemicals in food, Environmental 

Health Criteria 240” (EHC 240) guidance document that was released by the 

World Health Organisation for public consultation (TOX/2020/01). Members of 

the Committee were invited to comment on the draft update.  

 

35. Potential discrepancies between the descriptions of the benchmark 

dose approach and that by the Environmental Protection Agency were 

addressed. 

 

36. Comparisons were made between the flow chart presented in Figure 1 

of TOX/2020/01 and that used by EFSA (Figure 8 in 2017 Guidance); it was 

noted that the figures serve slightly different purposes and that the flow chart 

used by EFSA provides more detailed information on the conduct of dose-

response modelling. 

 

https://cot.food.gov.uk/sites/default/files/2020-08/WHO%20public%20consultation%20on%20the%20JECFA-JMPR%20update%20of%20Chapter%205%20%28EHC%20240%29.pdf
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37. The Committee concluded that the methodologies of the updated draft 

chapter and the previous version were very similar, and the main differences 

were in the structure and detail of the chapter. 

 

Updated EFSA guidance on the Benchmark Dose Approach (2022) 
 
38. In March 2022, The Committee was informed of a meeting held 

between interested COT, COC and COM Members to discuss the recently 

published draft updated EFSA guidance on the Benchmark Dose Approach; 

the most notable change being a move to use a Bayesian rather than 

frequentist approach in the modelling. 

39.     In the discussion it was highlighted that the guidance on modelling 

took more account of statistical issues, rather than the underlying biology. It 

was noted that the benchmark dose was considered by EFSA to be 

scientifically more advanced than the NOAEL/LOAEL approach. 

 

NOAEL approach vs BMD approach 
 
40. Both EFSA and the US EPA consider the BMD approach to be the 

more quantitative and scientifically advanced approach to deriving the RP 

compared to the NOAEL approach. In theory, the BMD approach uses all the 

available dose-response information within a given dataset. The NOAEL 

approach, in contrast, effectively uses only the data that make up the control 

group and one other dose group: the NOAEL/LOAEL group (EFSA, 2017; US 

EPA, 2012).  

 

41. An important acknowledgment is that the NOAEL approach is 

ostensibly designed to identify a “no effect” level for a given substance. Slob 

and others have argued that the NOAEL should more accurately be 

understood as the dose at which no statistically significant effect is detected. 

As Slob notes in a 2014 publication: “a prominent misconception about the 

NOAEL approach is that the NOAEL reflects a dose without effects”. In reality, 
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the “true” NOAEL could be lower than the statistically determined NOAEL. 

Slob notes that the NOAEL is not substantively different from a BMD in this 

regard: they both reflect a dose where the true effect is small. The primary 

difference is that, in case of a NOAEL, the effect size is not defined (but 

assumed to be small), while for a BMDL, the effect is predefined, so it is 

known that the size of the effect at the BMDL is not larger than this specified 

value (i.e. the Benchmark response, BMR) (Slob, 2014). 

 

42. As the BMD approach does not calculate a “no effect dose” but rather 

is set at a predefined effect size, it has been suggested that additional 

uncertainty factors might be appropriate when using a BMDL as the RP. In 

their 2017 guidance, EFSA argue that this concern is based on the false 

assumption that a NOAEL is associated with the complete absence of 

adverse effect. Furthermore, based on the data from National Toxicology 

Program (US NTP) studies (Bokkers and Slob, 2007), EFSA concluded that 

the default values of the BMR are such that the BMDL, on average, coincides 

with the NOAEL. They concluded that additional uncertainty factors, beyond 

those normally applied are not necessary and HBGVs derived using a BMDL 

as the RP can be expected, on average, to be as protective as those derived 

from the NOAELs (EFSA, 2017).  

 

43. The reliability of the NOAEL approach is also crucially dependent on 

the sensitivity of the test method. The likelihood of detecting a small effect is 

directly proportional to the sample size being studied. The larger the sample 

size at a given dose, the more power in statistical terms there is to detect 

such an effect. This also results in the effect that studies performed with fewer 

animals per group will tend to yield a higher NOAEL than equivalent studies 

performed with higher numbers, due to decreased statistical sensitivity 

(EFSA, 2017). As noted by Haber et al., (2018) this is particularly undesirable 

in a regulatory context because it disincentivises better designed, larger 

studies in favour of smaller, less powerful ones.  
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44. The BMD approach also provides important information regarding the 

uncertainties in the data. The output of the BMD approach provides a 

quantitative assessment of data quality, as described by the confidence (or 

credible) intervals. In the NOAEL approach, experimental uncertainties 

resulting from, e.g. low study power or high variance, in the response effect 

are not captured (EFSA, 2022).  

 

45. Another limitation of the NOAEL approach is the study design. As 

noted by Crump (1984), the NOAEL must necessarily be one of the study’s 

experimental doses. This artificially constrains NOAEL assignment to arbitrary 

doses which often are a poor reflection of the data. The advantage of the 

BMD approach, is that the BMD can be any dose level, including a dose 

between the assigned study doses (Crump, 1984). This is partly a result of 

traditional study design protocols in toxicology. At a recent EFSA workshop, it 

was noted that the current OECD guidance on designing animal experiments 

take, by default, the goal to be detecting statistical effect levels. Therefore 

animal studies often limit the number of doses to maximise the statistical 

power at each dose group (EFSA Workshop, 2023). Slob notes that the BMD 

approach therefore, theoretically allows for more efficient use of animals. 

More information is obtained from the same number of animals, or conversely, 

similar information may be obtained from fewer animals, compared with the 

NOAEL approach (Slob, 2014).  

 

46. As the dose-response output for the BMD models is linked to a 

predefined biological effect size (rather than threshold of statistical 

significance) comparisons across potencies of different substances, or of the 

same substances under different conditions, is possible. For this reason, 

EFSA note that the BMD approach is also suitable for the derivation of relative 

potency factors (RPFs) or toxic equivalency factors (TEF) for individual 

substances in a mixture that share a common mode of toxicological action 

(EFSA, 2017). For example, the BMD approach has been used to provide 
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relative potency estimates for different organophosphates in toxicological 

studies (Bosgra et al., 2009). 

 
Modelling the data 
 
47. The JECFA and JMPR (2020) stated that it is important that any 

software employed for BMD estimation be thoroughly tested, and the source 

code should be made publicly available to allow for reproducibility and 

transparency. They consider the software packages PROAST and the US 

EPA’s Benchmark Dose Software, BMDS sufficient to meet these criteria. 

EFSA also host a web-based application of PROAST (FAO/WHO, 2020). 

 

48. These software employ mathematical models to fit dose-response data 

along with a quantification of how well the model has performed in fitting a 

user’s data to provide an estimation of the BMD along with a measure of the 

uncertainty. JECFA/JMPR noted there is no preference or hierarchy for the 

use of any one of these software over another, but transparency and clarity in 

the use and methods when using the software is important (FAO/WHO, 

2020).  

 

Choosing an appropriate benchmark response 
 
49. The predefined selection of a degree of change that defines a level of 

response that is measurable, adverse and relevant to humans or the model 

species is known as the benchmark response or BMR (FAO/WHO, 2020). 

The related term, critical effect size (CES) is also employed in this context to 

refer to a clearly adverse BMR. Specifically, a CES is the maximum (change 

in the) magnitude of a specific (combination of) toxicological effect 

parameter(s) which is assumed to be non-adverse (Dekkers et al., 2001). 

 

50. Toxicological considerations such as the “meaningfulness” of a 

biological response or what biological response may be considered “adverse” 

https://www.rivm.nl/en/proast
https://www.epa.gov/bmds/download-bmds
https://shiny-efsa.openanalytics.eu/app/bmd
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may influence the choice of BMR level chosen. For instance, a 5% change 

would likely be less serious for a serum enzyme, which may increase at most 

2-3 fold at some high exposure level, than it would be for a measurement of 

relative liver weight change (EFSA Workshop, 2023). Similarly, statistical 

considerations, such as when considering studies with relatively large within-

group variation might lead a user to choose a BMR higher than 5% for 

endpoints (EFSA, 2017).  

 

51. For continuous data, where there is no consensus as to the degree of 

change that is adverse, EFSA recommend a BMR of 5% to be set as a default 

which could be modified based on toxicological or statistical considerations 

(EFSA, 2017). In support of this choice of BMR, EFSA noted that analysis of a 

large number of studies from the US National Toxicology Program (US NTP) 

involving continuous data show that the BMDL for a BMR of 5% was, on 

average, close to the NOAEL derived from the same data set (for most 

individual data sets, the BMDL05 and NOAEL differed by an order of 

magnitude or less (Bokkers and Slob, 2007). EFSA also noted that similar 

observations were made in studies of fetal weight data (Kavlock et al., 1995). 

 

52. In contrast, the EPA recommend the BMR be set in terms of a change 

relative to the standard deviation of the data, rather than setting a percent of 

the biological response. They argued that this provides a standardised basis 

for analysis. However, they suggested that the ideal means of setting the 

BMR is having a biological basis for this decision, or some agreed definition of 

what minimal level of change is biologically significant (US EPA, 2012). 

 

53. For quantal data, the current recommendation from EFSA and US EPA 

is to employ a BMR of 10% when modelling. The selection of this response 

level is both statistical and practical based (EFSA, 2017; US EPA, 2012). The 

EPA note that this is near the limit of sensitivity for most cancer and 

noncancer bioassays of comparable size. However, in some cases biological 

considerations may warrant the use of a lower BMR (e.g., frank effects) (US 
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EPA, 2012). EFSA also note that estimates from NOAEL studies, indicate the 

upper bounds of extra risk at the NOAEL are close to 10%, suggesting a BMR 

of 10% would be an appropriate default (EFSA, 2017)  

 

Choosing the correct model or models for the data 
 
54. Both the US EPA and EFSA emphasise using models, where possible, 

that are consistent with the biological processes understood to underlie the 

data. These biologically based descriptions of the data would ideally describe 

the essential toxicokinetic and toxicodynamic processes related to the specific 

compound and toxicological process (EFSA, 2022; US EPA, 2012).  

 

55. In practice however, the biological mechanisms are often unknown. 

Finding the “best” mathematical model that describes the data is therefore a 

curve-fitting exercise that models the behaviour of experimentally measured 

endpoints in lieu of describing the underlying biology. Significant discussion 

exists around how to choose the most appropriate mathematical model(s) for 

this process (EFSA, 2022; FAO/WHO, 2020; US EPA, 2012).  

 

56. In the absence of a biologically based model, the current guidance 

from the US EPA, JECFA and EFSA, is that no a priori preferences for any 

model types over another is recommended, unless there are justifiable 

reasons. When considering which model to apply to a given set of outcome 

data, the choice of model or group of models therefore is primarily determined 

by the nature of data making up the endpoint of interest and the experimental 

design, dose selection etc. used to generate the data (EFSA, 2022; 

FAO/WHO, 2020; US EPA, 2012).  

