TOX/2022/12

Committee on the Toxicity of Chemicals in Food, Consumer Products and the Environment.

Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs

Genotoxicity

Background

Previous 2015 EFSA conclusion

1. In the 2015 EFSA opinion on Bisphenol A (BPA) (EFSA CEF Panel, 2015), the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) Panel concluded that BPA is not mutagenic (in bacteria or mammalian cells), or clastogenic (micronuclei and chromosomal aberrations). The potential of BPA to produce aneuploidy *in vitro* was not expressed *in vivo*. The positive findings in the post labelling assays *in vitro* and *in vivo* were judged unlikely to be of concern, given the lack of mutagenicity and clastogenicity of BPA *in vitro* and *in vivo*.

Current new data examined, literature search timeline and screening methodology

2. For the health outcome category (HOC) genotoxicity, the time span of the literature search was extended until 21 July 2021 and the studies assessed in the 2015 EFSA opinion were also re-considered by the EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP).

3. The methods that were used for data collection through literature searches were conducted in the following bibliographic databases: PubMed, Web of Science and Core Collection.

4. For the additional time span considered in the literature search, the screening question was: 'Is the paper reporting information about exposure to BPA and genotoxicity?'

5. For screening the additional genotoxicity studies, the categorisation was made into different subgroups of genotoxicity endpoints (genotoxicity, epigenetics, oxidative stress). An additional screening of the relevance of the studies was done by experts in this field following the full-text screening.

6. A specific internal validity approach was applied and a specific Weight of Evidence (WoE) approach was applied, as described in detail in <u>Annex A.</u> to this paper. The CEP Panel examined whether new data from the published literature could provide new evidence on the potential genotoxicity of BPA. The references from the previous CEF Panel opinion (EFSA CEF Panel, 2015) were also included in the current assessment using the same appraisal criteria applied to the newly published data and considering the EFSA Scientific Committee guidance documents on genotoxicity published after 2015 (EFSA Scientific Committee, 2017, 2021).

Methods for assessing genotoxicity

7. The evaluation of data quality for hazard/risk assessment includes the evaluation of reliability and relevance (Klimisch *et al.*, 1997; OECD, 2005; ECHA, 2011; EFSA Scientific Committee, 2017c; EFSA Scientific Committee, 2021).

8. In the assessment of genotoxicity studies, the data quality has been evaluated based on reliability and relevance. Reliability has been assessed using a scoring system based on criteria published by Klimisch *et al.* (1997).

9. In a second step, the relevance (high, limited, low) of the study results was assessed based on reliability of the study and other aspects, *e.g.* genetic endpoint, purity of test substance, route of administration and status of validation of the assay.

Genotoxicity studies evaluated as of high or limited relevance have been considered in a WoE approach as described in <u>Annex A</u>. Genotoxicity studies evaluated as of low relevance have not been further considered in the assessment. The different steps of the evaluation of reliability and relevance are described in <u>Annex A</u> to this paper.

This does not represent the views of the Committee and should not be cited.

Method for uncertainty analysis for genotoxicity

11. Details on how the uncertainty analysis was carried out as well as the results discussion can be found in <u>Annex A</u> to this paper.

Genotoxicity studies considered for the EFSA CEP assessment

12. A total of 88 *in vitro* and *in vivo* studies were retrieved from the literature search along with 15 *in vitro* and *in vivo* studies considered in the Scientific opinion on the risks to public health related to the presence of BPA in foodstuffs (EFSA CEF Panel, 2015) (see <u>Annex A</u> to this paper).

13. *In vitro and in vivo* studies were grouped based on the genotoxicity endpoint investigated:

• gene mutations (e.g. bacterial reverse mutation assay);

• chromosomal damage (CA and micronucleus assays);

• DNA damage (comet assay).

14. These studies were summarized in synoptic tables (see <u>Annex A</u> to this paper), evaluated for reliability and relevance and grouped into lines of evidence in a WoE approach (see <u>Annex A</u> to this paper).

15. Studies not investigating classical genotoxicity endpoints (*e.g.* γH2AX, oxidative DNA damage, DNA binding, ROS generation) and studies in humans are considered in the Mode of Action (MoA) analysis and as supportive evidence.

Weight of Evidence

Gene mutations in vitro and in vivo

In vitro gene mutation

16. Of the six available studies of the mutagenicity of BPA in bacteria, only one describes the application of the Ames test in a comprehensive battery of Salmonella Typhimurium strains (TA1535, TA97, TA98, 11407 TA100 and TA102) at a range of

This does not represent the views of the Committee and should not be cited.

concentrations up to 5000 μ g/plate. It reports negative results both in the presence and absence of metabolic activation (Xin *et al.*, 2015).

17. Three studies reported negative results in TA98 and TA100 (Masuda *et al.*, 2005; Fic *et al.*, 2013; Zemheri and Uguz, 2016). A further study shows negative results in TA98, TA100 and TA102 strains (Tiwari *et al.*, 2012). The sixth used the bacterial SOS/umuC assay with a range of concentrations from 1 to 1000 μ g/L in presence and absence of S9 mix. It also reported negative results (Balabanič *et al.*, 2021). The CEP Panel concluded that BPA does not induce gene mutations in bacteria.

Summaries of studies

18. Summary of Xin et al study 2015: The study evaluated the cytotoxic, genotoxic and clastogenic activity of BPA (purity 99%) in Chinese hamster ovary cells (CHO) cells and its mutagenicity in the Ames test. The battery of assays applied in CHO cells included the MTT assay for the evaluation of cytotoxicity, and the comet, micronucleus and chromosome aberration tests. In the Ames test, BPA (10-5000 µg/plate) was uniformly negative in all Salmonella Typhimurium strains (TA1535, TA97, TA98, TA100 and TA102), with and without metabolic activation. Exposure of CHO cells to four BPA doses (40, 80, 100 and 120 µM) for 12 and 24 h resulted in a significant decrease in cell viability at 80 µM and above which, however, remained above 50% in all cases; a concentration-related increase of DNA damage was observed in a comet assay [increased Olive tail moment (OTM), tail length and % tail DNA, statistically significant at all doses] after 12 and 24 h exposure to BPA; after 24 h treatment, an increase in micronuclei (MN) (statistically significant at 100 and 120 µM) and structural chromosomal aberrations (chromatid breaks and chromosome fragments, statistically significant at 80 µM and above) was also observed.

19. Summary of Masuda *et al.*, 2005: The study evaluated the mutagenicity of BPA in Ames test in the presence or absence of S9-mix. BPA (Tokyo Kasei Kogyo Co., Ltd) was tested on S. Typhimurium strains TA98 and TA100 at the single dose of 0.1 μ mole/plate (100 μ L of 1 mM solution). No mutagenic effect was observed.

20. Summary of Fic *et al.*, 2013: In this study the mutagenic and genotoxic potential of eight BPA (purity >99%) structural analogues [BPF, BPAF, bisphenol Z (BPZ), BPS, bis(4-hydroxy-3-methylphenyl)propane (DMBPA), 4,4'-sulfonylbis(2-methylphenol) (DMBPS), [sulphonylbis(benzene-4,1-diyloxy)]diethanol (BP-1), and 4,4'-sulphanediyldiphenol (BP-2)] were investigated using the Ames and comet assay. None of these bisphenols were mutagenic in Salmonella Typhimurium strains TA98 and TA100 either in the presence or absence of external S9-mediated metabolic activation (Aroclor 1254-induced male rat liver). Potential genotoxicity of bisphenols was determined in the HepG2 human hepatoma cell line following 4-h and 24-h exposure to non-cytotoxic concentrations 0.1 μmol/L to 10 μmol/L. In the comet assay, BPA and its analogue BPS induced significant DNA damage only after the 24-h exposure, while analogues DMBPS, BP-1, and BP-2 induced a transient increase in DNA strand breaks observed only after the 4-h exposure. BPF, BPAF, BPZ, and DMBPA did not induce DNA damage.

21. Summary of Zemheri and Uguz, 2016: The study evaluated the mutagenicity of BPA (Merck) in a limited Ames test, using two tester strains (TA98 and TA100) and four dose levels (0.1, 1, 10 and 100 μ g/plate). The results were negative, with and without metabolic activation.

22. Summary of Tiwari *et al.*, 2012: The study evaluated the mutagenicity of BPA in Ames test. BPA (purity 99%) was tested at concentrations from 6.25 to 200 μ g/plate on different strains of S. Typhimurium (TA 98, TA 100 and TA 102). The mutagenic response was not observed in any of the tester strains at the various concentration of BPA in absence of S9 fractions. A slight increase in the numbers of revertants was observed in the presence of S9 fractions from the 6.25 - 25 μ g/plate of BPA in each strain, but the increase was statistically significant only in strain TA 102 at 25 μ g/plate.

23. Summary of Balabanič *et al.*, 2021: The study evaluated cytotoxic and genotoxic effects of some endocrine disrupting chemicals (EDCs), including BPA, which have been previously identified in effluents from two paper mills. BPA (Sigma-Aldrich) tested at concentrations of 1, 10, 100, 1000 µg/L with the bacterial SOS/umuC assay in S. Typhimurium TA1535/pSK1002 strain did not induce toxic

nor genotoxic effects in the presence or absence of S9 metabolic activation. The compound was also assessed in HepG2 cells with MTT assay for cell viability and with comet assay at 1, 10, 100 and 1000 μ g/L for 4 and 24 h. No significant reduction of the viability. A statistically significant concentration-dependent increase of DNA damage, expressed as percent of DNA in tail, was reported starting from 10 μ g/L.

In vivo gene mutation

24. No studies on gene mutation assays in mammalian cells following the OECD guidelines were available.

Induction of chromosomal aberrations/micronuclei in vitro and in vivo

In vitro chromosomal aberrations/micronuclei

25. Fifteen *in vitro* studies of micronuclei (MN) and structural chromosomal aberrations (CA) induction in different cell lines were available for evaluation. Of these, nine were further considered in the assessment, classified as having high (1 study) or limited relevance (8 studies).

26. All showed positive results in both blood cells and established cell lines. In the single study classified as of high relevance, a concentration-dependent increase of MN frequency over a wide range of concentrations (1.5 to 37 μ g/ml corresponding to 6.6 μ M and 162 μ M) was observed in the AHH-1 human lymphoblastoid cell line (Johnson and Parry, 2008). Positive CA results were also reported from cultures of human peripheral lymphocytes in two studies with limited relevance (Santovito *et al.*, 2018; Di Pietro *et al.*, 2020). In one of these (Santovito *et al.*, 2018), MN frequency was also measured. A study of MN in bovine peripheral blood lymphocytes also reported positive findings (Šutiaková *et al.*, 2014).

27. In murine macrophage RAW264.7 cells, positive MN results were associated with an increase in reactive oxygen species (ROS), and a decreased level of antioxidant enzymes (GPx, SOD and CAT. Concomitant phosphorylation of P53 and release of cytochrome C from mitochondria were detected along with increased apoptosis. Pretreatment with N-acetylcysteine (NAC) reduced BPA-induced

This does not represent the views of the Committee and should not be cited.

cytotoxicity, apoptosis and genotoxicity (MN frequency was reduced by 30%). These results indicate that the toxic effect of BPA in macrophages was mainly through the oxidative stress-associated mitochondrial apoptotic pathway (Huang FM *et al.*, 2018).

28. Finally, two studies in the Chinese hamster ovary (CHO) and V79 cell lines reported positive results (Xin *et al.*, 2015; Yu *et al.*, 2020). Xin and co-workers reported a concentration dependent increase of both MN and CAs in CHO cells in the absence of metabolic activation. In contrast, the BPA-induced increase in MN frequency in V79, reported by Yu and colleagues, apparently required CYP1A1 and CYP1B1 expression.

29. Overall, the significant increases of chromatid and chromosome breaks observed in several studies *in vitro* indicated that BPA has clastogenic activity also at non-cytotoxic concentrations. Two reports indicated that oxidative stress is implicated in the observed induction of chromosomal damage. In addition, Johnson and Parry (2008) reported the formation of aberrant mitotic spindles, with multiple poles, in cells treated with BPA.