 

57. This does not preclude a preference being made in practice. The US 

EPA guidance notes that as more flexible models are developed that can 

handle a variety of data types and qualities, hierarchies for some categories of 

endpoints will likely become more feasible and common. They noted as an 
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example, the practice of US EPA’s IRIS program which preferentially employs 

a multistage model for cancer dose-response modelling of cancer bioassay 

data (Gehlhaus et al., 2011). This model is considered to be sufficiently 

flexible to be used across most cancer bioassay data and allows for greater 

consistency across cancer dose-response analyses (US EPA, 2012). 

 

Models for continuous data 
 
58. DRMs for continuous data describe how the magnitude of response 

changes with dose and is typically defined as the central tendency of the 

observed data in relation to dose. Typical endpoints associated with 

continuous data include body weight and haematological parameters. 

Continuous data can be modelled using either individual values or summary 

statistics, if they describe the mean and variability at each dose level and the 

number of subjects per dose group (FAO/WHO, 2020). 

 

59. In their 2009 opinion, EFSA recommended that continuous data be 

modelled using the exponential or Hill family of dose-response models. At that 

time, 5 exponential models were included: differing primarily in the number of 

variable parameters available. 4 models were used to represent the Hill family 

(EFSA, 2009). Supporting this, Slob & Setzer found that most continuous 

dose-response data is well described by either exponential or Hill models 

(Slob and Setzer, 2014). Similarly, the JECFA/JMPR guidance recommended 

that only models contained within the general family of the exponential and 

Hill models be used as the default, and that the use of models outside of 

these need to be well justified (FAO/WHO, 2020). 

 

60. In their 2017 guidance, EFSA reiterated their recommendation that 

continuous data be modelled using the exponential and the Hill models but 

advised using only those model versions with 3 and 4 parameters. The four 

parameters (a, b, c and d) are described below. They noted that, in their 

experience, models with fewer than 3 parameters tended to have BMD 
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confidence intervals with low coverage when parameter d in the model is in 

reality unequal to one (EFSA, 2017). EFSA’s recommended models for 

continuous data contain up to four parameters in which: 

 

a) Is the response at dose 0, i.e., the base or background parameter.  

b) Is a parameter which reflects the potency of the chemical (or the 

sensitivity of the population), left shifter parameters indicate higher 

potency/higher sensitivity.  

c) Is the maximum change in response, compared to background 

response.  

d) Is a parameter reflecting the steepness of the curve (on log-dose 

scale).  

 

The four parameters are summarised in Figure 4. 

 

 
 

Figure 4. A four-model parameter: a, b, c and d and their interpretation for 

continuous data. The dashed arrow indicates how the curve would change 

when changing the respective parameters (Figure taken from EFSA, 2017). 

 

61. The US EPA software, BMDS, includes exponential and Hill models for 

the analysis of continuous data. They also include additional models: the 

power and polynomial (including linear) model (US EPA, 2022). There is 

some disagreement on the use of these latter models, however. In their 2017 

guidance, EFSA recommended against using these models on the grounds 
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that they are additive with respect to the background response. This could 

lead to fitted curves which predict negative values (EFSA, 2017).  

 

62. In EFSA’s most recent guidance (2022), the list of candidate models 

has been significantly updated and expanded. Along with exponential and Hill 

models, alternative flexible models (Inverse exponential, Log-normal, Gamma, 

LMS Two-stage, Probit, and Logistic) were added. This also unified the 

selection of models across both type of data, continuous and quantal. The 

current set includes 8 candidate models with 2 distributions for each (normal 

and Log normal) for a total of 16 models (default within the PROAST 

software) that can be fitted to the same data. All 16 models have 5 

parameters (4 parameters for the mean, μ(x), and one for the variance 

parameter, σ2). This approach is significantly more liberal in the types and 

number of mathematical models allowed (EFSA, 2022). EFSA’s justification 

for this expansion is that the suite of models should contain a sufficiently large 

number of (diverse) models which are flexible enough to ensure at least one 

approximates the true unknown DRM well. With the current suite, they argue, 

the likelihood of finding at least one well-fitting model is high (EFSA, 2022). A 

full description of these models is provided in Annex B. 

 

Models for dichotomous (quantal) data 
 
63. Dichotomous data, also referred to as quantal or binary data, describe 

an effect that is either observed or not observed in each individual subject 

such as a laboratory animal or human. Histopathology data, for instance, are 

a common type of dichotomous data (FAO/WHO, 2020). DRMs for quantal 

data define the probability that there will be an adverse response at a given 

dose, according to the occurrence of a particular adverse event. (EFSA, 

2022). Similar to continuous data, DRMs for dichotomous or quantal data 

estimate the central tendency of these frequencies, which can be interpreted 

as the probability that the outcome will be observed in a population 

(FAO/WHO, 2020). 
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64. Although the US EPA does not recommend specific models, US EPA 

practice can be inferred based on the models in BMDS (Haber et al., 2018). 

The US EPA software, BMDS, includes nine dichotomous models: Gamma, 

Logistic, Log-Logistic, Log Probit, Multistage, Probit, Weibull, Quantal Linear 

and Dichotomous Hill models (US EPA, 2022, 2012). By contrast, EFSA, in 

their 2017 guidance, list a total of eight candidate models for dichotomous 

endpoints. This list is largely a subgroup of the BMDS models, with two 

differences. Firstly, EFSA include latent variable models which are premised 

on an underlying continuous response, and dichotomised based on a cutoff 

value that is estimated from the data. In addition, EFSA recommends only the 

two-stage version of the linearised multistage (LMS) model, while BMDS 

allows for higher stages (multistage) (EFSA, 2017).  

 

65. In their 2009 and 2017 guidance, EFSA set out separate sets of 

models for continuous and dichotomous endpoints, taking account of the 

distinct nature of the endpoints (EFSA, 2017, 2009). As discussed above, the 

most recent guidance (2022) updates these recommendations to a single set 

of candidate models for quantal and continuous data. The main difference 

between applying these models to quantal data is that there is only one 

possible distribution for a quantal endpoint: the Bernoulli distribution. This is a 

discrete distribution having two possible outcomes: n=0 and n=1, where n=1 

("occurs") occurs with probability p and n=0 ("does not occur") occurs with 

probability q=1-p, where 0<p<1. In chemical toxicology, such a distribution 

might describe the probability of a discrete adverse outcome such as animal 

death or presence of tumours i.e. it occurs or does not occur (EFSA, 2022). A 

fuller description of these models is provided in Annex B. 

 

Other types of models 
 
66. There are also two special models: the full (or saturated) model and the 

null model.  
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• The null model describes the situation that there is no dose-response 

trend; i.e. the trend is flat / a horizontal line (EFSA, 2017).  

• The full model, in contrast, expresses the dose-response relationship 

of the observed responses at the given doses, but does not assume 

any one specific dose-response. It does, however, include the relevant 

distributional part of the model (EFSA, 2017). 

 

In practice, these are useful reference models. The goodness of a particular fit 

can be evaluated by comparison with either the null model, to determine if 

there exists a dose-response trend, and also the full model, to ascertain the 

general goodness of fit (FAO/WHO, 2020). 

 

67. Ordinal data is a categorical data type where the variables constitute 

qualitative data but with a ranked order. Examples in chemical risk 

assessment might be pathological descriptions of the severity of an endpoint 

(e.g. minimal, mild, moderate, etc.). Ordinal data can be sometimes reduced 

to quantal data but this may result in a loss of information, which is not 

recommended (EFSA, 2022; FAO/WHO, 2020). Models for analysing ordinal 

data are available in different software packages, such as PROAST or 

CatReg (available from the EPA website (US EPA, 2017).  

 

68. Nested data are commonly encountered in developmental toxicity 

studies. Litter effects are often related to the physiology of the mother. 

Therefore, statistical models should account for this, and analyses should be 

conducted on a per litter rather than a per pup basis, as the individual 

responses (e.g. presence of an adverse effect in a fetus) are inextricably 

linked to the group/nested unit (i.e. the litter) and therefore not statistically 

independent (US EPA, 2012). Models for nested data are currently available 

in the US EPA’s BMDS software, but not in PROAST. In the most recent 

BMDS software (Ver 3.3), only one nested dichotomous model is available 

(older versions included additional models). The nested logistic model is a 

log-logistic model, modified to include a litter-specific covariate. There are 
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currently no models for nested continuous endpoints in the current BMDS 

software however such models are planned for a future release (US EPA, 

2022). In their 2018 review of BMD modelling, Haber et al., compared the 

results of BMD calculations obtained using EFSA standard dichotomous 

models with their own analysis using the US EPA BMDS models for nested 

data for the derivation of an oral toxicity reference value for nickel. Use of the 

models for nested data in this case provided a better estimate of the BMDL, 

by using more of the data, and was more health-protective even though the 

BMDL was higher than that calculated using the standard models (Haber et 

al., 2018). 

 

69. For types of outcome and incidence data where there is not a standard 

set of models, there is no agreed guidance on the procedure. JECFA states 

that, where applicable, models can be selected from the literature. They warn 

however, that many models may not have been applied in a risk context. 

When choosing such a model or models, the choice and rationale for 

choosing should be clearly described including the reasons for including or 

excluding specific models (FAO/WHO, 2020). 

 

Fitting the model to the data 
 
70. The objective of model fitting is to best describe the dose-response 

relationship of a given data set. The process typically involves searching for 

parameter values in the model that lead to a function or curve that describes 

the data well, using some statistical criterion that defines a good fit 

(FAO/WHO, 2020).  

 

Constraining or not constraining the models 
 
71. As curve fitting typically optimise a model’s “best fit” to a given set of 

data without knowledge of the biological dose-response, this may lead to 

model fits that describe the data well but contain parameter values which are 
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“biologically improbable”. It has been argued that setting parameter bounds 

adds information which may improve the accuracy of the model and mitigate 

the likelihood of biologically implausible responses (FAO/WHO, 2020). 

 

72. Some constraints serve a practical necessity e.g., constraining the 

probabilities of an effect in a dichotomous model to no greater than one (US 

EPA, 2012). The EPA and EFSA agree on other general restrictions such as 

biological measures generally being positive, and that dose-responses will be 

generally monotonic (i.e., a higher dose of a given substance will have an 

equal or greater effect than a lower dose). Much existing practice constrains 

models to avoid non-monotonic curves (EFSA, 2017; US EPA, 2012). 

 

73. Other model restraints are controversial, and guidance from the EPA 

and EFSA diverge (Haber et al., 2018). An example is constraining models 

that are steeply supralinear. In some models, such as the Weibull model, 

where the dose is raised to a power of a given parameter, the slope of the 

dose-response curve can become very steep at low doses if the power 

parameter is estimated at values lower than 1. Thus, the US EPA 

recommends that the modeler should consider constraining power parameters 

to be 1 or greater (this is the default in the BMDS software). While EFSA 

(2017) acknowledge this concern exists, they point to work by Slob and 

Setzer (2014) that demonstrates that this constraint is largely based on a false 

argument and is contradicted by real dose-response data (EFSA, 2017; Slob 

and Setzer, 2014). They recommend against constraining the model in this 

way, as it could produce artificially high BMDLs (EFSA, 2017). 

 

74. The US EPA encourages the use of constrained models as a frontline 

approach, to avoid biologically unreasonable dose-response curves. They 

recommend unconstrained models only be used if an acceptable fit is not 

achievable using constrained models (US EPA, 2012). Similarly JECFA/JMPR 

guidance accepts that constraints may be needed “when it is deemed 

biologically appropriate” and also highlights that parameter constraints are 
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less necessary when using model averaging or Bayesian methods in general 

(FAO/WHO, 2020). 

 

Convergence  
 
75. The goal of the fitting process is to find values for the model 

parameters so that the resulting fitted model describe the data most optimally. 

The practical matter of determining the “best” parameters for model fit 

typically involve a BMD software starting with an initial “guess” for the 

parameter values. Then, this guess is iteratively updated, producing a 

sequence of estimates that (usually) converge. Many models will converge to 

the right estimates for most datasets from just any reasonable set of initial 

parameter values; however, some models, and some datasets, may require 

multiple guesses at values before the model or models converge (US EPA, 

2012). 

 

76. After fitting all models, the first step is to evaluate model convergence. 

If the model did not converge to a single maximum likelihood, it is possible 

that there may be more than one set of parameter estimates that would result 

in similar log-likelihood values (Haber et al., 2018). The EFSA guidance states 

that convergence does not guarantee a reliable BMD confidence interval, and 

a message of non-convergence does not necessarily indicate that the model 

should be rejected. EFSA state that simulations have shown that non-

convergence may have little impact on the BMD confidence interval but 

recommend that in instances where convergence is not achieved that a BMD 

specialist should be consulted. They note that a lack of convergence could be 

because the data are not informative, or the model may be over-

parameterised (EFSA, 2017). 

 

Evaluating the model fit 
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77. The JECFA (2020) guidance provide a list of commonly applied 

methods for evaluating if a given dose-response model fits a data set well. 

These methods include examination of the visual fit, bootstrap statistics to 

evaluate goodness-of-fit (frequentist model averaging), and appropriate 

Bayesian methods if applicable. For individual models, JECFA state that 

users can compare models using the AIC or BIC (Bayesian information 

criterion) and evaluate them using analysis of deviance and Pearson χ2 

goodness-of-fit tests. They note that no one technique is recommended for 

every case, and stress that the model fit criteria should be justified and 

documented (FAO/WHO, 2020). 

 

78. The EPA list criteria on which the quality of a given model can be 

assessed but stop short of prescribing the choice of the model. Instead, they 

provide a series of steps to determine the best model or suite of models in 

each case (Haber et al., 2018; US EPA, 2012). These steps are summarised 

briefly here:  

• Assessing the goodness-of-fit: The EPA recommend using a value of α 

= 0.1 (or α = 0.05 / 0.01 if appropriate) to compute the critical value for 

goodness-of-fit, along with a visual inspection of the model fit.  

• They recommend rejecting models that do not sufficiently describe the 

low-dose portion of the dose-response, by a combination of examining 

the scaled residuals and visual fit of the relevant model or models.  

 

Any models which pass the criteria are assumed to meet the recommended 

default statistical criteria for adequacy and visual fit, and theoretically could be 

used for determining the BMDL (US EPA, 2012).  

 

• If the BMDL estimates from the qualifying models are sufficiently 

“close” (i.e. there is no strong influence of any one individual model), 

then the guidance recommends that the model with the lowest AIC 

(Akaike, 1973) can be used to calculate the BMDL for the RP. If two or 
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more models share the lowest AIC, the average BMDLs from these 

models may be used (US EPA, 2012). 

• If the BMDL estimates are disparate enough to be considered “not 

sufficiently close”, (i.e., some model dependence can be assumed), the 

EPA acknowledge that expert user judgment is needed to determine if 

the uncertainty is too great to rely on the results. They suggest that if 

the range of BMDLs is judged reasonable, but there is no obvious 

biological or statistical basis to choose one over another, the lowest 

BMDL may be selected as a conservative estimate (US EPA, 2012).  

 

79. EFSA (2017) also recommend using the AIC in the selection of the 

models for frequentist approaches (EFSA, 2017). The AIC is calculated as:  

 

AIC = -2 log(L) + 2p  

 

with log(L) being the log-likelihood of the model, and p being the number of 

parameters. The first term, -2 log(L), decrease as the model gets closer to the 

measured data, while the second term 2p acts to penalise the number of 

parameters in the model. Thus, a model with a relatively low AIC may be 

considered as providing a good fit without using too many parameters (EFSA, 

2017). 

 

80. Based on work from Burnham and Anderson (2004), EFSA 

recommend that models resulting in AICs differing by less than two units may 

be regarded as describing the data equally well (Burnham and Anderson, 

2004; EFSA, 2017). EFSA note that this cutoff between good and poor 

models is relatively arbitrary and acknowledge that in specific cases, a user 

may decide to use a larger value than 2, e.g. when using a value of 2 would 

lead to the selection of just one model being selected (EFSA, 2017).  

 

81. Further, EFSA notes that the AIC criterion can be used to investigate if 

there is, in fact, a dose-related trend in the data. For a model to show 
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statistical evidence of a dose-related trend, EFSA proposes that a model’s 

AIC be lower than the AIC (null model) - 2. Similarly, the AIC criterion can also 

be used to compare the fit of any model with that of the full model. If the 

model with the minimal AIC is greater than two units larger than that of the full 

model, (AIC(min model)  > AIC(full model) + 2), this could indicate an 

inappropriate dose-response model (e.g. it may contain insufficient numbers 

of parameters), or a misspecification of the distributional part of the model 

(e.g. litter effects are ignored), or to other non-random errors in the data 

(EFSA, 2017).  

 

Model Averaging  
 
82. A notable divergence between EPA and EFSA guidance, since 2017, is 

their approach to model uncertainty. Haber and colleagues note, in their 

review of BMD modelling, that there is a growing recognition that methods 

which attempts to choose a “best” model (and use the associated BMDL) do 

not reflect the true model uncertainty (Haber et al., 2018).  

 

83. The EFSA (2017) guidance proposes that the goal of BMD analysis is 

not to identify the best fitting model and get an estimate of the (true) BMD. 

Rather, the goal should be to find a range of plausible values of the (true) 

BMD as described by a range of models, given the data available. In practice, 

this involves considering all models that offer plausible descriptions of the 

data - even models resulting in slightly poorer fits. EFSA note “After all, it 

could well be that the second (or third, ...) best-fitting model is closer to the 

true dose-response than the best-fitting model”. This so-called ‘model 

uncertainty’ is the basis for their recommendation for BMD confidence 

intervals to be used and are based on the results from various models, 

instead of a single ‘best’ model (EFSA, 2017).  

 

84. Model averaging has been proposed as an appropriate method to 

address model uncertainty in DRMs (EFSA, 2017; FAO/WHO, 2020). Model 
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averaging permits an estimate of the dose-response relationship and 

associated statistics, such as the BMD and confidence intervals, using a 

weighted average of all model fits (Burnham and Anderson, 2004; Kang et al., 

2000; Wheeler and Bailer, 2009, 2008, 2007). Individual model results are 

combined using weights, with higher weights accorded to models that fit the 

data better (EFSA, 2017; FAO/WHO, 2020).  

 

85. The EPA guidance (2012) acknowledges the utility of model averaging 

to estimate levels of uncertainly in the model fits. However, they note this is a 

more complex undertaking; resulting model fits may give divergent results and 

more difficult interpretations. They recommend, instead of model averaging, 

users select a single well-fitting and plausible model (US EPA, 2012). They 

note that using the uncertainly of the model fits to derive the average BMD 

and associated confidence intervals also has disadvantages, including the 

fact the 95% lower bound (on the average BMD) is not, in fact, the lower 

bound described in the various individual estimates, but a lower bound of the 

average of the particular BMDLs under consideration (i.e., statistical 

properties of the individual estimates are lost) (US EPA, 2012). 

 

Bayesian vs frequentist approach 
 
86. Historically, BMD software for DRMs used frequentist methodologies. 

However, advances in numerical mathematics and developments in BMD 

software have made possible the use of Bayesian methods for the same 

approach (Shao and Gift, 2014; Shao and Shapiro, 2018). The significance of 

this development is reflected in EFSA’s most recent 2022 guidance which 

recommends a change from a frequentist to Bayesian approach as the 

preferred approach for estimating the BMD and calculating credible intervals 

(EFSA, 2022).  

 

87. Both PROAST and BMDS allows the user to run either (or both) 

Bayesian or non-Bayesian analyses (EFSA, 2022; US EPA, 2022). Non-
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Bayesian approaches, often referred to as “frequentist” or “maximum-

likelihood estimation (MLE)” are based on likelihood calculations. In this 

approach, parameters are fixed and unknown and estimation involves finding 

the best estimate based on the data provided. Models fit by these methods 

report MLE and associated statistical measures such as p-values and 

goodness-of-fit evaluations. This approach has been criticised, (e.g., in a 

recent paper by Ji et. al., (2022)) as it may not account for all the model 

uncertainty and consequently, it may result in over-confident inferences and 

predictions (Clyde, 2003; Ji et al., 2022). 

 

88. In the Bayesian analyses, by contrast, parameters are treated as 

random variables with their own probability distributions. Distributions 

describing the a priori uncertainty in the parameter values (the so-called prior 

distributions) are updated using the data under consideration to yield a 

posteriori distributions (EFSA, 2022; US EPA, 2022). In both the frequentist 

and Bayesian approaches, the objective of model fitting is the same: to best 

describe the dose-response data by searching for those parameter values 

that lead to a curve that describes the data well, as defined by some statistical 

criterion of good fit. 

 

89. One consequence of using traditional frequentist methods for 

estimating model parameters is that parameters may be estimated even when 

the data provide little information on the parameter. This can lead, in some 

instances, to parameter values that may be considered a biologically 

implausible. JECFA, in their 2020 guidance, give the example of the Hill 

model for continuous data. In cases where the data does not suggest a 

sigmoidal shape to the dose response relationship, the data provides no 

information on the steepness parameter. As discussed, this has led to the 

recommendation that parameter constraints be considered in some instances 

to mitigate this possibility (see section on “Constraining or not constraining the 

models”). In contrast, parameter constraints are not necessary when using 

Bayesian methods in general. When using the Bayesian approach, the WHO 
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guidance recommends that priors should be reasonably diffuse over values of 

the target parameter and to mitigate against possible biases, a sensitivity 

analysis of the effect of the priors should be clearly documented (FAO/WHO, 

2020). 

 

90. As with the frequentist approach, Bayesian model averaging (BMA) 

has been suggested to address concerns regarding model uncertainty. In 

BMA, the “plausibility” of the model is described by the posterior model 

probability, which is determined using the fundamental Bayesian principles - 

the Bayes theorem - and applied universally to all data analyses. 

 
91. Terminology and interpretation of the resulting outputs are also 

different but serve a similar purpose. The 90% confidence interval and 

significance levels typically used to describe uncertainty in the frequentist 

approach, are replaced in the Bayesian approach with two-sided 90% credible 

interval. This corresponds to an interval that covers 90% of likely values of the 

BMD (the probability that the BMD is within the limits of the credible interval is 

0.9). Similar to the non-Bayesian approach, the 5% BMDL and 95% BMDU 

are defined as the lower and upper bound of a 90% CI for the BMD 

respectively (EFSA, 2022). 