30. In conclusion, the *in vitro* studies on CA and MN induced by BPA indicated that both clastogenic and aneugenic mechanisms may operate.

Summary of studies

31. John and Parry 2008: In this mechanistic study the aneugenicity of two known spindle poisons model compounds, namely rotenone and BPA, has been investigated following low dose-exposure to mammalian cells, using the cytokinesis blocked micronucleus assay (CBMA) and immunofluorescence methods to visualize modifications of the microtubule organizing centres (MTOCs) of the mitotic spindles. For induction of MN BPA (Sigma-Aldrich) was added over a range of narrowed low concentrations (1.5, 3.1, 6.2, 7.7, 9.2, 10.8, 12.3, 18.5, 24.6, and 37.0 µg/ml) to cultures of human (AHH-1) lymphoblastoid cell line for a complete cell cycle (22-26 h dependent upon any cell cycle delay) in the presence of cytochalasin-B. A minimum of five separate experiments were performed. A concentration-related and statistically significant increase of binucleate-micronucleated cells from 12.3 µg/mL

was reported with a clear threshold for induction of MN (NOEL at 10.80 µg/mL and LOEL at 12.3 µg/mL). A NOEL and LOEL for percentage of binucleate cells was also observed at 9.2 µg/mL and 10.8 µg/mL BPA respectively. For mechanistic evaluation of the aneugenic effects of BPA, fluorescently labelled antibodies were used to visualize microtubules (α -tubulin) and MTOCs (γ -tubulin) in V79 culture. BPA in this case was added to V79 cells growing on sterile glass microscope slides placed in Petri dishes at concentrations 4.2, 4.9, 5.6, 7.0, 8.4, 9.8, 11.2 and 14 µg/mL for 20 h (*i.e.* one cell cycle for V79). Similarly for induction of aberrations in the mitotic machinery a NOEL was observed at 7.0 µg/mL and a LOEL at 8.4 µg/mL BPA in V79 cells. Aberrant mitotic divisions, in the form of multiple spindle poles were detected and it was suggested by the study authors to be the mechanism for the production of chromosome loss into MN.

32. Santovito *et al.*, 2018: In this study the possible induction of chromosomal damage by BPA (Sigma-Aldrich) was tested in human peripheral blood lymphocytes cultures applying the CA assay and the micronucleus test (MN). Cell cultures were exposed to a range of concentrations from 0.01 to 0.20 μ g/mL, (including the reference dose established by United States Environmental Protection Agency (US EPA) (0.05 μ g/mL), the tolerable daily intake established by European Union (0.01 μ g/mL) and the highest concentration of unconjugated BPA found in human serum (0.02 μ g/mL)) for 24 h for the chromosomal aberration test and for 48 for the micronucleus test. A statistically significant increase of cells with structural chromosomal aberrations, with a prevalence of chromatid breaks, was reported starting from 0.05 μ g/mL; no numerical aberration was observed. A concentration related increase in MN frequency was detected starting from 0.02 μ g/mL in which a four-fold increase with respect to the control level was observed.

33. Di Pietro *et al.*, 2020: The study investigated the effects of BPA exposure on cell proliferation, cell cycle progression and DNA damage in human peripheral blood mononuclear cells (PBMC) and the BPA-induced neurotoxicity in rats exposed to environmental relevant doses of BPA during development. Human PBMC from five unrelated healthy donors (adult males and females) were cultured and treated with BPA (Merck) from 5 nM to 200 μ M. The treatment with BPA of unstimulated resting PBMC did not affect cell proliferation (determined by the colorimetric MTT) at all the

This does not represent the views of the Committee and should not be cited.

concentrations tested except for 200 µM for which a marked inhibition of cell proliferation was observed at 24 and 48 h after the treatment. By contrast, in PHAstimulated cells, BPA caused a pronounced increase of cell growth starting from 10 nM to 100 nM and a concentration-dependent decrease of cell proliferation from 25 to 200 µM. The cell cycle was analyzed by flow cytometry. BPA at 50 nM increased the percentage of cells in S phase of the cell cycle at 24 h and this effect was higher at 48 h with an increase of about 17% of cells in the S phase compared with the control. At 100 µM, BPA induced a significant increase of the percentage of cells in the G0/G1 phase, suggesting that BPA affected cell growth in a non-monotonic way. BPA-treatment at 25, 50 and 100 nM for 48 h induced a significant increase (p < 0.001) of both the percentage of aberrant cells (about 20% at 100 nM) and structural aberrations (about 27% at 100 nM) including chromatid and chromosome breaks, rings and fragments. BPA also increased significantly the percentage of highly fragmented metaphases (shattered cells). In PHA-stimulated PBMC treated with BPA (50 nM) for 24 h, vH2AX was significantly increased in CD3+ T lymphocytes and was also detected in a higher proportion of CD8+ T lymphocytes than the CD4+ T lymphocytes and a slight percentage of yH2AX was reported among the B cells. The treatment of PHA-stimulated PBMC with BPA (50 nM) induced p21/Waf1 and PARP1 protein expressions approximately within the same time interval. These findings suggest that BPA could affect the p53-p21/Waf1 checkpoint and PARP1 levels resulting in DNA damage repair defects. BPA (50 nM) for 24 h modulated the expression of ER- α and ER- β in both sexes inducing or inhibiting its expression in males and in females with effects similar to the variations induced by pharmacological concentrations of E2 (100 nM). The study investigated also the BPA-induced neurotoxicity in terms of DNA damage. After the coupling period, three females/group received BPA (0.1 mg/L), or vehicle (ethanol 0.1 mL/L) in the drinking water during gestation, lactation and weaning of their offspring. Five female and three male pups from BPA-exposed mothers and five female and three male newborns from vehicle-treated dams were then sacrificed at PND 17. BPA was shown to induce vH2AX phosphorylation in cells possessing immune function in the CNS, such as microglia and astrocytes of rat hippocampus. In BPA-exposed rats a marked decreasing trend of ER α expression was found therefore proposing a role for this receptor in the effects induced by BPA.

This does not represent the views of the Committee and should not be cited.

34. Šutiaková *et al.*, 2014: The study evaluated the genotoxic and cytotoxic effects of BPA (Sigma-Aldrich) on bovine peripheral lymphocytes *in vitro*. Lymphocyte cultures from two animals were exposed to four different concentrations of BPA ($1\times10-4$, $1\times10-5$, $1\times10-6$ and $1\times10-7$ mol. L-1) 24 h after stimulation by L-phytohemagglutinin, and incubated for total 72 h. Micronucleus frequency was determined using the cytokinesis block method, adding 6 µg/mL cytochalasin B at 44 h. A significant increase in the number of MN (p= 0.018) was observed at the highest concentration of BPA; at lower concentrations micronucleus frequency was not significantly different from vehicle (DMSO) control. The nuclear division index (NDI) was not affected by BPA treatment at any concentration level.

35. Huang FM et al., 2018: The study reported positive results for induction of DNA strand breaks (evaluated by comet assay) and MN frequency in murine macrophage RAW264.7 cells. Cell cultures were treated at 0, 3, 10, 30, and 50 µM of BPA (Sigma-Aldrich) dissolved in DMSO for 24 h. Concentration-dependent increase of tail length, based on the analysis of 50 cells/slide, and of MN frequency by the evaluation of 1000 binucleated cells per concentration were observed. No positive controls were used. The genotoxic effects were observed starting from 10 μ M and were associated with an increase of reactive oxygen species (ROS), measured by Dichlorofluorescein Diacetate Assay (DCFH-DA) and a decrease of antioxidant enzymes, including GPx, SOD and CAT. Concomitant phosphorylation of P53 and release of cyto C from mitochondria into cytosol were reported. A reduced expression of antiapoptotic proteins BCL2 and BCL-XL significant from 10 and 3 µM respectively and an increase of the expression of proapoptotic proteins BAX, BID, and BAD beginning at 10, 10 and 30 µM respectively were observed in a concentration-dependent manner. Increased level of the apoptosis-inducing factor (AIF) in the nucleus and a decrease in the mitochondria was detected. Expression of pro-caspase-3 and pro-caspase-9 is reduced by BPA in a concentration-dependent manner and PARP-1 cleavage was induced by BPA. Pre-treatment of the cell cultures with N-acetylcysteine (NAC), a cysteine precursor of the antioxidant glutathione, at the concentration of 10 µM for 30 min reduced BPA-induced cytotoxicity, apoptosis, and genotoxicity. The results of this study indicates that the toxic effects induced by BPA in macrophages was mainly through oxidative stressassociated mitochondrial apoptotic pathway.

36. Xin *et al* 2015: See summary in the *in vitro* gene mutation section.

37. Yu *et al* 2020: In this study, induction of MN and double-strand DNA breaks by BPA, BPF, and BPS were investigated in Chinese hamster V79-derived cell lines expressing various human CYP enzymes and a human hepatoma (C3A) (metabolism-proficient) cell line. In a first step a prediction of BPA, BPF, and BPS as potential substrates for several human CYP enzymes, which are commonly involved in the metabolic activation of compounds, was conducted by molecular docking. The results of the analysis showed a similar affinity of the compound with all the enzymes tested: CYP1A1, 1A2, 1B1, 2B6, 2E1, and 3A4. BPA (99.6% analytical purity) tested at 40, 80 and 160 μ M for 9 h, followed by 15 h of recovery induced a concentration related increase of MN frequency in V79-hCYP1A1. In V79-hCYP1B1 cells MN were observed only at the two highest concentrations. No induction of MN was reported in V79-Mz, V79-hCYP1A2, V79-hCYP2E1, or V79-hCYP3A4-hOR cells. A consistency with the results of the molecular.

In vivo chromosomal aberrations/micronuclei

38. Eleven *in vivo* studies addressing BPA-induced MN and structural CA after oral exposure were evaluated. After a screening for the reliability and relevance of the results, six studies from four publications, all ranked as of limited relevance, were selected for further consideration (Table 1). Of these, three studies were considered positive for the induction of MN and CA in the same publication (Tiwari *et al.*, 2012) or of MN (Panpatil et al., 2020) in rats following daily oral BPA administrations for 6 and 28 days, respectively. Tiwari et al. (2012) applied a range of doses from 2.4 µg up to 50 mg/kg bw per day. In a separate publication, the same authors (Tiwari and Vanage, 2017) reported that these experimental conditions were associated with the induction of lipid peroxidation (malonaldehyde, MDA) and oxidative stress (decreased SOD, CAT, GSH) in rat bone marrow and peripheral blood lymphocytes. In Panpatil et al. (2020) the dose range was much lower (50 and 100 µg/kg bw per day). A fourth study tested positive in the mouse bone marrow MN test after the administration of a daily dose of 50 mg/kg bw for 28 days in presence of high level of cytotoxicity (Fawzy et al., 2018). A study by Naik and Vijayalaxmi (2009) reported

This does not represent the views of the Committee and should not be cited.

negative findings in the mouse bone marrow MN test and CAs following a single dose in the range 10 to 100 mg/kg bw.

39. Overall, the available data provided evidence of chromosomal damage after multiple oral administrations but not after single oral administration of BPA.

Test System	Dose	Results	Reference
MN and CA in bone	10, 50 and 100	Negative	Naik and
marrow	mg/kg bw, single	No significant	Vijayalaxmi, 2009
Swiss albino mice	dose by gavage; 10	decrease of	
6 animals /group	mg/kg for 5 days	PCE/NCE ratio but	
	(50mg by gavage	significant increase	
		of gaps and C	
		mitoses.	
MN in bone marrow	2.4µg, 10 µg, 5 mg	Positive	Tiwari <i>et al</i> ., 2012
Holtzman rats	snf 50 mg/kg bw per	Dose related	
10 animals /group	day orally for 6 days	increase of CA and	
		MN PCE starting	
		from 10 µg	
MN in bone marrow	50 mg/kg bw per	Positive	Fawzy <i>et al</i> ., 2018
Male Swiss albino	day orally for 28	Significant reduction	
mice	days	in the ratio of	
10 animals /group		PCE/NCE	
MN in bone marrow	50 and 100	Positive	Panpatil <i>et al</i> ., 2020.
Male Wistar rats	µg/kg/bw per day	Dose related	
6 animals / group	orally for 28 days	increase of MDA in	
		blood and of urinary	
		8OHdG	

Table 1. Summary table of test results of MN and CAs in vivo studies.

Source: Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, EFSA, (2021)

Summary of studies

40. Tiwari *et al.*, 2012: This study was aimed to assess potential genotoxic effects of BPA (Sigma-Aldrich) in rats (five males and five females per group) following oral administration of test compound once a day for 6 consecutive days at dose-levels of 2.4 μ g, 10 μ g, 5 mg and 50 mg/kg bw by measuring induction of MN and structural chromosome aberrations in bone marrow cells and primary DNA damage in blood lymphocytes using single cell gel electrophoresis (comet assay). Furthermore, plasma concentrations of 8-hydroxydeoxyguanosine (8-OHdG), lipid peroxidation and glutathione activity were evaluated to assess potential induction of oxidative DNA damage. Results obtained for genotoxicity endpoints show marked dose-

This does not represent the views of the Committee and should not be cited.

related increases of both MN and structural chromosome aberrations in bone marrow cells of male and female rats exposed to BPA. The observed increases achieved statistical significance at dose-levels as low as 10 μ g/kg bw per day. Similarly, primary DNA damage evaluated by comet assay, in isolated peripheral blood lymphocytes showed marked and dose-related increases that were statistically significant at dose-levels as low as 10 μ g/kg bw per day. Significant increase in plasma concentration of 8-OHdG was detected only at 50 mg/kg bw. A dose-related increase of malonaldehyde and decrease of glutathione were observed in liver.

41. Panpatil *et al.*, 2020: The study evaluated the protective action of turmeric acid on the genotoxic effects of BPA in Wistar rats. Six groups of six animals were administered with BPA (Sigma-Aldrich) at 0, 50 and 100 µg/kg by oral gavage for a period of 4 weeks: three groups were fed with a normal diet, the others with a diet containing 3% turmeric. At the end of the experiment the animals were sacrificed. Urine was collected 24 h before the sacrifice. 8-OHdG was measured in urine using an ELISA kit. DNA damage by comet assay was evaluated in blood, liver and kidney: 50 cells per slide were counted twice. Micronucleus assay was applied in bone marrow: 2000 PCE were evaluated. A weak but statistically significant and dose related increase of tail length was observed in liver. In kidney an increase of DNA damage was observed only at the dose of 50 µg/kg. A dose related increase of 8-OHdG in urine and of the concentration of MDA in blood serum was observed. A dose related increase of MNPCE was reported associated with a low decrease of the PCE/NCE ratio. A significant decrease of the genotoxic effects was observed in animal fed with diet with turmeric.

42. Tiwari and Vanage, 2013: This study investigated the induction by BPA of dominant lethal mutations in the different stages of spermatogenesis in the rat. Furthermore, the induction of DNA damage by BPA in epididymal sperm was investigated. Holtzman male rats (7 per group) were treated by oral gavage with BPA (Sigma Chemical Co.) dissolved in ethyl alcohol and diluted in sesame oil, at dose-levels of 10 μ g/kg bw and 5 mg/kg bw once a day for 6 consecutive days. Negative controls were treated with vehicle. Each treated male was mated with two females per week over a period of eight weeks. The mated females were then sacrificed on the day 15th of their gestation and uterine content examined. DNA damage in

This does not represent the views of the Committee and should not be cited.

epididymal sperm was evaluated by alkaline comet assay in sperm samples from treated males (4 animals per group) sacrificed after completion of the mating phase. In the dominant lethal study, a significant decrease in total implants/female and live implants/female, with a concurrent significant increase in the number of resorbed embryos per female, was observed during the fourth week and sixth week in females mated with males treated with 5 mg BPA/kg bw, suggesting the induction of post-implantation loss due to dominant lethal mutations in mid-spermatids and spermatocytes. No significant change was observed in the pre-implantation and post-implantation losses in pregnant female mated with males exposed to 10 µg/kg bw of BPA. In the comet assay with epididymal sperm, a significant increase in comet parameters (tail length, tail moment and % tail DNA) was observed in rats treated with 5 mg/kg bw compared with control.

43. Fawzy et al., 2018: The study was conducted to evaluate the protective action of pumpkin seed oil (PSO) against adverse effects induced by BPA. BPA (Sigma-Aldrich) was administered orally to male Swiss albino mice at 50 mg/kg bw once a day for 28 days. PSO was administered at 1 mL/kg bw either before, with or after treatment of BPA, for 28 days. Seven groups of animals (n = 10) were treated: group 1 (control); group 2 (vehicle); group 3 (PSO); group 4 (BPA); group 5 (PSO before BPA); group 6 (PSO with BPA) and group 7 (PSO after BPA). DNA damage was evaluated by comet assay in liver and testes. Fifty randomly selected nuclei per experimental group were analysed. MN frequencies were evaluated in bone marrow. Two thousand polychromatic erythrocytes (PCE) were scored per animal. A significant (p<0.05) increase of tail DNA % in liver and testes of BPA-treated group with respect to controls $(19.93 \pm 0.68 \text{ vs } 13.15 \pm 0.22 \text{ and } 23.56 \pm 0.45 \text{ vs } 15.00 \pm 0.012 \text{ sc}^{-1}$ 0.50) was observed. A significant increase of MNPCEs (66.40 ± 9.94 vs 10.40 ± 2.96) and a decrease in the ratio of PCE/NCE were also detected. The histopathological examination revealed hepatocyte vacuolar degeneration with many necrotic cells. A defective spermatogenesis was also observed characterized by severe necrosis and loss of the spermatogonial layers with multiple spermatid giant cells formation in most of the seminiferous tubules and a congestion of the interstitial blood vessels. The treatment with PSO reduced the genotoxic effects induced by BPA. PSO before BPA treatment was the best regimen in the alleviation of the adverse effects.

44. Naik and Vijayalaxmi, 2009: This study evaluated potential genotoxic effects of BPA by induction of chromosomal aberrations and MN in bone marrow cells of Swiss albino mice. To assess for potential interference of BPA with mitotic spindle apparatus, induction of c-mitoses was also performed. BPA (Loba Chemie, Mumbai, India) was administered orally in a 2% acacia gum suspension at dose-levels of 10, 50 and 100 mg/kg bw to groups of three male and three female mice, as single acute dose. Cumulative dose-level experiments were also performed at the lowest (10 mg/kg bw) dose-level for five consecutive days. In single treatment schedule, sampling of bone marrow was performed at 6, 24, 48 and 72 h from beginning of treatment for both micronucleus and chromosome aberration assays. Ina cumulative treatment schedule, bone marrow was sampled in both assays 24 h after the last administration of BPA. For induction of c-mitoses, the same dose levels used for micronucleus and chromosome aberration assays were applied as single dose and sampling of bone marrow was performed at 2, 6, 12, 24, 48 and 72 h. Results showed that no significant increases of chromosomal aberrations or MN were induced at any dose-level and sampling time used. Conversely, significant increases in the frequencies of gaps were observed in all dose-levels assayed at the 48 and 72 h sampling time and at the two higher dose-levels (50 and 100 mg/kg bw) at the 24 h sampling time. The significant increases of achromatic lesions (gaps) are not considered relevant for clastogenicity. In addition, BPA also induced c-mitotic effects through increases of mitotic indices and decrease in anaphase for both higher doselevels at 24, 48 and 72 h sampling times.

Comet Assay

In vitro comet assay

45. Twenty-two in vitro studies using a comet assay in different cell lines were available for evaluation. Twelve were classified as of limited relevance and further considered in the assessment. Most cell lines used in these studies were of human origin from blood, mammary gland and prostate. Rodent cell lines from rat, mouse and hamster and one cell line from monkey were also considered.

46. Eleven of the 12 studies reported positive results. Three studies on HepG2 cell line yielded both positive (Li XH et al., 2017); Balabanič et al., 2021) and negative (Fic et al., 2013) results. In a non-tumorigenic human prostatic cell line, BPA induced a significant increase in DNA strand breaks paralleled by a decrease in total GSH, antioxidant capacity, glutathione peroxidase 1 (GPx1) and SOD activity and an increase in glutathione reductase (Kose et al., 2020). Positive results were also reported in CHO cells (Xin et al., 2015). Positive results were reported from two studies in which human PBMC were analysed by both alkaline and neutral comet assays (Mokra et al., 2017). Evidence of oxidative damage to DNA bases was provided by the addition of endonuclease III (Nth) and 8-oxoguanine DNA glycosylase (hOGG1) DNA repair enzymes (Mokra et al., 2018). DNA strand breaks induction by BPA was associated with increased ROS, MDA and reduced SOD activity in HepG2 (Li XH et al., 2017). In murine macrophage RAW264.7 cells, positive DNA strand breaks were associated with an increase in ROS and decreased level of antioxidant enzymes (Huang FM et al., 2018). In Marc-145 rhesus monkey embryo renal epithelial cells, DNA strand breaks induction was associated with increased ROS and Thiobarbituric Acid Reactive Substances (TBARS) and decrease in glutathione (GSH) and Superoxide Dismutase (SOD) activity (Yuan et al., 2019).

47. DNA strand breaks induction in mouse embryonic fibroblast cell line (NIH3T3) is associated with elevated ROS and a modest increase in DNA 8-hydroxy-2'deoxyguanosine (8-OHdG) at the highest concentration tested (Chen *et al.*, 2016). In rat INS-1 insulinoma cells, DNA strand breaks and ROS level increased in parallel along with the induction of DNA damage-associated proteins (p53 and p-Chk2). At the highest concentration of 100 μ M, pre-treatment with NAC reduced the number of induced DNA strand breaks by two-fold (Xin *et al.*, 2014). Finally, ER-positive MCF-7 cells were more sensitive than Oestrogen receptor (ER)-negative MDA-MB-231 cells to BPA-induced DNA damage, as measured by comet assay (Iso *et al.*, 2006).

48. The available *in vitro* studies provided evidence that BPA induces DNA strand breaks most likely related to the induction of oxidative stress. Summary of studies

49. Li XH *et al.*, 2017: The study investigated the cytotoxic effects and oxidative stress induced by BPA (Sigma-Aldrich) alone and in combination with dibutyl phthalate (DBP) or cadmium (Cd) in vitro in HepG2 cells. The cell cultures were exposed for a period of 6 h to a range of concentrations of the single substances ensuring a cell viability above 50%. BPA tested from 10-8 to 10-4 mol/L for 6 hours induced a concentration dependent increase of reactive oxygen species (ROS), measured by DCFH-DA, and malondialdehyde (MDA) level and a decreased activity of SOD. An increase of DNA strand breaks (up to eight- fold with respect to the control value) applying the comet assay, was detected after BPA treatment at 10-8, 10-7, 10-6 mol/L for 24 h without a clear concentration response. The co-exposure treatments (BPA and DBP or BPA and Cd) showed higher ROS and MDA levels and lower SOD activity than the mono-exposure treatments. The combined treatments with BPA and Cd had stronger DNA damage effect.

50. Balabanič *et al.*, 2021: See summary in the *in vitro* gene mutation section.

51. Fic *et al.*, 2013: See summary in the *in vitro* gene mutation section.

52. Kose *et al.*, 2020: This study investigated the relative toxicity, potential oxidative stress and genotoxicity induced by BPA (>99% purity), BPS and BPF on the RWPE-1 non-tumorigenic prostatic cell line. RWPE-1 cells were incubated with BPA at concentrations of 50–600 μ M for 24 h exposure. The IC₂₀ and IC₅₀ values, concentrations that causes 20 and 50% of cell viability loss, after a 24 exposure to BPA were 45 and 113.7 μ M. BPA induced significant decreases in the activities of glutathione peroxidase (GPx1) and SOD, an increase in glutathione reductase and total GSH and a decrease in total antioxidant capacity. At a single concentration (IC20), BPA produced significantly higher levels of DNA damage vs the control both in the standard (2.5-fold increase) and Fpg-modified comet assays. No changes in the mRNA levels of p53 and the OGG1, Ape-1, DNA polymerase β base excision repair (BER) proteins were induced by BPA. The single exception was a small decrease in the expression levels of MYH expression.