 

92. EFSA 2022 also note that the Bayesian approach can mimic a learning 

process; the posterior distribution is updated based on prior belief and the 

data provided, resulting in posterior distributions that reflects the accumulation 

of knowledge over time. A full discussion of Bayesian modelling in the BMD 

approach and the theoretical basis is provided in recent technical guidance 

and expert scientific opinion documents (EFSA, 2022; FAO/WHO, 2020; US 

EPA, 2022). 

 

Case Study (FSA Computational Fellow)  
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93. As part of its ongoing work to evaluate the potential of BMD modelling 

in chemical risk assessment, the FSA is working with external and 

independent collaborators to assess the utility and practicality of the approach 

in a research setting. The following case study (Carvalho et al 2024 (in prep) 

(TOX/2023/53) demonstrates how the latest BMD modelling approaches can 

be applied and integrated to the development and application of a high-

throughput gene expression profiling of per- and polyfluoroalkyl substances 

(PFAS) in primary liver human spheroids. These experiments can help 

produce toxicologically relevant information for risk assessment by informing 

read-across in data poor environments. 

 

94. Figure 5 provides a summary of the approach and the in-silico workflow 

used to derive a health-based guidance value for PFAS. 

 

 
Figure 5. In silico workflow used to derive a health-based guidance 
value for PFOA. 
 

95. Data was generated in Step 1 (Figure 5) by exposing human liver 

spheroids to 10 different concentrations of four different PFASs and analysed 

https://cot.food.gov.uk/Presentations%20from%20the%20FSA%20Fellow%20and%20PhD%20Student
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over four time points: days 1, 4, 10, and 14 (Rowan-Carroll et al. 2021). The 

expression patterns of about 3000 toxicologically relevant/representative 

genes were then analysed for their effects in the toxicological assay. The in 

vitro effects of the PFAS known as perfluorooctanoic acid (PFOA) were 

modelled at day 10 of exposure, as it was the best time point to observe 

differentially expressed genes.  

 

96. The BMD software BMDExpress3 (Releases · 

auerbachs/BMDExpress-3 (github.com) (described in the section below) was 

employed in Step 2 (Figure 5) to derive molecular points of departure from the 

gene expression data obtained from the literature and Gene Expression 

Omnibus ( GEO Accession viewer (nih.gov). Modelling was performed under 

expert guidance. The BMD software provided, as an output, the chosen 

models for each gene as well as the model averaging for the benchmark 

concentration as well as both lower and upper bounds of the confidence 

interval. 

 

97. In silico modelling of the toxicokinetic properties of PFOA is performed 

as part of the characterisation process using a calibrated model (Step 3 and 
4, Figure 5). In the final step (Step 5) of the workflow, PROAST or 

alternatively, EFSA’s Bayesian BMD modelling suite, (EFSA - Sign in 

(b2clogin.com) was employed to derive a final health-based guidance value 

for PFOA using the in vivo dose-response data we had obtained from Step 3 
and 4.  

 

User experience 
 
BMDExpress3 
 
98. BMDExpress3 is a software tool designed for the benchmark dose 

analyses of genomic data. The software application is designed to perform a 

https://github.com/auerbachs/BMDExpress-3/releases
https://github.com/auerbachs/BMDExpress-3/releases
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144775
https://efsab2c.b2clogin.com/efsab2c.onmicrosoft.com/b2c_1_signin/oauth2/v2.0/authorize?response_type=code&client_id=be616b14-895a-4257-9e38-b503da802ba3&scope=be616b14-895a-4257-9e38-b503da802ba3%20openid%20email&state=LrFwcxHMwOungULayymmgpH0s6odGzEYeU6StqXih5g%3D&redirect_uri=https://r4eu.efsa.europa.eu/login/oauth2/code/shinyproxy&nonce=NwZkY7ZwiPjyKbGUpPSzrCw2x4A517jJUmk2mTxdRo0
https://efsab2c.b2clogin.com/efsab2c.onmicrosoft.com/b2c_1_signin/oauth2/v2.0/authorize?response_type=code&client_id=be616b14-895a-4257-9e38-b503da802ba3&scope=be616b14-895a-4257-9e38-b503da802ba3%20openid%20email&state=LrFwcxHMwOungULayymmgpH0s6odGzEYeU6StqXih5g%3D&redirect_uri=https://r4eu.efsa.europa.eu/login/oauth2/code/shinyproxy&nonce=NwZkY7ZwiPjyKbGUpPSzrCw2x4A517jJUmk2mTxdRo0
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stepwise analysis to identify the subset of genes that demonstrate significant 

dose-response behaviour (Yang et al., 2007).  

 

99. Before use, the software must be downloaded and installed onto the 

desktop (Releases · auerbachs/BMDExpress-3 (github.com). No account or 

sign up is required and step-by-step guidance on the setup and use of the 

software is available (How to Use the Application · auerbachs/BMDExpress-3 

Wiki · GitHub ). The application has been developed significantly since its first 

release and software can be configured to look for the most up to date version 

available when starting each time to ensure the latest functionalities are 

available for the user. 

 

Data Input 

 
100. Gene expression data from human liver spheroids were analysed using 

BMDExpress3 and the dose response relationship analysed using the suite of 

in-built DRMs. The software can handle a range of data types; however, the 

data must be formatted correctly as the software only accepts tab delimited 

text files as input with correctly labelled columns and rows (see Figure 6). It 

was the users experience that log-transforming the data was preferable and 

recommended. 

 
Figure 6. Example of formatted input data for BMDExpress3. Files must 

be saved as tab delimited excel files and the columns must be arranged as 

shown in the figure. The first row contains SampleIDs, the second row 

contains assigned dose (or concentration) levels, and all probes/genes/ 

metabolites are contianed in the third row onwards. Readings/counts must be 

normalised (log-transformed) before entry. 

https://github.com/auerbachs/BMDExpress-3/releases
https://github.com/auerbachs/BMDExpress-3/wiki/How-to-Use-the-Application
https://github.com/auerbachs/BMDExpress-3/wiki/How-to-Use-the-Application
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101. After preparing the data to import into BMDExpress3, the user can 

select the most appropriate platform for their data, as the software recognises 

some of the most used formats available. For this study, the appropriate 

platform was “BioSpyder S1500_Plus_Plus_Human_2.0 191113”. 

 

Model Selection and operation 

 
102. All of the dose-response curve fit models utilized by BMDExpress are 

those contained within USEPA BMDS software (Benchmark Dose Tools | US 

EPA). US EPA, 2022). A full discussion of these models is provided in Annex 

B. The user can select Power, Exponential, Hill and Linear models. The user 

can set the benchmark response to be a percentage or standard deviation 

when compared to controls and there is a graphical user interface and 

accompanying tutorial available showing how to work with dose- and 

concentration-response data (Benchmark Dose Analysis · 

auerbachs/BMDExpress-3 Wiki · GitHub). 

 

103. The BMDExpress software also allows the option to flag Hill Models 

with ‘k’ Parameter < [selected value]. This allows the user to specify that if the 

Hill model is selected as one of the models to fit the data, it will be flagged if 

its ‘k’ parameter is smaller than the lowest positive dose, or a fraction (1/2, or 

1/3) of the lowest positive dose (Annex B). As discussed in “Constraining or 

not constraining the models” section above, this option is included since the 

Hill model may provide unrealistic BMD and BMDL values for certain dose 

response curves, even when it provides the lowest AIC value. Once flagged 

the user can then choose a range of options including whether to include or 

exclude the flagged model or models from the final analysis. 

 

104. When analysing the results, the user can filter data using their set of 

criteria; in this case study the following rules were used to ensure minimised 

uncertainty and maximise the confidence in the identification of genes 

exhibiting concentration-response relationships: 

https://www.epa.gov/bmds
https://www.epa.gov/bmds
https://github.com/auerbachs/BMDExpress-3/wiki/Benchmark-Dose-Analysis
https://github.com/auerbachs/BMDExpress-3/wiki/Benchmark-Dose-Analysis
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Custom settings employed in this study were as follows: 

• K < 1/3, to flag Hill models 

• BMR (benchmark response) = 1 SD 

• 250 iterations 

• Post-modelling filters to exclude low quality data: 

 Data were excluded if the BMD > highest concentration of test 

compound used in the in vitro experiments. 

 Data were excluded if the BMDU/BMDL ≥ 40 (as this indicated a 

high degree of uncertainty about the BMD and resulting RP. 

 Data were excluded if the p < 0.1. 

 

Data output and visualisation 

 
105. The main screen of BMDExpress3 interface displays the assembled 

BMD analysis result for all genes modelled. The user has a range of options 

to interact with the results table and customise visualisation e.g., toggling 

columns on/off, adding filter criteria, marking selected data, and selecting or 

creating their charts to represent the data (Figure 7). The results can be 

readily exported as a tab delimited file that is compatible with other 

spreadsheet editors (MS Excel, LibreOffice Calc, etc.). 
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Figure 7. Graphical user interface of BMDExpress3 showing BMD 
analysis. Each row represents a Probe ID that was previously imported into 

the software (see Figure 6). 

 

106. Each row (“Entrez Gene ID") on the main screen (Figure 7) is clickable 

and will open a new window named “Curve Viewer” (Figure 8). The Curve 

Viewer interface provides both visual and numerical outputs for the BMD 

modelling operation. Users are provided with a plot of the experimental data 

and superimposed model fits along with the model average. The user can 

choose to open a drop-down list and select other available models to inspect 

their respective plots. Likewise, the user can click over the Probe ID 

(ECH1_2022) to open a drop-down list and access other Probes 

(experimental data sets) to inspect their models and plots. The chart can be 

edited (title, axis labels, font type and size, colours, etc) and can be exported 

as an image (.jpg, .png, and .svg). 
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Figure 8. Curve viewer window of BMDExpress3. The software allows the 

visualisation of dose-response data and fitted models alongside the estimated 

BMD model parameter and weights. Users have the option to select individual 

models or the model average, as well as visualizing the different experimental 

data sets. 

 

PROAST 
 
107. PROAST is a software package for the statistical analysis of dose-

response data. Its main purpose is dose-response modelling of toxicological 

data. PROAST was operated online, where all the features can be easily 

accessed after creating a free account to be registered as a user EFSA - Sign 

in (b2clogin.com). 