53. Xin *et al* study 2015: See summary in the *in vitro* gene mutation section.

54. Mokra *et al.*, 2017: The study reported concentration-related induction of DNA single and double strand breaks (detected with alkaline and neutral comet assay) by

BPA (Sigma-Aldrich) and its analogues, BPS, BPF and BPAF in human peripheral blood mononuclear cells (PBMC) treated in the concentrations ranging from 0.01 to 10 μ g/mL after 1 and 4 h treatment. No significant decrease of cell viability, evaluated using calcein-AM/PI stains, was observed at the concentrations tested for DNA damage. After 1 h incubation, BPA caused statistically significant increase in DNA strand breaks at 0.1 mg/mL. The highest effects were induced by BPA and BPAF, which produced single strand breaks starting from 0.01 μ g/mL, while BPS caused the lowest effect at 10 μ g/mL after 4 h of exposure. Statistically significant increases of 1 μ g/mL and 10 μ g/mL after 1 h incubation and at 0.1 μ g/mL and 1 μ g/mL after 4 h incubation. The strongest effect was observed with BPAF. DNA repair was also evaluated at different times (30, 60 and 120 min) after the treatment with BPA at 10 μ g/mL. A significant decrease of the DNA damage was observed at 60 min, but the repair was not complete after 120 min.

55. Mokra *et al.*, 2018: The study reported that BPA (Sigma-Aldrich) and its analogues, BPS, BPF and BPAF caused oxidative DNA damage to purine and pyrimidines in human peripheral blood mononuclear cells (PBMC) treated at concentrations of 0.01, 0.1 and 1 μ g/mL for 4 h and 0.001, 0.01 and 0.1 μ g/mL for 48 h. BPA was dissolved in ethanol. No significant decrease of cell viability, evaluated using calcein-AM/PI stains, was observed at the concentrations tested. DNA damage was detected with alkaline comet assay coupled with repair enzyme endonuclease III (Nth) and 8-oxoguanine DNA glycosylase (hOGG1). Statistically significant and concentration related oxidative damage to purines (from 0.01 μ g/mL) and to pyrimidines (from 0.1 μ g/mL) was reported after 4 h treatment. After 48 h treatment significant damage to purine was observed from 0.001 μ g/mL and to pyrimidines from 0.01 μ g/mL. Statistically significant differences for DNA damage between 4 h and 48 h exposure at the highest concentrations tested (0.01 and 0.1 μ g/mL).

56. Huang FM *et al.*, 2018: See summary in the *in vitro* chromosomal aberrations/micronuclei section.

57. Yuan *et al.*, 2019: In this study, markers of oxidative stress and DNA damage were evaluated in Marc-145 rhesus monkey embryo renal epithelial cells exposed to

BPA (Sigma-Aldrich, purity > 99%) in the range 10-1, 10-2, 10-3, 10-4, 10-5 and 10-6 M (24 hr exposure). The results showed that BPA induced a concentration-dependent decrease in cell viability (from 20% at the lowest concentration up to almost 80% at the highest concentration), in SOD activity and GSH level. Concomitant concentration-dependent increases in apoptosis, lactate dehydrogenase (LDH) activity, ROS and thiobarbituric acid reactive substances content were observed. BPA also induced a concentration-dependent increase in DNA strand breaks by comet assay in the range of concentrations measured (10-3 - to 10-6 M).

58. Chen et al., 2016: The study investigated the cytotoxic and genotoxic effects induced by BPA alone and in combination with cadmium (Cd) in vitro in mouse embryonic fibroblast cell line (NIH3T3). The treatment of the cell cultures with BPA (Sigma-Aldrich) at 2, 10 and 50 µM was shown to induce, only at the highest concentration tested, a decrease in the cell viability and an increase of the oxidative damage as reactive oxygen species (ROS), measured by DCFH-DA and as 8-OHdG. Significant increase of DNA strand breaks was also detected as tail DNA% and tail moment by comet assay. Higher number of vH2AX foci detected through the use of immunofluorescence and increased vH2AX expression evaluated by western blot in BPA treated cells are indicative of DNA double strand breaks. In addition, 50 µM BPA treatment did significantly decrease the percentage of cells in G1 phase and increased the percentage of cells in G2 phase but not in S phase. Pre-treatment of cells with Cd was observed to aggravate BPA- induced cytotoxicity, and increase ROS production, DNA damage, G2 phase arrest, total TUNEL positive cells and cleaved-PARP expression levels.

59. Xin *et al.*, 2014: The aim of this study was to assess how BPA can influence the function of pancreatic islets. To measure DNA damage, rat INS-1 insulinoma cells were exposed to different concentrations of BPA (Sigma-Aldrich, 99% purity) (0, 25, 50, 100 μ M for 24 h) and analysed by the single-cell gel electrophoresis (comet assay). To investigate the possible mechanism of DNA damage induced by BPA, p53 and p-Chk2 levels were also analysed by western blotting together with measurements of intracellular ROS and glutathione (GSH). The results show that BPA caused an increase in DNA strand-breaks at 50 and 100 μ M (as measured by

This does not represent the views of the Committee and should not be cited.

tail moment, tail length and tail DNA %). The authors state that these experimental conditions did not cause any significant toxicity (90% survival; no data provided). Pre-treatment with NAC decreased to half the number of DNA strand breaks induced at the highest dose. A significant increase in intracellular ROS, which was decreased by NAC pre-treatment, was also observed. A significant reduction in the level of GSH levels was observed at all BPA concentrations. Finally, expression of DNA damage-associated proteins (p53 and p-Chk2) was significantly increased by BPA exposure at all concentrations.

60. Iso *et al.*, 2006: In this study the effects of BPA and 17β-oestradiol (E2) on DNA damage was analysed in ER-positive MCF-7 cells by comet assay. One thousand higher concentrations of BPA (Wako Pure Chemicals Industries, Ltd.) were needed to induce the same levels of effects of E2. Levels of γH2AX foci measured by immunofluorescence microscopy were increased after treatment with E2 or BPA. Foci of γH2AX co-localized with the Bloom helicase, an enzyme involved in the repair of DSBs. In comparison with MCF-7 cells, DNA damage was not as severe in the ER-negative MDA-MB-231 cells. In addition, the ER antagonist ICI182780 blocked E2 and BPA genotoxic effects on MCF-7 cells. These results together suggest that BPA causes genotoxicity ER dependently in the same way as E2.

In vivo comet assay

61. In the current assessment only 5 of 21 *in vivo* comet assay studies of DNA strand breaks induction by BPA were classified as of high (one study) or limited relevance and have been considered for evaluation. Among the five oral studies selected, three were positive and two were negative. A single study of high relevance reported negative results in multiple mouse organs (liver, kidney, testes, urinary bladder, colon and lungs) after single treatment at three doses up to the Maximum Tolerated Dose (MTD) of 500 mg/kg bw (Sharma *et al.*, 2018). Negative results were also reported in rats exposed to 200 mg/kg bw per day orally for 10 days (De Flora *et al.*, 2011). In contrast, dose-related increases in DNA strand breaks were reported at doses greater than 10 μ g/kg bw in rats treated for 6 days with a range of doses between 2.4 μ g and 50 mg/kg bw per day (Tiwari *et al.*, 2012). A weak and dose-dependent increase in liver DNA strand breaks was observed at

This does not represent the views of the Committee and should not be cited.

50 and 100 mg/kg bw per day, whereas the increase in kidney was limited to 50 μ g/kg bw (Panpatil *et al.*, 2020). Finally, in a study on BPA neurotoxicity, a significant increase of strand breaks in brain cells was observed after treatment in a range of doses from 0.5 to 5000 μ g/kg bw per day for 8 weeks (Zhou YX *et al.*, 2017).

62. Overall, the comet assays provided only limited evidence of DNA damage following multiple administrations of BPA, but not following single dose administrations.

Test system	Dose	Results	Reference	
Comet assay in liver, kidney testes, urinary bladder, colon and lungs				
CD-1 male mice 5 animals/group	125, 250 and 500 (MTD) mg/kg bw Single dose by gavage	Negative	Sharma <i>et al</i> ., 2018	
Comet assay in liver, kidney, testes, urinary bladder, colon and lungs				
Sprague Dawley rats 8 animals/group	200 mg/kg bw per day orally for 10 days	Negative	De Flora <i>et al</i> ., 2011	
Holtzman rats 10 animals/group	2.4 μg, 10 μg, 5mg and 50 mg/kg per day orally for 6 days	Positive Dose-related increase starting from 10 μg/kg	Tiwari <i>et al</i> ., 2012	
Comet assay in liver and kidney				
Male Wistar rats (WNIN) 6 animals/ group	50 100 μg/kg orally for 4 weeks	Positive Weak dose-related in liver, only at 50 μg/kg in kidney	Panpatil <i>et al</i> ., 2020	
Comet assay in brain cells				
KM male mice 11 animals/group	0.5, 50 and 5000 μg/kg bw per day Orally for 8 weeks	Positive	Zhou YX <i>et al</i> ., 2017	
Source: Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, EFSA, (2021).				

Table 3. Summary table of test results of Comet *in vivo* studies.

Summary of studies

63. Sharma et al., 2018: The in vivo genotoxic potential of BPA in mouse organs was investigated using the alkaline comet assay. Male CD-1 mice (5 per group) were administered BPA (Sigma-Aldrich) by gavage in corn oil suspensions prepared by ultrasonication at three dose levels (125, 250 and 500 mg/kg bw), given twice, 24 h apart. Ethyl methane sulphonate, given once by gavage at 300 mg/kg bw, served as positive control. Animals were sacrificed 3 h after the last treatment and DNA damage investigated by a commercial kit for comet assay in liver, kidney, testes, urinary bladder, colon and lungs cells. For each mouse, 200 cells were analysed (100 per gel) using an automatic comet assay scoring imaging system. Median values for each tissue from each animal were used, and the mean of the median values was evaluated in a statistical analysis. The results of comet assay did not show BPA related effects in any tissue, except for the testes, in which an increased level of DNA strand breaks (p < 0.01 compared with control group) was observed at the lowest dose; however, no dose response relationship was observed as the effects at the medium and highest doses were at the same level as the control group. A modified alkaline comet assay was conducted on human sperm cells treated with BPA 0, 1, 1.5, 2 and 3 µmol/L for 1h. BPA 3 µmol/L reduced cell viability to 60%, therefore it was the highest concentration tested. Ethyl methanesulfonate (EMS) was used as positive control. In total, 600 cells were scored for each concentration. No increase in % tail DNA was observed compared with the negative control.

64. De Flora *et al.*, 2011: The ability of BPA to form DNA adducts was investigated in two human prostatic cell lines: PNT1a non tumorigenic epithelial cells and PC3 cells androgen-independent prostate cancer cells originated from bone metastasis of prostatic carcinoma. PNT1a and PC3 cells were treated with BPA (Sigma-Aldrich), dissolved in ethanol at a concentration corresponding to the IC50 (200 μ M for PNT1a and 250 μ M for PC3) for 24 h. PNT1a cells were also treated at a concentration of 1 nM, for 2 months. Significant levels of DNA adducts were detected by 32P-postlabeling technique in prostate cell lines treated with highconcentration of BPA for 24 h (4.2-fold increase over controls) in PNT1a cells and a

This does not represent the views of the Committee and should not be cited.

2.7-fold increase over controls in PC3 cells) and in a lower extent in PNT1a cells treated at low-concentration for 2 months.

65. Tiwari *et al.*, 2012: See summary in the *in vitro* gene mutation section.

66. Panpatil *et al.*, 2020: See summary in the *in vivo* chromosomal aberrations/micronuclei section.

67. Zhou YX *et al.*, 2017: The study investigated the neurotoxicity of low-dose exposure to BPA in a mouse model, examining brain cell damage and the effects of learning and memory ability after 8 weeks exposure to BPA at 0.5, 50 and 5000 µg/kg bw (daily dose, by gavage). The comet assay was used to detect brain cell damage. At the end of treatment 11 mice per group were sacrificed and brain processed for comet assay. Forty cells from each brain were analysed. Based on tail DNA percentage, the damage level was divided into five grades, from 0 (undamaged) to 4 (maximum damage). The results obtained indicated that with increasing exposure concentrations, the fraction of damaged cells (all types) increased significantly from 23.0% in the control group to 47.3%, 66.6% and 72.5% in the low-, medium and high exposed groups, respectively. Also, the severity of DNA damage, expressed as arbitrary units (AUs), increased with AUs of 0.28 in the control to AUs of 0.59, 0.96 and 1.28 in the low-, medium and high-exposed groups, respectively.

Other studies

Induction of yH2AX foci

68. Several studies have investigated the induction of γH2AX foci (generally regarded as a marker of DNA DSBs) following BPA treatment (Iso *et al.*, 2006; Pfeifer *et al.*, 2015; George and Rupasinghe, 2018; Kim *et al.*, 2018b; Mahemuti *et al.*, 2018; Hercog *et al.*, 2019; Hercog *et al.*, 2020; Nair *et al.*, 2020; Yin *et al.*, 2020; Escarda-Castro *et al.*, 2021; Yuan *et al.*, 2021).

69. Iso *et al.* (2006) reported increased levels of γH2AX foci after treatment with 17β-E2 or BPA in ER- positive MCF-7 cells (1000x higher concentrations of BPA

This does not represent the views of the Committee and should not be cited.

were needed to induce the same levels of effects as E2). Induction was less severe in ER-negative MDA-MB-231 cells and the ER antagonist ICI182780 blocked BPA-induced γ H2AX focus formation in MCF-7 cells. Taken together, these findings indicate that BPA-induced genotoxicity is ER-dependent

70. The effects of low-dose BPA were studied in the ER α -negative MCF10A and in 184A1 normal breast epithelial cell lines and the ER α -positive MCF7 and MDA-MB-231 human breast epithelial adenocarcinomas. Low doses (10 and 100 nM) induced DSBs as measured by γ H2AX foci in all cell lines and increased the level of c-Myc and of the cell-cycle regulatory proteins cyclins D1 and E and E2F1. Silencing c-Myc reduced BPA-induced γ -H2AX foci and abolished BPA-mediated mitochondrial ROS production. BPA also induced proliferation in ER α -negative mammary cells. The authors conclude that low-dose BPA exerts a c-Myc–dependent genotoxicity and mitogenicity in ER α -negative mammary cells (Pfeifer *et al.*, 2015).

Summary of studies (in order of mention)

71. Iso *et al.*, 2006: See summary in the *in vitro* comet assay section.

72. Pfeifer et al., 2015: The objective of this study was to investigate the effects of low-dose BPA (Sigma-Aldrich) in mammary gland cells. The human cell lines used in the study are the ER α -negative immortalized benign and normal breast epithelial cell lines (MCF10A and 184A1, respectively) and the ERa-positive MCF7 and MDA-MB-231 cell lines originate from human breast epithelial adenocarcinomas. Low concentrations BPA (10 and 100 nM) induced double strand breaks (DSBs) as measured by yH2AX foci in all cell lines. Both MCF10A and MCF7 cells had also a greater number of ATM-pS1981-positive nuclei after 24 h treatment compared with the control. Low-concentration BPA significantly increased the level of c-Myc protein and other cell-cycle regulatory proteins (cyclin D1, cyclin E and E2F1) and induced proliferation in parallel in ERα-negative 184A1 mammary cells. Silencing c-Myc reduced BPA-mediated increase of vH2AX suggesting that c-Myc plays an essential role in BPA-induced DNA damage. The increased level of DNA double strand breaks induced by BPA exposure in 184A1 cells was also confirmed in a neutral comet assay and was found to be reduced by c-Myc silencing. Similarly, silencing c-Myc

abolished BPA-mediated ROS production, which was localized to mitochondria. The authors concluded that low-concentration BPA exerted a c-Myc–dependent genotoxic and mitogenic effects on ERα-negative mammary cells (results reported as tail moment only and a single BPA concentration was analysed).

73. George and Rupasinghe, 2018: This study investigated the relative toxicity of BPA (Sigma-Aldrich) and BPS on human bronchial epithelial cells (BEAS-2B). The tested endpoints included cytotoxicity, induction of ROS, DNA fragmentation, γ H2AX foci and DNA tail damage. To evaluate the mechanism of cell death, the DNA Damage response (DDR) and activation of caspase-3 were also investigated. In all the assays, only a single concentration and single exposure time were used (200 μ M BPA for 24 h). According to the authors this concentration caused 50% loss of cell viability (IC50). However, the data reported indicate high levels of toxicity (90%), with all the results being unreliable at this level of toxicity.

74. Kim *et al.*, 2018: BPA (> 99% purity, Sigma-Aldrich) promoted cell proliferation in undifferentiated and differentiated human hepatocyte cell lines (HepG2 and NKNT-3, respectively) at sub-micromolar concentrations (0.3-5 μ M for 24 h). The proliferative effects of BPA disappeared at concentrations higher than 5 μ M and cell viability decreased at concentrations higher than 10 μ M. Exposure to BPA in the submicromolar range induced DNA damage in both cell lines as shown by a dosedependent increase in phosphorylation of histone H2AX (γ H2AX), p53 activation and induction of cyclin B1. Increased levels of γ H2AX were also observed in liver tissue of juvenile rats (PND 9) orally exposed to a relatively low dose of BPA (0.5 mg/kg for 90 days). At a higher BPA dose (250 mg/kg) no increase in hepatocyte proliferation or cyclin B1 was observed. BPA promoted ROS generation as measured by DCF-DA-enhanced fluorescence in HepG2 cells. Increased levels of ROS were suggested to play a role in BPA-induced proliferation and DNA damage as shown by the partial reversion of both processes upon pre-treatment with NAC.

75. Mahemuti *et al.*, 2018: The aim of this study was to investigate the key molecular pathways involved in the developmental effects of BPA on human fetal lung fibroblasts and their potential implications in the link between pre-natal exposure to BPA and increased sensitivity to childhood respiratory diseases. Global

gene expression profiles and pathway analysis was performed in cultured HFLF exposed to non-cytotoxic concentrations of BPA (0.01, 1 and 100 µM BPA for 24 h, 99% purity, Sigma-Aldrich). Molecular pathways and gene networks were affected by 100, but not 0.01 and 1 µM BPA. These changes were confirmed at both gene and protein levels. The pathways affected by BPA included the cell cycle control of chromosome replication and a decreased DDR. BPA increased DNA DSBs as shown by phosphorylation of H2AX and activated ATM signalling (increased phosphorylation of p53). This resulted in increased cell cycle arrest at G1 phase, senescence and autophagy, and decreased cell proliferation in HFLF. Finally, BPA increased cellular ROS level and activated Nrf2-regulated stress response and xenobiotic detoxification pathways. The authors suggest that pre-natal exposure to BPA may affect fetal lung development and maturation, thereby affecting susceptibility to childhood respiratory diseases.

76. Hercog et al., 2019: With the aim of comparing the toxicological profiles of possibly safer analogues of BPA, the authors investigated the cytotoxic/genotoxic effects of BPS, BPF and BPAF and their mixtures in human hepatocellular carcinoma HepG2 cells. Single exposure to BPA (99% analytical purity, Sigma-Aldrich) did not induce any significant changes in cell viability at the tested concentrations (2.5, 5, 10, 20 µg/mL for 24 or 72 h). Induction of a significant increase in DNA double strand breaks, as determined by yH2AX assay, was observed only at the highest dose (20 µg/mL for 72 h). BPA (tested at the 10 µg/mL concentration) induced changes in the expression of some genes involved in the xenobiotic metabolism (CYP1A1, UGT1A1, but not GST1), response to oxidative stress (GCLC but not GPX1, GSR, SOD1, CAT), while no changes were observed in any of the genes involved in the DDR (TP53, MDM2, CDKN1A, GADD45A, CHK1, ERCC4). Similar results were obtained when cells were exposed to BPA as a single compound or in mixtures with its analogues at concentrations relevant for human exposure (10 ng/mL). The relevance of these changes is of uncertain biological significance.

77. Hercog *et al.*, 2020: In a follow-up study by Hercog *et al.* (2020) the genotoxic effects induced by co-exposure of the cyanotoxin cylindrospermopsin (CYN)(0.5 μ g/mL) and BPA (Sigma-Aldrich), BPS and BPF(10 μ g/mL, 24 and 72 h exposure)

were investigated on HepG2 cells using the same techniques and experimental conditions of Hercog *et al.* (2019). The results obtained with BPA confirm the previously published observations, but the relevance of these changes remains of uncertain biological significance.

78. Nair et al., 2020: The effects of BPA (Sigma-Aldrich) as a single agent, or in combination with 4-tert-octylphenol (OP) and hexabromocyclododecane (HBCD), were studied in the HME1 mammary epithelial cells and in the MCF7 breast cancer cell line. Following a 2-month exposure to a low non-toxic BPA concentration (0.0043) nM), increased levels of DNA damage were evidenced by upregulation in both cell lines of phosphorylated DNA damage markers (y-H2AX, pCHK1, pCHK2, p-P53). Disruption of the cell cycle was observed both after short exposures (24 h and 48 h, G2/M arrest) as well as after the 2-month exposure treatment (G1 and S phase increases). BPA increased cellular invasiveness through collagen. Methylation changes were investigated by Methylation Specific Multiplex-Ligation Dependent Probe Amplification (MS-MLPA) using a panel of 24 tumour suppressor genes (all hypomethylated) and identified hypermethylation of TIMP3, CHFR, ESR1, IGSF4 in MCF7 cells and CDH13 and GSTP1 genes in HME1 cells. Finally, BPA induced phosphorylation of six protein kinases in HME1 cells (EGFR, CREB, STAT6, c-Jun, STAT3, HSP60) and increased levels of several other proteins involved in potential oncogenic pathways (HSP27, AMPKα1, FAK, p53, GSK-3α/β, and P70S6).

79. Yin *et al.*, 2020: The scope of the study was developing a novel *in vitro* threedimensional testicular cell co-culture mouse model that enables the classification of reproductive toxic substances. BPA (99%, Sigma-Aldrich) as well as BPS, TBBPA, and BPAF were used as model compounds. A concentration-dependent increase in BPA toxicity was found in the range 2.5 - 400 μ M following 24, 48 and 72 h exposures. The large variations in the number of gH2AX foci observed at 72 h make the relevance of these results questionable. No increase in gH2AX used as marker of DNA damage was found up to a dose of 100 mM (70% cell viability).

80. Escarda-Castro *et al.*, 2021: The ability of BPA to induce genotoxic and epigenetic changes was investigated before and during cardiomyocyte differentiation in H9c2 rat myoblasts exposed to 10 and 30 µM BPA (92% and 73% of cell viability,

This does not represent the views of the Committee and should not be cited.

respectively). Exposure to BPA (no information on purity or the supplier company) before differentiation repressed the expression of the Hand2 and Gata4 heart transcription factors and three genes belonging to the myosin heavy chain family (Myh1, Myh3, and Myh8), whereas exposure after the 5 days of differentiation reduced the expression of cardiac-specific Tnnt2, Myom2, Sln, and Atp2a1 genes. BPA did not induce ROS and did not increase DNA 8-oxodG levels (as measured by immunostaining) in either myoblasts or cardiomyocytes. After BPA exposure the percentage of DNA repair foci formed by co-localization of the vH2AX and 53BP1 proteins increased in a concentration-dependent manner in myoblasts (from 44% in the control group to 61% and 86% at 10 and 30 µM BPA, respectively), with no increase in MN. Repair foci also increased in cardiomyocytes (from 45% in the control group to 59% and 72% at 10 and 30 µM BPA, respectively). A small increase (up to 13%) in MN was also reported only in cardiomyocytes treated with 10 µM BPA. A decrease in the epigenetic markers H3K9ac and H3K27ac was also reported. The authors concluded from these in vitro data that BPA interferes with the process of cardiomyocyte differentiation. However, the reliability and significance of the data on BPA-induced DNA damage is guestioned by several negative factors (high background levels of DNA repair foci, lack of information on methods for micronucleus assays and the small increase of MN over high background).