 

Data Input 

 
108. Unlike BMDExpress3, PROAST allows the user to either input a tab 

delimited text file or a comma separated text file. There is no predesignated 

column format; the user selects the column corresponding to the test 

compound concentrations and the column corresponding to the response 

variables. It is necessary for the user to select the correct column with the 

https://efsab2c.b2clogin.com/efsab2c.onmicrosoft.com/b2c_1_signin/oauth2/v2.0/authorize?response_type=code&client_id=be616b14-895a-4257-9e38-b503da802ba3&scope=be616b14-895a-4257-9e38-b503da802ba3%20openid%20email&state=fSWAAwH6x34rniOnaSFUt7rDfwS1ATLqra06R1XDbPU%3D&redirect_uri=https://r4eu.efsa.europa.eu/login/oauth2/code/shinyproxy&nonce=T9ojFiu5ai1SUA8Mu0s5d__APUAWm22ad2tTHekiXqw
https://efsab2c.b2clogin.com/efsab2c.onmicrosoft.com/b2c_1_signin/oauth2/v2.0/authorize?response_type=code&client_id=be616b14-895a-4257-9e38-b503da802ba3&scope=be616b14-895a-4257-9e38-b503da802ba3%20openid%20email&state=fSWAAwH6x34rniOnaSFUt7rDfwS1ATLqra06R1XDbPU%3D&redirect_uri=https://r4eu.efsa.europa.eu/login/oauth2/code/shinyproxy&nonce=T9ojFiu5ai1SUA8Mu0s5d__APUAWm22ad2tTHekiXqw
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responses and the type of response (quantal, binary, or continuous) along 

with the type of data (individual or summary). There is also the ability to add 

(or not) a litter effect if required. 

 

Model Selection and operation 

 
109. In the “Fit models” tab, the user can select the independent variable 

(dose) and the response variable(s), as well as add covariates if that is 

necessary, along with the choice of models and whether model averaging will 

be applied. The user can select how many bootstraps will be performed, with 

the default value set at 200. The maximum difference in AIC for model 

acceptance is 2 by default, but the user can change this value too. 

 

110. The benchmark response (BMR), shown in the PROAST software as 

critical effect size (CES), is set as 0.05 or 5% as the default value but this can 

be altered to whatever the user decides. The user can also select the 

confidence level for the BMD confidence intervals (upper and lower bounds) 

with the default value set at 0.9 or 90%. In the present study, these 

parameters were left set at their default values. 

 

Data output and visualisation 

 
111. Once the models are fit, a report with all standard plots can be 

downloaded or the user can generate personalised plots according to their 

needs (Figure 9). The online version of the results is displayed on screen as 

well, and information about the BMD values and the best model(s), as well as 

the weights for the model averaging are provided alongside the model 

summaries (not shown).  
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Figure 9. Output screen of PROAST web application. The software 

visualises the dose-response data along with the fitted BMD models. The 

estimated BMD model parameters are shown to the right of the graphs. Users 

can download each image and table individually by clicking on their respective 

“Download” button. 

 

112. The visualised output displays the plots alongside the calculated BMD, 

BMDL, and BMDU (In the software these are displayed as the critical effect 

dose, CED, critical effect dose lower bound, CEDL, and critical effect dose 

upper bound, CEDU, respectively). Note: The standard plots display data on a 

log10 scale. Users need to be aware that the data presented beside the plot is 

dependent upon the units that were input by the user initially. The page also 

displays the plotted bootstrap models (Default: 200) with the averaged BMDL, 

BMDU, and the confidence intervals. 

 

PROAST Bayesian BMD modelling 
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113. EFSA also offers a web application for Bayesian BMD modelling 

(EFSA - Sign in (b2clogin.com). The rational and mathematical basis to the 

Bayesian BMD approach is discussed in detail in EFSA’s 2022 updated BMD 

guidance and practical demonstration of the software and additional 

background is also available in the form of the publicly available video of the 

2023 EFSA BMD workshop (EFSA, 2022; EFSA Workshop, 2023). 

 

Data Input 

 
114. The data input format is the same as that required by PROAST – tab or 

comma delimited text file with dose-response data.  

 

Model Selection and operation 

 
115. The user can check if their data is suitable and of sufficient quality for 

dose-response modelling. The software implements an initial analysis of the 

dose response data to determine if there is sufficient evidence for a 

substantial dose-effect before the full modelling is attempted.  

 

116. The distribution can be selected as normal or log-normal, as 

appropriate and users can decide whether to perform a sensitivity analysis or 

not. As with the non-Bayesian software, the user can define CES (aka BMR) 

and the credible interval. Additionally, the user can select whether the Prior 

information is set to a default (uninformative) prior or if an informative prior is 

to be used. This allows the user to add additional information to the modelling 

from outside the experimental data set, such as information from historical 

experiments which will then be used to calculate the posterior likelihood 

distribution.  

 

117. The Bayesian BMD web application also allows the user to access 

advanced settings which allows them to choose for example:  

 

https://efsab2c.b2clogin.com/efsab2c.onmicrosoft.com/b2c_1_signin/oauth2/v2.0/authorize?response_type=code&client_id=be616b14-895a-4257-9e38-b503da802ba3&scope=be616b14-895a-4257-9e38-b503da802ba3%20openid%20email&state=4G6UzCRBJdlME9EYyGri5psYtfpNNZUIdS-mKBV38gE%3D&redirect_uri=https://r4eu.efsa.europa.eu/login/oauth2/code/shinyproxy&nonce=fDQ9kKs5gPtMSIXLGFaU06HCxtUEasc5zs175uk2uWA
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• The type of sampling method (Laplace or Bridge) employed. (Note: The 

Laplace method uses approximations to derive the sampling data, 

however Bridge sampling is more computationally expensive) 

• Whether to extend (or not) the dosing range beyond the range of the 

experimental data 

• Which models to include - Up to 16 different models are available. 

(Available models are discussed in EFSA, 2022 updated BMD 

Guidance (included as part of Annex B)).  

• The Number of draws to be made from posterior sampling: The 

Number of Markov chain Monte Carlo (MCMC) chains and the Number 

of MCMC interactions as well as how many MCMC interactions should 

be discarded as warmup. 

 

Data output and visualisation 

 
118. Once the models are fit, the Bayesian BMD application displays the 

results on-screen, plotting the results of the modelling alongside the 

experimental data. The posterior distribution, along with the 90% confidence 

intervals are superimposed on the same graph by default (Figure 10). An 

advanced plotting option is also available, for personalised, higher quality 

plots/images. 
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Figure 10. Output of the Bayesian BMD web application. Vertical lines 

show the observed mean responses ± standard deviation of experimental 

data. The dashed curve is a fitted dose-response model. The density region 

shows the posterior distribution of the BMD and the green line indicates the 

boundaries of the two-sided 90% credible interval of the BMD. The BMDL, is 

the 95% one-sided lower bound of the credible interval for the BMD. Similarly, 

the BMDU is the 95% one-sided upper bound of the 90% credible interval for 

the BMD. 

 

119. The software also provides a breakdown of the individual models in the 

form of a table along with their BMDs, BMDLs, BMDUs, and the weights that 

the software accorded to each one. The user can also download an 

automatically generated report by clicking the “Download report” button 

available in the top left corner of the webpage (Figure 11). 

 

120. Finally, the model averaged results for the BMD, BMDL, BMDU are 

presented in a separate table along with a notification if any of the constituent 

models defy the normality assumptions (green indicated no normality tests 

have been rejected for any model). 
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Figure 11. Output screen of the Bayesian BMD web application. Tables 

showing the BMDs, BMDLs, BMDUs, for the various individual fitted models 

(Upper table) or Model averaged curve (Lower table).   
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Table 1. User generated feedback on the three BMD modelling platforms 
used in this study.   
 
Details BMDExpress3 EFSA / PROAST   EFSA Bayesian 

BMD modelling 
Platform and 

operations. 

Standalone software 

(Installation 

Required). 

Web application  

(no need to 

download and 

install). 

Web application  

(no need to 

download and 

install). 

Account 

required. 

No Yes Yes 

First use / 

Learning 

curve. 

Easy to get started. Easy to get started. Easy to get started. 

Training or 

Online 

material 

available?  

How to setup and 

use webpage - Very 

useful and 

instructive 

Benchmark Dose 

Analysis · 

auerbachs/BMDExp

ress-3 Wiki · 

GitHub.  

Wiki page is 

extremely useful, 

rich in screenshots 

of the application, 

and the video 

tutorials are a great 

plus Benchmark 

Dose Analysis · 

Training was 

primarily from other 

expert users. 

Training was 

primarily from other 

expert users. 

https://github.com/auerbachs/BMDExpress-3/wiki/Benchmark-Dose-Analysis
https://github.com/auerbachs/BMDExpress-3/wiki/Benchmark-Dose-Analysis
https://github.com/auerbachs/BMDExpress-3/wiki/Benchmark-Dose-Analysis
https://github.com/auerbachs/BMDExpress-3/wiki/Benchmark-Dose-Analysis
https://github.com/auerbachs/BMDExpress-3/wiki/Benchmark-Dose-Analysis
https://github.com/auerbachs/BMDExpress-3/wiki/Benchmark-Dose-Analysis
https://github.com/auerbachs/BMDExpress-3/wiki/Benchmark-Dose-Analysis
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Details BMDExpress3 EFSA / PROAST   EFSA Bayesian 
BMD modelling 

auerbachs/BMDExp

ress-3 Wiki · 

GitHub.  

File format 

accepted for 

data input. 

Only accepts tab 

delimited text files. 

File needs to be 

formatted in specific 

way (name on 

columns and rows). 

Tab delimited text 

file or a comma 

separated text file, 

can deal with both. 

 

Tab delimited text 

file or a comma 

separated text file, 

can deal with both. 

 

Continuous 

data 

accepted? 

Yes 

 

Yes 

 

Yes 

 

Nested 

continuous 

data 

accepted? 

(e.g. litter 

effects). 

No Yes 

 

Yes 

 

Quantal data 

accepted? 

No  Yes 

 

Yes 

 

Suitability for 

biological 

analysis. 

Better for analysing 

‘omics data (genes 

and metabolites),  

Less practical for 

other data types 

(such as clinical 

chemistry or 

exposure data) 

BMDExpress3 

Flexible software 

which can handle a 

range of data types. 

 

Flexible software 

which can handle a 

range of data types. 

 

https://github.com/auerbachs/BMDExpress-3/wiki/Benchmark-Dose-Analysis
https://github.com/auerbachs/BMDExpress-3/wiki/Benchmark-Dose-Analysis
https://github.com/auerbachs/BMDExpress-3/wiki/Benchmark-Dose-Analysis
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Details BMDExpress3 EFSA / PROAST   EFSA Bayesian 
BMD modelling 

requires extra steps 

for formatting the 

data and selecting 

“generic platform” is  

No Detail. A must prior to 

modelling. 

No Detail. No detail. 

User 

interface.  

 

Graphical User 

Interface (GUI). 

 

 

Both R version 

(command line) and 

web application with 

GUI possible. 

Web application 

with (GUI). 

 

Range of 

Models 

available. 

Dose-response 

models utilized by 

are those contained 

within USEPA 

BMDS software 

(www.epa.gov/bmds

, See Annex B for 

full discussion.). 

Users can choose 

from a range of 

models: Hill, Power, 

Exponential (3 and 

5), Linear, and 

Polynomial (2, 3, 

and 4). 

As an additional 

option for modelling, 

there is also 

GCurveP (Sciome). 

Automatically 

generates: 

• Hill,  

• Exponential,  

• Lognormal,  

• Inverse 

Exponential  

 

See Annex B for full 

discussion. 