81. Yuan *et al.*, 2021: This study investigated the combinatorial toxicity of BPA (\geq 99.8% purity), decabrominated diphenyl ether and acrylamide to HepG2 cells. Increased number of γ H2AX foci were induced in HepG2 by a 24h exposure to a single BPA dose that induced 25% toxicity. The majority of the data (ROS measurements, Ca2+ flux, DNA damage, Caspase-3 and decreased mitochondrial membrane potential) refers to additive/synergistic effects induced by varying combinations of contaminants. The authors conclude that BPA induced an increase in γ H2AX fluorescence and in the number of γ H2AX foci/nucleus. However, this conclusion is not fully supported by the data presented.

Changes in gene expression and DNA methylation

82. Changes in DNA methylation have been investigated in several studies (De Felice *et al*, 2015; Porreca *et al*., 2016; Karmakar *et al*., 2017; Karaman *et al*., 2019).

83. No specific discussion on DNA repair or DDR genes is reported in these publications.

84. None of the information present in these studies is relevant for the clarification of the genotoxic potential of BPA.

Studies in humans

85. Overall, human studies are not considered to provide additional relevant information for the evaluation of BPA genotoxicity

Mode of action

86. BPA did not induce gene mutations in bacteria. All the available in vitro studies on chromosomal damage, classified as of high or limited relevance, reported positive results such as increase of CA or MN frequency, in different cellular systems. The increases in BPA-induced chromatid and chromosome breaks observed in some studies (Xin et al., 2015; Santovito et al., 2018; Di Pietro et al., 2020) in association with the induction of DNA strand breaks, detected by a comet assay (Xin et al., 2015) are consistent with a clastogenic activity. Moreover, the potential of BPA to affect the spindle integrity and interfere with the chromosome segregation machinery was demonstrated in some reliable studies. Johnson and Parry (2008) reported the formation of aberrant mitotic spindles, with multiple poles, in V79 cells treated with BPA. Altered cytoskeleton organization, with multipolar spindles, failure of microtubule attachment to the kinetochore with the concomitant activation of spindle assembly checkpoint (SAC) and chromosome misalignment, were also observed in HeLa cells (Kim et al., 2019). Studies on spindle morphology of mouse (Yang et al., 2020) and bovine (Campen et al., 2018) oocytes during in vitro maturation reported a pattern of alterations similar to that observed in permanent cell lines, namely shorter and multipolar spindles, with altered kinetochore-microtubule attachment and chromosome misalignment at M II.

87. The conclusion, based on these *in vitro* studies, is that BPA may act by both clastogenic and aneugenic mechanisms.

88. The large majority (11 out of 12) of the *in vitro* studies on the comet assay, classified as of limited relevance, reported BPA-induced increases of DNA strand breaks. In some studies, the increase of DNA damage was associated with a parallel increase of ROS and MDA and decrease in antioxidant capacity and in total GSH (Xin et al., 2014; Li XH et al., 2017; Huang FM et al., 2018; Yuan et al., 2019; Kose et al., 2020). A study in macrophages reported also a release of cytochrome c from mitochondria along with increased apoptosis with the indication that the DNA strand breaks could be mainly through the oxidative stress-associated mitochondrial apoptotic pathway (Huang FM et al., 2018). In a study on human PBMC, the application of comet assay with the addition of endonuclease III (Nth) and 8oxoguanine DNA glycosylase (hOGG1) DNA repair enzymes allowed the detection of oxidative damage to DNA bases (Mokra et al., 2018). Further indication of the role of oxidative damage in induction of DNA strand breaks was provided by the protective effects on DNA damage induced by the pre-treatment with NAC (Xin et al., 2014; Huang FM et al., 2018).

89. In conclusion, the evidence of DNA strand breaks *in vitro* is in agreement with the ability of BPA to induce clastogenic damage. In addition, the studies using comet assays provide consistent evidence that BPA induces DNA strand breaks most probably related to the induction of oxidative stress.

90. The available *in vivo* studies for BPA-induced chromosomal damage in somatic cells reported mixed results. No increase of CA and MN frequency was reported after a single administration of BPA to mice in a range of doses inducing toxicity at the bone marrow level (Naik and Vijayalaxmi, 2009). In contrast, in another study in mice, increased MN frequency was detected in the presence of high bone marrow toxicity (Fawzy *et al.*, 2018). Positive results were observed in two rat studies (Tiwari *et al.*, 2012; Panpatil *et al.*, 2020) after repeated dose administration, possibly associated with lipid peroxidation and oxidative stress in the first study. No induction of hyperploidy or polyploidy was observed in these studies.

91. These results indicate that the *in vivo* induction of chromosomal damage requires specific conditions such as repeated exposure to BPA.

92. Induction of DNA strand breaks, detected by comet assay *in vivo*, was observed only after repeated exposure for extensive periods of time up to 8 weeks (Tiwari *et al.*, 2012; Zhou YX *et al.*, 2017; Panpatil *et al.*, 2020). Only one study of high relevance was available on single administration of BPA reporting negative results in multiple mouse organs in a range of doses up to the MTD of 500 mg/kg bw (Sharma *et al.*, 2018). An indication of a possible role of oxidative stress in inducing DNA strand breaks by BPA was provided by the results of several studies (Abdel-Rahman *et al.*, 2018; Fawzy *et al.*, 2018; Kazmi *et al.*, 2018; Majid *et al.*, 2019; Mohammed *et al.*, 2020) showing the protective effects of natural extracts with antioxidant properties. However, these studies were evaluated as low relevance.

93. Finally, studies on germ cells, carried out by four laboratories in the framework of a collaborative project on aneugenic chemicals, did not provide any evidence of increased frequency of aneuploidy in mouse oocytes and zygotes and in sperm cells following exposure to low BPA doses (Pacchierotti *et al.*, 2008).

94. BPA is genotoxic *in vitro* inducing chromosomal damage and DNA breaks. However, *in vivo* the evidence of genotoxic properties of BPA is contradictory. This might depend on multiple mechanisms of action described or proposed for BPA. A major difficulty in the interpretation of these contradictory results is the lack of knowledge on the role of BPA metabolism that could be operational in genotoxic activity. Indeed, the role of the proposed DNA adducts has not been clarified. Other uncertainties include the role of ER receptors in the oxidative stress induced by BPA.

Summary of studies

95. Xin *et al.*, 2015: summary in the *in vitro* gene mutation section.

96. Santovito *et al.*, 2018: summary in the *in vitro* chromosomal aberrations/micronuclei section.

97. Di Pietro *et al.*, 2020: summary in the *in vitro* chromosomal aberrations/micronuclei section.

This does not represent the views of the Committee and should not be cited.

98. Johnson and Parry (2008): summary in the *in vitro* chromosomal aberrations/micronuclei section.

99. Kim *et al.*, 2019: *In vitro* effects of BPA (Sigma-Aldrich) on mitotic progression were examined in HeLa cells exposed to 100 nM BPA for 5 h. Proteins involved in mitotic processes were detected by western blot, live cell imaging, and immunofluorescence staining. Under the applied treatment conditions, BPA was shown to disturb spindle microtubule attachment to the kinetochore, with the concomitant activation of SAC. Spindle attachment failure was attributed to BPA interference with proper localization of microtubule associated proteins, such as Hepatoma Upregulated protein (HURP) to the proximal ends of spindle microtubules, Kif2a to the minus ends of spindle microtubules, and TPX2 on the mitotic spindle. BPA also caused centriole overduplication, with the formation of multipolar spindle.

100. Yang *et al.*, 2020: The effect(s) of exposure to BPA (Sigma-Aldrich) on assembled spindle stability in ovulated oocytes were studied. Mature M II oocytes, recovered from the oviducts of superovulated B6D2F1 mice, were cultured for 4 h in the presence of increasing concentrations (5, 25, and 50 µg/mL) of BPA. After treatment oocytes were analysed by immunofluorescence and live cell imaging to investigate the effect of BPA on spindle dynamics. BPA disrupted spindle organization in a dose-dependent manner, resulting in significantly shorter spindles with unfocused poles and chromosomes congressed in an abnormally elongated metaphase-like configuration, with increased erroneous kinetochore-microtubule interactions.

101. Campen *et al.*, 2018: The aim of the study was to compare the effects of *in vitro* exposure to either BPA (Sigma-Aldrich) or BPS on meiotic progression, spindle morphology and chromosome alignment in the bovine oocyte. Bovine ovaries were sourced from an abattoir. Groups of 5–20 cumulus–oocyte complexes (COCs) extracted from the bovine ovaries were treated with BPA or BPS at 10 concentrations between 1 fM and 50 μ M and underwent to *in vitro* maturation for 24 h, then the oocytes were extracted. For BPA experiments, a total of 939 oocytes were analysed for meiotic stage (including 250 vehicle-only control oocytes), of which a total of 767 were at metaphase II (MII) (including 211 MII oocytes in the

This does not represent the views of the Committee and should not be cited.

control) and were included for analysis of spindle and chromosome configuration. Immunocytochemistry was used to label the chromatin, actin and microtubules in the fixed oocytes. The meiotic stage was assessed using immunofluorescence, and the MII oocytes were further assessed for spindle morphology and chromosome alignment (in all MII oocytes regardless of spindle morphology). No difference in the proportion of bovine oocytes that reached MII was observed for BPA treatment. Significant effect on spindle morphology (p < 0.0001) was induced by BPA treatment at very low concentration (1 fM). Fewer oocytes with bipolar spindles were seen following exposure to BPA at concentrations of 1 fM, 10 fM, 100 fM, 10 pM, 1 nM, 10 nM, 100 nM and 50 µM, compared with the control. There was no effect of BPA on spindle morphology at concentrations of 1 or 100 pM. Increased chromosome misalignments were observed at BPA concentrations of 10 fM, 10 nM and 50 µM of BPA, no effect was detected at any other concentration. The study presents limitations: in the ovaries the effects were evaluated in a specific period of development (namely, the 24 h window of oocyte maturation), without considering potential prior historical exposures in vivo.

102. Xin et al., 2014 : summary in the in vitro comet assay section.

103. Li XH et al., 2017: summary in the in vitro comet assay section.

104. Huang FM *et al.*, 2018: summary in the *in vitro* chromosomal aberrations/micronuclei section.

105. Yuan et al., 2019: summary in the in vitro comet assay section.

106. Kose *et al.*, 2020: summary in the *in vitro* comet assay section.

107. Mokra *et al.*, 2018: summary in the *in vitro* comet assay section.

108. Naik and Vijayalaxmi, 2009: summary in the *in vitro* chromosomal aberrations/micronuclei section.

109. Fawzy *et al.*, 2018: summary in the *in vitro* chromosomal aberrations/micronuclei section.

110. Tiwari *et al.*, 2012: Summary in the *in vitro* gene mutation section.

111. Panpatil *et al.*, 2020: summary in the *in vivo* chromosomal aberrations/micronuclei section.

112. Zhou YX et al., 2017: summary in the in vitro comet assay section.

113. Sharma et al., 2018: summary in the in vivo comet assay section.

114. Abdel-Rahman et al., 2018: The study evaluated the protective action of lycopene (LYC), an antioxidant agent, on the toxic effects of BPA (Sigma-Aldrich). Four groups of seven Wistar rats were treated daily for 30 days via gavage: the first group (controls) received corn oil, the second group was given lycopene at a dose of 10 mg/kg bw, the third group was given BPA at 10 mg/kg bw, the fourth group was given both BPA and LYC at the 10 mg/kg. Rats were sacrificed immediately after the last administration. Liver was frozen at -80 °C. Single-cell suspensions for use in a comet assay were prepared from frozen livers. No positive controls were used. The comet method applied was not reported. A significant (p < 0.05) increase of tail DNA % in liver of BPA-treated group with respect to controls (25.05 vs 6.68) was observed. Higher activities (p < 0.05) of liver enzymes (serum ALT, alkaline phosphatase (ALP) and GGT and lower levels of total protein and albumin than control rats were detected in serum. Antioxidant enzymes (GPx, SOD and CYPR450 activities) significantly (p < 0.05) decreased while MDA level significantly increased in liver of BPA treated animals. Caspase-3 protein in liver of BPA-treated rats is overexpressed. Histopathological analyses showed deleterious hepatic changes ranging from hepatocytes' vacuolization and eccentric nuclei to focal necrosis and fibrosis. LYC administration reduced the cytotoxic effects of BPA on hepatic tissue, through improving the liver function biomarkers and oxidant-antioxidant state as well as DNA damage around the control values.

115. Kazmi *et al.*, 2018: The study evaluated the protective role of Quercus dilatate (green or holly oak) extracts against BPA (no information on purity) induced hepatotoxicity. Ten groups of Sprague Dawley (SD) rats (7 animals/group) were considered, including untreated control group and a group receiving the vehicle. The

This does not represent the views of the Committee and should not be cited.

distilled water-acetone (QDDAE) and methanol-ethyl acetate (QDMEtE) extracts were administered in high (300 mg/kg bw) or low (150 mg/kg bw) doses to rats, intraperitoneally injected with BPA (25 mg/kg bw). A group of rats was treated only with BPA. Rats were sacrificed after 4 weeks of treatment and blood and liver were collected. The comet method applied was not sufficiently detailed. An increase of DNA strand breaks in hepatocytes was reported for animals treated with BPA alone. However, the results reported using the different parameters (tail length, % of DNA in tail, tail moment) are not consistent. The % of DNA in tail is 28.35 ± 1.2 in BPA treated animals vs 0.01 ± 0.005 in controls. The value of % of DNA in tail in controls is extremely low with respect to the data reported in the scientific literature. Significant reduction in haemoglobin level, red blood cells and platelet count, whereas elevated levels of white blood cells and erythrocyte sedimentation rate (ESR) were observed in the BPA treated group. Administration of BPA significantly (p < 0.05) decreased the endogenous antioxidant enzyme (CAT, GPx, superoxide dismutase (SOD) and GSH) levels compared with control group. In addition, in the BPA treated group, H2O2, nitrite and TBARS levels in the hepatic tissue were found to be higher when compared with controls. Histopathological examination of BPA treated animals revealed intense hepatic cytoplasm inflammation, centrilobular necrosis, cellular hypertrophy, fatty degeneration, vacuolization, steatosis and distortion of portal vein. A dose dependent hepatoprotective activity was exhibited by both the extracts of Quercus dilatate in different extent for the parameters analysed.

116. Majid *et al.*, 2019: The study evaluated the protective role of sweet potato (*Ipomoea batatas L. Lam.*) against BPA-induced testicular toxicity. Sixteen groups of seven Male SD rats were established, including controls, animals treated with the vehicle, with ethyl acetate and methanol extracts from tuber and aerial part of Ipomoea batatas, with BPA (Merck KGaA) and with BPA and different extracts of Ipomea batatas. The BPA group received 50 mg/kg bw dissolved in 10% DMSO, injected intraperitoneal on alternate days for 21 days. The rats were sacrificed 24 h after the last treatment. Comet assay was applied to evaluate the DNA damage. An average 50–100 cells were analysed in each sample for comet parameters (head length, comet length, tail moment, tail length, and amount of DNA in head) of gonadal cell's nuclei. A statistically significant increase of % DNA in tail (3 folds with respect to the control value) was reported in the group of rats treated with BPA.

This does not represent the views of the Committee and should not be cited.

Endogenous antioxidant enzymes were measured in supernatant from the testicular homogenates: BPA decreased the levels of peroxidases (POD), CAT, SOD. BPA induced also gonadotoxicity measured as size and weight of testes and epididymis, concentration and quality of sperms. The treatment with extracts of Ipomea batatas significantly reduced the gonadotoxicity induced by BPA, the DNA damage and restored the levels of antioxidant enzymes.

Mohammed et al., 2020: The study evaluated the protective role of ginger 117. extract (GE) against BPA-induced toxic effects on thyroid. Four groups of 20 male albino rats were treated orally with BPA (Sigma-Aldrich), GE or both once a day for 35 days as follow: Control group: 0.1 ml/rat of corn oil; BPA group: 200 mg/kg bw per day (1/20 of the oral LD50); GE group: ginger extract 250 mg/kg bw; BPA + GE group: ginger extract followed by BPA after 1 h with the same doses as the other groups. The animals were sacrificed 24 h after the last administration. DNA damage was evaluated by comet assay. A statistically significant increase of DNA damage expressed as tail % DNA, tail length and tail moment were shown in thyroid follicular cells of animals treated with BPA. A concurrent increase of MDA and a decrease of GSH, and SOD were also observed. Adverse effects on the thyroid gland were reported with a significant decrease in serum levels of T3 and T4 accompanied by a significantly increase in serum Thyroid Stimulating Hormone (TSH) level. A decrease of Nrf-2 mRNA relative expression and protein concentration and of HO-1 mRNA expression in the BPA-induced thyroid injured rats were also described. The histopathological analysis revealed an alteration of the thyroid gland follicles most of which containing scanty colloid secretion and some others atrophied. The treatment with GE significantly reduced the genotoxic damage and the alteration of thyroid hormones regulating genes.

118. Pacchierotti *et al.*, 2008: The study evaluated the potential aneugenic effects of BPA on mouse male and female germ cells and bone marrow cells following acute, subacute or subchronic oral exposure. For experiments with acute and subacute exposure, female C57BL/6 mice were treated by gavage with BPA (from Sigma-Aldrich) dissolved in corn oil once with 0.2 and 20 mg/kg bw, or with seven daily administrations of 0.04 mg/kg bw. In subchronic experiments, mice received BPA in drinking water at 0.5 mg/L for 7 weeks. The dose levels tested for subacute
This does not represent the views of the Committee and should not be cited.

effects in bone marrow and male germ cells were 0.002, 0.02 and 0.2 mg/kg bw for 6 days. For the assessment of an ugenicity in female germ cells, M II oocytes were harvested 17 h after induced superovulation, and cytogenetically analysed after Cbanding. The percentages of metaphase I-arrested oocytes, polyploid oocytes and oocytes that had undergone Premature Centromere Separation (PCS) or Premature Anaphase II (PA) were calculated. To evaluate the aneugenic effects of BPA upon the second meiotic division, zygote metaphases were prepared from superovulated females mated with untreated C57BI/6 males. Zygote metaphases were prepared, Cbanded and cytogenetically analysed for the occurrence of polyploidy and hyperploidy. Experiments on male germ cells were performed with 102/ElxC3H/El)F1 males. Epididymal sperms were collected and hybridized with fluocrochrome-labelled DNA probes for chromosomes 8, X and Y and 10,000 sperm per animal were analysed to evaluate the incidence of hyperhaploid (X88, Y88, XY8) and diploid (XY88, XX88, YY88) sperm cells. Micronucleus test was performed with four groups of five (102/ElxC3H/El) F1 male mice treated with 0, 0.002, 0.02 or 0.2 mg/kg BPA by gavage on 2 consecutive days and sacrificed 24 h after the second administration. In total, 2000 PCE from two slides were scored per animal for the presence of MN. No significant induction of hyperploidy or polyploidy was observed in oocytes and zygotes at any treatment condition. The only detectable effect was a significant increase of M II oocytes with prematurely separated chromatids after chronic exposure; this effect, however, had no consequence upon the fidelity of chromosome segregation, as demonstrated by the normal chromosome constitution of zygotes under the same exposure condition. Similarly, with male mice no induction of hyperploidy and polyploidy was shown in epididymal sperm after six daily oral BPA doses, and no induction of MN in PCE.

Conclusion on hazard identification for genotoxicity effects of BPA

119. In 2015, the CEF Panel concluded that: The available data support that BPA is not mutagenic (in bacteria or mammalian cells), or clastogenic (MN and CAs). The potential of BPA to produce aneuploidy *in vitro* was not expressed *in vivo*. The positive finding in the post labelling assays *in vitro* and *in vivo* is unlikely to be of concern, given the lack of mutagenicity and clastogenicity of BPA *in vitro* and *in vivo*.

37

This does not represent the views of the Committee and should not be cited.

120. Based on the scientific literature considered in the previous EFSA opinions and published thereafter until 21 July 2021, the CEP Panel concluded that:

•BPA does not induce gene mutations in bacteria;

• BPA induces DNA strand breaks, clastogenic and aneugenic effects in mammalian cells *in vitro*;

• oxidative stress related mechanism(s) are likely to be involved in the DNA damaging and clastogenic activity elicited by BPA *in vitro*;

• there is some evidence for DNA and chromosomal damaging activities of BPA *in vivo* following repeated administrations, but not following single administrations;

• the available studies do not provide evidence of aneugenicity of BPA in germ cells *in vivo*.

121. In contrast with consistent positive *in vitro* findings, the *in vivo* findings in several studies with high/limited reliability were inconsistent. The CEP Panel concluded that the evidence does not support an *in vivo* genotoxic hazard posed by BPA through direct interaction with DNA.

Uncertainty analysis for the genotoxicity assessment

122. It was concluded that it is Unlikely to Very Unlikely (5 – 30% probability) that BPA presents a genotoxic hazard, the causes of which include a direct mechanism (combining subquestion 1 and 2 (see <u>Annex A</u> to this paper)). Accordingly, it was concluded that it is Likely to Very Likely (70 - 95% probability) that BPA either presents a genotoxic hazard only through indirect mechanism(s) or is not genotoxic. The likelihood terms used in these conclusions are taken from the approximate probability scale, which is recommended by EFSA (EFSA Scientific Committee, 2018) for harmonised use in EFSA assessments.

123. EFSA Scientific Committee (2017) has advised that, where the overall evaluation of genotoxicity for a substance leaves no concerns for genotoxicity, Health Based Guidance Value (HBGV)s may be established. However, if concerns

This does not represent the views of the Committee and should not be cited. for genotoxicity remain, establishing a HBGV is not considered appropriate and a

Margin of Exposure (MoE) approach should be followed.

124. Considering the WoE for probabilities closer to either 70% or 95% that BPA does not present a genotoxic hazard by a direct mechanism, the CEP Panel concluded that probabilities close to 95% are more strongly supported by the evidence than probabilities close to 70% and, therefore, the balance of evidence allows a HBGV to be established.

Overall conclusions on genotoxicity

125. The analysis of the available literature data indicate that BPA does not induce gene mutations in bacteria. BPA induces DNA strand breaks, clastogenic and aneugenic effects in mammalian cells *in vitro*. Oxidative stress-related mechanism(s) are likely to be involved in this DNA damaging and clastogenic activity.

126. In contrast with consistent positive *in vitro* findings, the *in vivo* findings in several studies with high/limited reliability were inconsistent. The CEP Panel concluded that the evidence does not support an *in vivo* genotoxic hazard posed by BPA through direct interaction with DNA.

127. The CEP Panel concluded that it is unlikely to very unlikely that BPA presents a genotoxic hazard, the causes of which include a direct mechanism, and that the balance of evidence allows a HBGV to be established.

Questions to the Committee

- Do Members have any comments on the approach taken by the EFSA panel to assess genotoxicity? Including the weight of evidence and uncertainty analyses?
- Do Members have any comments on the expert elicitation process used in the genotoxicity assessment?
- iii) Do Members have any comments on the overall conclusions reached by EFSA?