Users can choose 

from a range of 16 

models:   

 

Exponential Normal, 

Inverse Exponential 

Normal, Hill Normal, 

Lognormal Normal, 

Gamma Normal, 

Quadratic 

Exponential Normal, 

Probit Normal, Logit 

Normal, and their 8 

Lognormal 

equivalents. 

See Annex B for full 

discussion. 
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Details BMDExpress3 EFSA / PROAST   EFSA Bayesian 
BMD modelling 

Model 

averaging 

Available? 

Model averaging 

Available? 

Model averaging 

Available? 

Model averaging 

Available? 

Details. Yes,  

User can select Hill, 

Power, and 

Exponential (3 and 

5) models to run the 

model averaging 

module. 

 

Yes, 

The possibility of 

visualization of the 

weights for each 

model in PROAST 

is an advantage. 

 

 

 

Yes, 

User can select 16 

different models and 

two different 

sampling methods, 

as well as visualize 

the weights for each 

model in Bayesian 

BMD. 

Includes 

covariates 

analysis? 

No Yes Yes 

Bayesian 

analysis. 

MCMC Bayesian 

approaches to 

model averaging 

(available in v.3, 

with ToxicR 

functionality). 

No Yes 

Option to 

email user 

when 

modelling is 

complete? 

No Yes Yes 

Graphical 

output. 
Visual plot of the 

data and BMD 

curves. 

Visual plot of the 

data and BMD 

curves. 

Visual plot of the 

data and BMD 

curves. 
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Details BMDExpress3 EFSA / PROAST   EFSA Bayesian 
BMD modelling 

 

Limited plot editing 

capabilities: 

Software allows for 

the modifications of 

axis names but 

only.original scales 

for y-axis and x-

axis. 

 

Includes more 

options to modify 

output graphs, 

change scales etc. 

(e.g. log-scales). 

Advanced plotting 

features allows 

publication quality 

images to be 

produced and 

downloaded easily. 

 

Includes more 

options to modify 

output graphs, 

change scales etc. 

(e.g. log-scales). 

Advanced plotting 

features allows 

publication quality 

images to be 

produced and 

downloaded easily. 

Automatically 

generate final 

reports? 

No Yes 

 

Yes 

 

 

Available 

online at: 

 

Version 3 is 

available at:  

Releases · 

auerbachs/BMDExp

ress-3 (github.com). 

Version 2 command 

line is available at:  

Command Line · 

auerbachs/BMDExp

ress-3 Wiki · GitHub 

along with 

instructions on how 

to use it. 

EFSA - Sign in 

(b2clogin.com) 

EFSA - Sign in 

(b2clogin.com) 

 
 

https://github.com/auerbachs/BMDExpress-3/releases
https://github.com/auerbachs/BMDExpress-3/releases
https://github.com/auerbachs/BMDExpress-3/releases
https://github.com/auerbachs/BMDExpress-3/wiki/Command-Line
https://github.com/auerbachs/BMDExpress-3/wiki/Command-Line
https://github.com/auerbachs/BMDExpress-3/wiki/Command-Line
https://efsab2c.b2clogin.com/efsab2c.onmicrosoft.com/b2c_1_signin/oauth2/v2.0/authorize?response_type=code&client_id=be616b14-895a-4257-9e38-b503da802ba3&scope=be616b14-895a-4257-9e38-b503da802ba3%20openid%20email&state=3yagoq6yu7inUWomfFgAdwigRy-50fTp8vTW6GAFewg%3D&redirect_uri=https://r4eu.efsa.europa.eu/login/oauth2/code/shinyproxy&nonce=cD5ftiQvX8oM3fyH8wjP7Je-aWE5I04vTqBBWVr8hbI
https://efsab2c.b2clogin.com/efsab2c.onmicrosoft.com/b2c_1_signin/oauth2/v2.0/authorize?response_type=code&client_id=be616b14-895a-4257-9e38-b503da802ba3&scope=be616b14-895a-4257-9e38-b503da802ba3%20openid%20email&state=3yagoq6yu7inUWomfFgAdwigRy-50fTp8vTW6GAFewg%3D&redirect_uri=https://r4eu.efsa.europa.eu/login/oauth2/code/shinyproxy&nonce=cD5ftiQvX8oM3fyH8wjP7Je-aWE5I04vTqBBWVr8hbI
https://efsab2c.b2clogin.com/efsab2c.onmicrosoft.com/b2c_1_signin/oauth2/v2.0/authorize?response_type=code&client_id=be616b14-895a-4257-9e38-b503da802ba3&scope=be616b14-895a-4257-9e38-b503da802ba3%20openid%20email&state=7yn2o_3lMYXilGse5TPyTCznTsa8NuM2wT4L0qPvLsU%3D&redirect_uri=https://r4eu.efsa.europa.eu/login/oauth2/code/shinyproxy&nonce=XRgVzLTTTMY5LKOrZJgLr5e_ilzceFXRHTKM6ev5rzs
https://efsab2c.b2clogin.com/efsab2c.onmicrosoft.com/b2c_1_signin/oauth2/v2.0/authorize?response_type=code&client_id=be616b14-895a-4257-9e38-b503da802ba3&scope=be616b14-895a-4257-9e38-b503da802ba3%20openid%20email&state=7yn2o_3lMYXilGse5TPyTCznTsa8NuM2wT4L0qPvLsU%3D&redirect_uri=https://r4eu.efsa.europa.eu/login/oauth2/code/shinyproxy&nonce=XRgVzLTTTMY5LKOrZJgLr5e_ilzceFXRHTKM6ev5rzs
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Conclusions 
 
121. Traditionally, the NOAEL approach has been used for developing 

toxicological “safe dose” estimates such as reference doses (RfDs), 

acceptable daily intake (ADIs) values, or other values that can be used as 

HBGVs for chemical risk assessments. However, BMD modelling is now 

considered the preferred approach for deriving RPs for developing these “safe 

dose” estimates. BMD modelling allows a more quantitative and informative 

estimate of these RPs than the NOAEL approach. 

 

122. Ideally, the BMD model used would be one that mimics the behaviour 

of the underlying biological system. However, in practice, most of the time the 

BMD modelling approach is an attempt to find the “best” mathematical model 

that describes the data, from a range of potential mathematical models.  

 

123. The choice of model or models is determined by the nature of the data 

making up the endpoint of interest, the experimental design, dose selection 

etc. Similarly, the BMR can be selected based on toxicological and statistical 

consideration. However, in the absence of information about what biological 

response may be considered “adverse”, EFSA recommend either a BMR of 

5% (continuous) or 10% (quantal) be set as a default depending on the data 

type. In contrast, the EPA recommend the BMR for continuous data be set in 

terms of a change relative to the standard deviation of the data, rather than % 

response, but agree that a BMR of 10% for quantal data is appropriate. 

 

124. Historically, BMD software for DRMs used frequentist methodologies. 

However, developments in BMD software have made possible the use of 

Bayesian methods for the same approach. EFSA now recommend the 

Bayesian approach as the preferred approach to BMD modelling.  

 

125. The BMD approach can be applied to all chemicals in food, 

independent of the nature or source. The BMD approach can be applied to a 
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range of data types in including classical in vitro toxicological data, but also 

gene expression data, and even epidemiological data. 

 

Advantages 
126. Both EFSA and the US EPA consider the BMD approach to be the 

more quantitative and more scientifically advanced approach to deriving the 

RP from dose response data, compared to the NOAEL approach.  

 

127. The BMD approach uses all the available dose-response information 

within a given dataset. The NOAEL approach, in contrast, effectively uses 

only the data that make up the control group and one other dose group. 

 

128. The BMD approach provides important information regarding the 

uncertainties in the data. The output of the BMD approach provides a 

quantitative assessment of data quality, as described by the confidence (or 

credible) intervals.  

 

129. BMD software can be developed and tailored to the needs of 

researchers. For example, specialist BMD modelling software, such as 

BMDExpress3 have been developed to meet the specifics of dose-response 

gene expression data.  

 

130. BMD software is publicly available and accessible, along with guidance 

documents, user manuals tutorial videos and workshop recordings.  

 

Challenges 
 
131. BMD modelling software may require some training to use. Different 

software packages would require separate training to provide competence.  
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132. There are notable areas of divergence in the guidance provided by 

organisations such as the US EPA and EFSA with regards to BMD use and its 

best practices.  

 

133. There are still significant differences in the operation and statistical 

basis for the various BMD modelling software. This means, in practice, that 

two different software analysing the same data, may generate potentially 

different BMD and BMDL values, and consequently will generate two different 

RPs and HBGVs. 

 

Recommendations.  
 
134. Training and competency workshops would be valuable to provide 

practical training for anyone on the COT or in the FSA interested in using 

BMD modelling approaches and BMD software. 

 

135. Considering the areas of divergence in the current guidance around 

BMD, greater clarity on the accepted best practices would be appropriate. 

Further attempts to harmonise the approach to BMD modelling across 

agencies, governments and regulators would also be desirable.  

 

136. Communication with industry, regulators and expert groups should also 

be encouraged to ensure that BMD modelling is adopted and integrated 

appropriately within the broader regulatory chemical safety environment. 

Development of an OECD (Organisation for Economic Co-operation and 

Development) guideline, as well as government and regulatory guidance 

around BMD implementation and experimental design, as well as clarity on 

requirements, reporting templates etc., should be considered. 

 

137. A review of BMD modelling in chemical risk assessment, within an 

appropriate timeframe in the future, is recommended, particularly considering 

the rapidly changing computational and technological landscape.  
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Questions on which the views of the Committee are sought: 
 

i) Does the report capture the most up to date information and details 

on benchmark dose modelling? 

ii) Are the Members content with the areas covered in the report? 

iii) Can the available BMD guidance and resources support the 

integration of new approach methodologies in future guidance?  

iv) Can BMD modelling provide a useful and practical tool that can be 

applied in a chemical risk assessment? 

v) Do Members have any examples of when this approach could be 

applied and or recommendations? 

 

Do the Members have any other comments? 

 

Secretariat 
February 2024 
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List of Abbreviations 
 
ADI Acceptable Daily Intake 

AIC Akaike Information Criterion 

BMA Bayesian Model Averaging 

BMD Benchmark Dose 

BMDL Benchmark Dose lower bound 

BMDS Benchmark Dose Software  

BMDU  Benchmark Dose upper bound 

BMR Benchmark response 

CED Critical Effect Dose 

CEDL Critical Effect Dose lower bound 

CEDU Critical Effect Dose upper bound 

CES Critical Effect Size 

COC 
The Committee on Carcinogenicity of Chemicals in Food, 

Consumer Products and the Environment  

COM 
The Committee on Mutagenicity of Chemicals in Food, 

Consumer Products and the Environment 

COT 
The Committee on the Toxicity of Chemicals in Food, 

Consumer Products and the Environment 

DRM   Dose-Response Models 

EFSA European Food Safety Authority  

FAO Food and Agriculture Organization 

FSA Food Standards Agency 

HBGV Health Based Guidance Values 

IPCS International Programme on Chemical Safety 

IRIS Integrated Risk Information System 

JECFA Joint FAO/WHO Expert Committee on Food Additives 

JMPR Joint FAO/WHO Meeting on Pesticide Residues 

LMS Linearised Multistage (model) 

LOAEL  Lowest Observed Adverse Effect Level 
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LVM Latent variable model 

MCMC Markov Chain Monte Carlo 

MLE Maximum-Likelihood Estimation 

MOE Margin of Exposure 

NOAEL No Observed Adverse Effect Level 

OECD Organisation for Economic Co-operation and Development 

OGD Other Government Departments 

PoD Point of Departure 

RfD Reference Dose 

RPF Relative Potency Factors 

SC Scientific Committee 

TEF Toxic Equivalency Factors 

UF Uncertainty Factor 

US EPA United States Environmental Protection Agency 

US NTP United States National Toxicology Program 

WHO World Health Organisation 
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Technical terms 
 
Bayesian: Statistical methodological approach that assigns probabilities or 

distributions to parameters based on prior data and applies Bayes’ theorem to 

revise the probabilities and distributions after obtaining the experimental data.  

 

Bernoulli distribution: A discrete distribution having two possible outcomes: 

n=0 and n=1, where n=1 ("occurs") occurs with probability p and n=0 ("does 

not occur") occurs with probability q=1-p, where 0<p<1. In chemical 

toxicology, such a distribution might describe the probability of a discrete 

adverse outcome such as animal death or present of tumours i.e. it occurs or 

does not occur. 

 

Bootstrap: A statistical technique based on multiple resampling. In a 

bootstrap approach, a probability distribution estimated from observed values 

is used to generate new samples. For example, based on a random sample of 

20 data points in an experiment, the data might be resampled 1,000 times, 

calculating a standard deviation and a mean each time. The resulting 

distribution of some quantity of interest (e.g., the standard deviation or the 

mean) is used to calculate confidence limits or perform statistical tests in 

computationally complex situations, or where a particular distribution of an 

estimate or test statistic cannot be assumed.  

 

Categorical Data: Data recorded in categories, either without a natural 

ordering (sex: male or female), or naturally ordered (ordinal, e.g., mild, 

moderate, or severe). 

 

Confidence Interval: A statistically derived interval (typically consisting of 

lower and upper bounds) that has a specified probability of containing the true 

value of some estimated parameter, if the same population is sampled 

repeatedly. The interval is expected to include the true value of the estimated 

parameter with a specified confidence, e.g., 95%. 
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Convergence: In the case of a parameter estimate, approach to a single 

value with increasing number of computational iterations.  

 

Covariate: An independent variable other than dose that may influence the 

effect of interest, e.g., age, body weight, sex.  

 

Continuous Data: Data measured on a continuum, e.g., organ weight or 

blood biomarker concentration. 

 

Coverage (in reference to Confidence Interval): The actual (as opposed to 

theoretical) probability that a population parameter is bounded by the limits of 

a given confidence interval procedure. 

 

Dichotomise: The process of dividing or classifying objects, data, or events 

into two groups. For example, 50 animals could be classified into two groups, 

according to whether their weight exceeds some specified value.  

 

Dichotomous Data (also known as Quantal Data): Type of data where an 

effect may be classified into one of two possible outcomes, e.g., dead or alive, 

with or without incidence of a specific symptom (e.g., tumour). 

 
Dose-Response Model: A mathematical function that relates or predicts the 

occurrence or severity of an adverse effect to a given range of doses. 

 

Extra Risk: A measure of the increase in risk of an adverse effect adjusted 

for the background incidence for the same effect. Extra risk is calculated as 

follows: [P(d)–P(0)] / [1–P(0)], where P = the probability of an effect and d = 

dose. 

 

Frank Effect: An obvious or overtly clinically apparent toxic effect.  
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Goodness-of-Fit Statistic: A statistic that measures the deviation of 

observed data from predicted or hypothesized values. Some goodness-of-fit 

statistics can be used in statistical hypothesis tests, leading to rejection (or 

failure to reject) a model due to lack of an adequate fit.  

 

Log Transformation: The process of taking logarithms of the data. Log 

transformations are often applied to continuous response data to make the 

transformed responses satisfy a normality assumption, if the data are 

lognormally distributed. 

 

Margin of Exposure (MOE): Ratio of a dose that produces a specified effect, 

to an expected human dose.  

 

Markov chain Monte Carlo (sampling): Markov Chain Monte Carlo sampling 

provides a class of algorithms for systematic random sampling from high-

dimensional probability distributions. Unlike Monte Carlo sampling methods 

that are able to draw independent samples from a distribution, Markov Chain 

Monte Carlo methods draw samples where the next sample is dependent on 

the existing sample, called a Markov Chain. 

 

Ordinal Data: see Categorical Data 
 

Point of Departure (PoD): The point where the dose response curve moves 

away from background. It can be used as a basis for the setting of health-

based exposure limits. 

 
Probability Distribution: A statistical description (in the form of a distribution) 

of the relative probabilities of all possible outcomes of an event.  

 
Quantal Data: see Dichotomous Data 
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Reference Dose (RfD): An estimate of a daily exposure to the human 

population (including sensitive subpopulations) that is likely to be without an 

appreciable risk of deleterious effects during a lifetime. 
 

Reference point (RP): see Point of Departure. 
 

Supralinear dose response: A dose-response relationship that is 

proportionately steepest at the lowest levels of exposure.  

 

Uncertainty Factor (UF): A numerical value (often a factor of 3 or 10) used to 

adjust a NOAEL, LOAEL, or benchmark dose to derive a reference dose. 

Reasons for UFs to be applied as needed are to account for e.g., 

extrapolation of results in experimental animals to humans, interindividual 

variability (including sensitive subgroups), extrapolation from a LOAEL to a 

NOAEL, extrapolation of results from subchronic exposures to chronic 

exposures, and/or database inadequacies.  

 

Variance: The variance in an experimental measurement remaining after 

accounting for variance due to the independent variables, e.g., dose, 

exposure duration, and age.  
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TOX/2024/03 Annex A 
 

Committee on Toxicity of Chemicals in Food, Consumer 
Products and the Environment 
 

Benchmark dose modelling in a UK chemical risk assessment 
framework. 
 

Benchmark Dose Models included in BMDS and PROAST 
 

1. Most of the models in the following tables were developed by U.S. EPA 

and RIVM National Institute for Public Health and the Environment and are 

available in BMDS and PROAST, unless otherwise noted.  

 

2. The current models and mathematical descriptions appear as in the 

most recent documentation: Benchmark Dose Software (BMDS) Version 3.3 

User Guide, U.S. EPA, published October 2022, and EFSA’s Guidance on the 

use of the benchmark dose approach in risk assessment, published in 2017 

and 2022. Models no longer available, but that appear in previous 

documentation or versions of the software are not considered here but are 

discussed in the relevant publication.  

 
Note: For copyright reasons the papers in the Annexes are not included in the 

published version on the COT website. The bibliographic details of the 

annexed material are listed above. The documents are all in the public 

domain and individuals can obtain them by application to appropriate sources. 

 

Table 1. List of Continuous and Dichotomous Models available 
List of Continuous models BMDS 

Version 3.3 
PROAST 
(EFSA 2017) 

PROAST 
(EFSA 2022) 

Exponential  Yes Yes Yes 
Inverse Exponential No No Yes 
Hill Yes Yes Yes 
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Linear Yes No No 
Polynomial Power Yes No No 
Gamma No No Yes 
LMS Two-stage No No Yes 
Probit No No Yes 
Logistic No No Yes 
List of Dichotomous models BMDS 

Version 3.3 
PROAST 
(EFSA 2017) 

PROAST 
(EFSA 2022) 

Exponential  No No Yes 
Inverse Exponential No No Yes 
Hill No No Yes 
LMS Two-stage No Yes Yes 
Gamma  Yes Yes Yes 
Logistic Yes Yes Yes 
Log-Logistic Yes Yes No 
Log Probit Yes Yes No 
Multistage Yes No No 
Probit Yes Yes Yes 
Weibull Yes Yes No 
Quantal Linear Yes No No 
Dichotomous Hill Yes No No 
Latent variable models (LVM) No Yes No 
Multi-tumor (MS_Combo) Yes No No 
List of Nested Dichotomous 
Models 

BMDS 
Version 3.3 

PROAST 
(EFSA 2017) 

PROAST 
(EFSA 2022) 

Nested Logistic Yes  No 
EFSA 2022 - Guidance on BMD approach in risk assessment. 
3. The models in the following tables were described by EFSA in their 

2022 guidance and are available as part of the PROAST BMD web 

application software. This section provides basic information about the 

statistical methodology and components of a single dose-response model for 

a single continuous endpoint. The relevant information has been reproduced 

here verbatim: 

 
 
Dose–response model for a single continuous endpoint  
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Only two parametric distributions, which are fully characterised by their 

functional form and two parameters (central location and spread around the 

centre) are considered in this document: the normal distribution and the log-

normal distribution. The normal distribution is symmetric, whereas the log-

normal is a right-skewed distribution. They both share theoretical and 

computational advantages Guidance on BMD approach in risk assessment 

and have been proven to fit well to many biological endpoints (Johnson et al., 

1994). As endpoints are assumed to be positive-valued, a left-skewed 

distribution is not considered. If empirical or biological evidence necessitates, 

other distributions (e.g., the inverse Gaussian distribution, the gamma 

distribution) may be considered suitable as well, but the extension of the 

statistical modelling framework, as described in this section, to other 

distributions is not straightforward, nor is its implementation in the BMD 

application hosted in the R4EU servers. Before modelling the central location 

of the normal and log-normal distribution as a function of dose, the relevant 

characteristics of both distributions are summarised below. 

 

Modelling the distribution of the response 
 
It is assumed that the observations of y, given a specified dose (denoted as j 

x), vary according to the normal distribution: 

y|x ∼ N(μ(x), σ2) 

where μ(x) represents the mean and σ2 the variance of the response at dose 

x. The normal distribution is a symmetric distribution (implying that μ(x) is the 

median as well). The true distribution of the response y is unknown, but the 

normal distribution is known to often be a good approximation for that true 

distribution, especially if it is a symmetric distribution, even if the endpoint is 

restricted to be positive. The distribution only shifts up or down according to 

the value of the mean μ(x), but the variance σ2 and the typical symmetric ‘bell 

shape’ of the distribution remains invariant to changes in dose.  

In addition to the normal distribution, also the log-normal distribution can be 

considered:  
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y|x ∼ LOGN(μ(x), σ2) 

This distribution is automatically restricted to positive values and is skewed to 

the right. Typically, the notation of the two parameters is identical to that of the 

two parameters of the normal distribution, but the interpretation is different. It 

holds that: 

y|x ∼ LOGN(μ(x), σ2) ↔ log(y|x) ∼ N(μ(x), σ2) 

implying that μ(x) and σ2 do not refer to the mean and the variance of the 

response itself but to the mean and the variance of the log-transformed 

response. Again, it is assumed that the parameter σ2 does not depend on 

dose. The characteristics on the original scale are shown in Table 1 for both 

distributions. Note that, although the parameter σ2 does not depend on dose, 

the variance of a log-normally distributed response does depend on dose, as 

it depends on the parameter μ(x) as well. For a log-normally distributed 

response, the coefficient of variation (standard deviation divided by mean) 

does not depend on dose (constant, with value √𝑒𝑒σ2 − 1) 

 

Modelling the central location of the distribution as a function of dose 
 
Next to the specification of the distribution (normal or log-normal), a suite of  

eight candidate models for μ(x) is used, as shown in Table 2. All candidate 

models μ(x) share some basic properties P1-P4: 

 

Basic properties (P1-P4) 
 
P1: the median can only take positive values (e.g. a median organ weight 

cannot be ≤ 0), so. 

• μ(x) > 0 if a normally distributed endpoint is considered; 

• no constraint on values of μ(x) > 0 for a log-normally distributed 

endpoint; 

P2: they are monotone increasing or decreasing, for both distributions; 

P3: they are continuous functions of dose x, for both distributions; 
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P4: they reach a horizontal asymptote for very high dose levels 

(mathematically x = ∞), for both distributions, such that they are suitable for 

data that level off to a maximum response. 

 

In the next paragraphs, three families of models (1a, 1b and 2) are introduced. 

All members of these families are flexible four-parameter non-linear models, 

and all share the basic properties P1–P4. The above-mentioned eight 

candidate models have been selected from these three families. This 

selection incorporates the familiar exponential and Hill model from the 

previous guidance (EFSA, 2017), and extends it with alternative flexible 

models leading to a unification of models across both type of endpoints, 

continuous or quantal. The model structure of Family 1a/b and Family 2 is 

fundamentally different. The general structure of Family 1a and 1b with the 

central role of the median background response and the maximum change in 

median response (parameters a and c) is identical, but the two other 

parameters b and d operate functionally differently in both subfamilies.  

• Family 1a and 1b: all models for μð Þx have the following structure 

μ(x) = a(1 + (c - 1) F(x; b, d)),  b, d > 0,  

for some particular but known function F, having the properties:  

 defined for x ≥ 0;  

 monotone increasing;  

 F(0; b, d) = 0 and F(∞; b, d) = 1 regardless the values of b and 

d. 

For all members of Family 1a, the parameter d acts as a power xd , 

whereas it operates differently in Family 1b (see Table 2). The 

parameters a, b, c, d have a particular interpretation:  

 a = μ(0) is linked to the median background response;  

 c = μ(∞) / μ(0) is linked to the maximum change in median 
response, as compared to the background response; for c > 1 

(resp. c < 1) the median response is monotone increasing (resp. 

decreasing) as a function of dose x;  
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 b and d characterise the shape of change in response from 
median background response to maximum change in 
median response, via the identity:  

F(x; b, d) = μ(x)−μ(0) 
μ(∞)−μ(0) ′

 

the model is reparametrised in terms of the parameter a, c 

(representing the background response and the maximum 

change in response), the BMD (the potency, see Table 2, and 

replacing the parameter b) and the parameter d.  

• Family 2 increasing: increasing models for μð Þx from this family 

have the following structure:  

μ(x) = cF(a + bxd),  b, d > 0 

for some particular but known function F, having the properties:  

 defined for any value of a + bxd;  

 monotone increasing;  

 F(-∞; b, d) = 0 and F(∞; b, d) = 1 regardless the values of b and 

d:  

The parameters a, b, c, d have a particular interpretation: 

 c = μ(∞) and  a = F-1 (μ(0) /μ(∞)) and determine the median 
background response and the maximum change in median 
response, as compared to the background response;  

 b and d characterise the shape of change in response from 
median background response to maximum change in 
median response, via the identity:  

bxd =  F-1 (μ(x) /μ(∞)) - F-1 (μ(0) /μ(∞)), 

the model is reparametrised in terms of the parameter a, c 

(representing the background response and the maximum change in 

response), the BMD (the potency, see Table 2, and replacing the 

parameter b) and the parameter d.  

• Family 2 decreasing: decreasing models for μð Þx from this family 

have the following structure: 

μ(x) = a ((1 + F(c)) – F(c + bxd)),  b,d > 0 
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for some particular but known function F, having the properties:  

 defined for all values of c and all values of c + bxd;  

 monotone increasing;  

 F(-∞; b, d) = 0 and F(∞; b, d) = 1 regardless the values of b and 

d: 

The parameters a, b, c, d have a particular interpretation:  

 a = μ(x) and c = F-1 (μ(∞) /μ(0)) determine the median 
background response and the maximum change in median 

response, as compared to the background response;  

 b and d characterise the shape of change in response from 
median background response to maximum change in median 

response, via the identity:  

bxd = F-1 (μ(∞)/μ(0) - (μ(x)/ - (μ(0))/(μ(0)) - F-1 (μ(∞)/μ(0)), 

 the model is reparametrised in terms of the parameter a, c 

(representing the background response and the maximum 

change in response), the BMD (the potency, see Table 2, and 

replacing the parameter b) and the parameter d. 
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Table 2. Candidate models for both distributional assumptions. Adapted 
from EFSA, 2022 

 
 

 

Dose–response model for a single quantal endpoint  
 
A quantal endpoint refers to a binary measurement: yes/no (typically coded as 

1/0) according to the occurrence of a particular adverse event. As for a 

continuous endpoint, the statistical model for a quantal endpoint is defined by 

two components:  

i) the specification of the distribution of the endpoint at a specified 

dose x. Only one distribution is possible (Bernoulli distribution).  

ii) the description of the effect of dose on this distribution. Dose is 

affecting the probability on the adverse event.  

 

Modelling the distribution  
 
The main difference with a continuous outcome is that there is only one 

possible distribution for a quantal endpoint, the Bernoulli distribution; it has a 
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single parameter, being the probability on the (adverse) event of interest. So, 

the first model component is uniquely defined as.  

y|x ∼ Bernoulli(π(x)), 

with π(x) being the probability on the adverse event at dose x. Note that π(x) 

is also the mean of the response.  

 
Modelling the probability of an event  
 
The dose acts on the probability π(x) of an event, typically considered as 

adverse. The same suite of candidate models as for the parameter μ(x) for a 

continuous endpoint is considered, with the restrictions that:  

• They are only monotone increasing (as we expect the probability on 

the adverse event to increase with dose); contrary to continuous data, 

monotone decreasing data should be converted into increasing data, 

e.g. decreased survival could be transformed into increased mortality. 

•  The parameter representing the horizontal asymptote (c) is set such 

that this asymptote equals the value of 1 at infinite dose.  

The three subfamilies of models for π(x) are:  

• Family 1a and 1b: all models for μ(x) with c = 1/a, or  

           π(x) = a + (1 – a)F(x; b, d),  b, d > 0, 

for the same functions F as for Family 1a and 1b for continuous 

endpoints. The parameters a, b, d have a particular interpretation:   

 a = π(x) determines the background probability on the 
adverse event;  

 b and d characterise the shape of change in the probability 
on the adverse event, via the identity:  

                F(x; b, d) = π(x)−π(0) 
1 −π(0) ′

 

 The model is reparametrised in terms of the parameter a 

(representing the background incidence), the BMD (the potency, 

see Table 3, and replacing the parameter b) and the parameter 

d.  
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• Family 2: all increasing models for μ(x) with c = 1, or 

π(x) = F(a + bxd),  b, d > 0, 

for the same functions F as for Family 2 for continuous endpoints. The 

parameters b, c, d have a particular interpretation:  

 a = F-1(π(0)) determines the background probability on the 
adverse event;  

 b and d characterise the shape of change in the probability 
on the adverse event, via the identity:  

                      bxd = F-1(π(x)) - F-1(π(0)), 

 the model is reparametrised in terms of the parameter c 

(representing the background incidence), the BMD (the potency, 

see Table 3, and replacing the parameter b) and the parameter 

d. 

 
Table 3. Candidate models for quantal endpoints (Table from EFSA, 
2017) 
 

 

 
 
EPA 2022 - Benchmark Dose Software (BMDS) Version 3.3 User Guide 
 
4. This section provides information about the statistical methodology and 

components of a dose–response model for a single continuous endpoint, and 

a single dichotomous endpoint as described in the EPA User Guide for the 
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latest BMDS software (Version 3.3). The relevant information has been 

reproduced here verbatim: 

 
Dose–response models for a continuous endpoint  
 
Models in this section are for continuous endpoints, such as weight or enzyme 

activity measures, in simple experimental designs that do not involve nesting 

or other complications. The models predict the median value of the response, 

m(dose), expected for a given dose and the variation around that median. As 

evidenced by the previous discussion of the options available for continuous 

models, modeling of continuous endpoints requires consideration of more 

details than do those for dichotomous endpoints in similar designs. This 

section presents the mathematical and statistical details that determine how 

estimation is accomplished in BMDS. 

 

The definitions of the continuous models are fully specified in the following 

table.  

Note that 𝑚𝑚(dose) is the median response for the dose level specified. 

 
Table 4. The individual continuous models and their respective 
parameters (reproduced from EPA User guide, 2022). 
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1 BMDL estimates from models that have an asymptote parameter (including 

the Hill model) can be unstable when a wide range of parameter values can 

give nearly identical likelihoods. One indicator of that problem is that the 

estimated asymptotic response is far outside the range of the observed 

responses. The user should consult a statistician if this behaviour is seen or 

suspected. 2 RIVM (National Institute for Public Health and the Environment 

(Netherlands)). (RIVM, 2018). PROAST. 

 

Note that the upper bounds for the power parameters in the Power, Hill, and 

Exponential models have been set to 18. That value was selected because it 

represents a very high degree of curvature that should accommodate almost 

every dataset, even ones with very (or absolutely) flat dose-response at low 

doses followed by a very steep dose-response at higher doses. 

 
Dose–response model for a dichotomous endpoint 
 
BMDS includes models for dichotomous endpoints in which the observations 

are independent of each other. In these models, the dose-response model 

defines the probability that an experimental unit (e.g., a rat or a mouse in a 
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test of toxicity) will have an adverse response at a given dose. The actual 

number of animals that have an adverse response is assumed to be 

binomially distributed.  

 

A specific example of such a dataset is a study in which adult animals are 

exposed to different concentrations of a toxicant and then evaluated for the 

presence of liver toxicity. 

 

Table 5. The individual continuous models and their respective 
parameters (reproduced from EPA User guide, 2022).

 
Table 5 (continued).  
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Note that the upper bound for the power parameter in some of the models, 

and the slope parameter for some of the other models, has been set to 18. 

That value was selected because it represents a very high degree of 

curvature that should accommodate almost every dataset, even ones with 

very (or absolutely) flat dose-response at low doses followed by a very steep 

dose-response at higher doses. If such parameter values are reported to be 

equal to 18 and/or the estimate in question is reported as “Bounded” (see the 

description of the output from dichotomous model runs in Section 11.5.2, 

“Analysis of Deviance Table,” on page 103), the parameter estimates are 

maximum likelihood estimates only in the restricted sense that the parameter 

in question has been assigned a value and the other parameters are MLEs 

conditional on that assigned value. Such model results are not strictly 

comparable with others in terms of AIC. In such a case, the BMD and BMDL 
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could depend on the choice of power parameter; thus, sensitivity analysis is 

recommended if one intends to rely on the reported BMD or BMDL 
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