Secretariat

February 2022

References

Abdel-Rahman, H.G., Abdelrazek, H., Zeidan, D.W., Mohamed, R.M. and Abdelazim, A.M., 2018. Lycopene: hepatoprotective and antioxidant effects toward bisphenol A-induced toxicity in female Wistar rats. Oxidative medicine and cellular longevity, 2018.

Balabanič, D., Filipič, M., Klemenčič, A.K. and Žegura, B., 2021. Genotoxic activity of endocrine disrupting compounds commonly present in paper mill effluents. Science of The Total Environment, p.148489.

EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF), 2015. Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal, 13(1), p.3978.

Campen, K.A., Kucharczyk, K.M., Bogin, B., Ehrlich, J.M. and Combelles, C.M., 2018. Spindle abnormalities and chromosome misalignment in bovine oocytes after exposure to low doses of bisphenol A or bisphenol S. Human Reproduction, 33(5), pp.895-904.

Chen, Z.Y., Liu, C., Lu, Y.H., Yang, L.L., Li, M., He, M.D., Chen, C.H., Zhang, L., Yu, Z.P. and Zhou, Z., 2016. Cadmium exposure enhances bisphenol A-induced genotoxicity through 8-oxoguanine-DNA glycosylase-1 OGG1 inhibition in NIH3T3 fibroblast cells. Cellular Physiology and Biochemistry, 39(3), pp.961-974.

De Felice, B., Manfellotto, F., Palumbo, A., Troisi, J., Zullo, F., Di Carlo, C., Sardo, A.D.S., De Stefano, N., Ferbo, U., Guida, M. and Guida, M., 2015. Genome–wide microRNA expression profiling in placentas from pregnant women exposed to BPA. BMC medical genomics, 8(1), pp.1-13.

De Flora, S., Micale, R.T., La Maestra, S., Izzotti, A., D'Agostini, F., Camoirano, A., Davoli, S.A., Troglio, M.G., Rizzi, F., Davalli, P. and Bettuzzi, S., 2011. Upregulation of clusterin in prostate and DNA damage in spermatozoa from bisphenol A–treated rats and formation of DNA adducts in cultured human prostatic cells. Toxicological sciences, 122(1), pp.45-51.

Di Pietro, P., D'Auria, R., Viggiano, A., Ciaglia, E., Meccariello, R., Russo, R.D., Puca, A.A., Vecchione, C., Nori, S.L. and Santoro, A., 2020. Bisphenol A induces DNA damage in cells exerting immune surveillance functions at peripheral and central level. Chemosphere, 254, p.126819.

ECHA (European Chemicals Agency), 2011. Guidance on information requirements and chemical safety assessment Chapter R. 4: Evaluation of available information.

EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF), 2015. Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal, 13(1), p.3978. <u>https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2015.3978</u>

EFSA Scientific Committee, Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen KH, More S, Mortensen A, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G,

Silano V, Solecki R, Turck D, Aerts M, Bodin L, Davis A, Edler L, Gundert-Remy U, Sand S, Slob W, Bottex B, Cortiñas Abrahantes J, Court Marques D, Kass G and Schlatter J, 2017a. Update: use of the benchmark dose approach in risk assessment. EFSA Journal 2017;15(1):4658, 41 pp. <u>https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2017.4658</u>

EFSA Scientific Committee, Hardy A, Benford D, Halldorsson T, Jeger M, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Silano V, Solecki R, Turck D, Younes M, Aquilina G, Crebelli R, Gürtler R, Hirsch-Ernst K, Mosesso P, Nielsen E, van Benthem J, Carfì M, Georgiadis N, Maurici D, Parra Morte J and Schlatter J, 2017. Clarification of some aspects related to genotoxicity assessment. EFSA Journal 2017;15(12):5113, 25 pp. https://www.efsa.europa.eu/en/efsajournal/pub/5113

Escarda-Castro, E., Herráez, M.P. and Lombó, M., 2021. Effects of bisphenol A exposure during cardiac cell differentiation. Environmental Pollution, p.117567.

Fawzy, E.I., El Makawy, A.I., El-Bamby, M.M. and Elhamalawy, H.O., 2018. Improved effect of pumpkin seed oil against the bisphenol-A adverse effects in male mice. Toxicology reports, 5, pp.857-863.

Fic, A., Sollner Dolenc, M., Filipič, M. and Peterlin Mašić, L., 2013. Mutagenicity and DNA damage of bisphenol A and its structural analogues in HepG2 cells., Archives of Industrial Hygiene & Toxicology 64(2), pp.189-199.

George, V.C. and Rupasinghe, H.V., 2018. DNA damaging and apoptotic potentials of Bisphenol A and Bisphenol S in human bronchial epithelial cells. Environmental toxicology and pharmacology, 60, pp.52-57.

Hercog, K., Maisanaba, S., Filipič, M., Sollner-Dolenc, M., Kač, L. and Žegura, B., 2019. Genotoxic activity of bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF and their mixtures in human hepatocellular carcinoma (HepG2) cells. Science of the total environment, 687, pp.267-276.

Hercog, K., Štern, A., Maisanaba, S., Filipič, M. and Žegura, B., 2020. Plastics in cyanobacterial blooms—genotoxic effects of binary mixtures of cylindrospermopsin and bisphenols in HepG2 cells. Toxins, 12(4), p.219.

Huang, Fu-Mei, Yu-Chao Chang, Shiuan-Shinn Lee, Yung-Chyuan Ho, Ming-Ling Yang, Hui-Wen Lin, and Yu-Hsiang Kuan. "Bisphenol A exhibits cytotoxic or genotoxic potential via oxidative stress-associated mitochondrial apoptotic pathway in murine macrophages." Food and Chemical Toxicology 122 (2018): 215-224.

Iso, T., Watanabe, T., Iwamoto, T., Shimamoto, A. and Furuichi, Y., 2006. DNA damage caused by bisphenol A and estradiol through estrogenic activity. Biological and Pharmaceutical Bulletin, 29(2), pp.206-210.

Johnson, G.E. and Parry, E.M., 2008. Mechanistic investigations of low dose exposures to the genotoxic compounds bisphenol-A and rotenone. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 651(1-2), pp.56-63.

Karaman FE, Caglayan M, Sancar-Bas S, Ozal-Coskun C, Arda-Pirincci P and Ozden S, 2019. Global and region-specific post-transcriptional and post-translational modifications of bisphenol A in human prostate cancer cells. Environmental Pollution, 255

Karmakar, P.C., Kang, H.G., Kim, Y.H., Jung, S.E., Rahman, M.S., Lee, H.S., Kim, Y.H., Pang, M.G. and Ryu, B.Y., 2017. Bisphenol A affects on the functional properties and proteome of testicular germ cells and spermatogonial stem cells in vitro culture model. Scientific reports, 7(1), pp.1-14.

Kazmi, S.T.B., Majid, M., Maryam, S., Rahat, A., Ahmed, M., Khan, M.R. and ul Haq, I., 2018. Quercus dilatata Lindl. ex Royle ameliorates BPA induced hepatotoxicity in Sprague Dawley rats. Biomedicine & Pharmacotherapy, 102, pp.728-738.

Klimisch, H.J., Andreae, M. and Tillmann, U., 1997. A Systematic Approach for Evaluating the Quality of Experimental Toxicological and Ecotoxicological Data Regulatory Toxicology and Pharmacology.

Kim, S., Choi, E., Kim, M., Jeong, J.S., Kang, K.W., Jee, S., Lim, K.M. and Lee, Y.S., 2018. Submicromolar bisphenol A induces proliferation and DNA damage in human hepatocyte cell lines in vitro and in juvenile rats in vivo. Food and Chemical Toxicology, 111, pp.125-132.

Kim, S., Gwon, D., Kim, J.A., Choi, H. and Jang, C.Y., 2019. Bisphenol A disrupts mitotic progression via disturbing spindle attachment to kinetochore and centriole duplication in cancer cell lines. Toxicology in Vitro, 59, pp.115-125.

Kose, O., Rachidi, W., Beal, D., Erkekoglu, P., Fayyad-Kazan, H. and Kocer Gumusel, B., 2020. The effects of different bisphenol derivatives on oxidative stress, DNA damage and DNA repair in RWPE-1 cells: A comparative study. Journal of Applied Toxicology, 40(5), pp.643-654.

Li, X., Yin, P. and Zhao, L., 2017. Effects of individual and combined toxicity of bisphenol A, dibutyl phthalate and cadmium on oxidative stress and genotoxicity in HepG 2 cells. Food and Chemical Toxicology, 105, pp.73-81.

Mahemuti, L., Chen, Q., Coughlan, M.C., Qiao, C., Chepelev, N.L., Florian, M., Dong, D., Woodworth, R.G., Yan, J., Cao, X.L. and Scoggan, K.A., 2018. Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Archives of toxicology, 92(4), pp.1453-1469.

Majid, M., Ijaz, F., Baig, M.W., Nasir, B., Khan, M.R. and Haq, I.U., 2019. Scientific validation of ethnomedicinal use of Ipomoea batatas L. Lam. as aphrodisiac and gonadoprotective agent against bisphenol A induced testicular toxicity in male Sprague Dawley rats. BioMed research international, 2019.

Masuda, S., Terashima, Y., Sano, A., Kuruto, R., Sugiyama, Y., Shimoi, K., Tanji, K., Yoshioka, H., Terao, Y. and Kinae, N., 2005. Changes in the mutagenic and estrogenic activities of bisphenol A upon treatment with nitrite. Mutation

Research/Genetic Toxicology and Environmental Mutagenesis, 585(1-2), pp.137-146.

Mohammed, E.T., Hashem, K.S., Ahmed, A.E., Aly, M.T., Aleya, L. and Abdel-Daim, M.M., 2020. Ginger extract ameliorates bisphenol A (BPA)-induced disruption in thyroid hormones synthesis and metabolism: involvement of Nrf-2/HO-1 pathway. Science of the Total Environment, 703, p.134664.

Mokra, K., Kuźmińska-Surowaniec, A., Woźniak, K. and Michałowicz, J., 2017. Evaluation of DNA-damaging potential of bisphenol A and its selected analogs in human peripheral blood mononuclear cells (in vitro study). Food and chemical toxicology, 100, pp.62-69.

Mokra, K., Woźniak, K., Bukowska, B., Sicińska, P. and Michałowicz, J., 2018. Lowconcentration exposure to BPA, BPF and BPAF induces oxidative DNA bases lesions in human peripheral blood mononuclear cells. Chemosphere, 201, pp.119-126.

Naik, P. and Vijayalaxmi, K.K., 2009. Cytogenetic evaluation for genotoxicity of bisphenol-A in bone marrow cells of Swiss albino mice. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 676(1-2), pp.106-112.

Nair, V.A., Valo, S., Peltomäki, P., Bajbouj, K. and Abdel-Rahman, W.M., 2020. Oncogenic potential of Bisphenol A and common environmental contaminants in human mammary epithelial cells. International journal of molecular sciences, 21(10), p.3735.

OECD (Organisation for Economic Co-operation and Development), 2005. Manual for the investigation of 14112 HPV chemicals. Chapter 3.1 Guidance for Determining the Quality of Data for the SIDS Dossier 14113 (Reliability, Relevance and Adequacy) (Last updated: December 2005). Available online: https://www.oecd.org/chemicalsafety/risk-assessment/49191960.pdf

Pacchierotti, F., Ranaldi, R., Eichenlaub-Ritter, U., Attia, S. and Adler, I.D., 2008. Evaluation of aneugenic effects of bisphenol A in somatic and germ cells of the mouse. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 651(1-2), pp.64-70.

Panpatil, V.V., Kumari, D., Chatterjee, A., Kumar, S., Bhaskar, V., Polasa, K. and Ghosh, S., 2020. Protective Effect of Turmeric against Bisphenol-A Induced Genotoxicity in Rats. Journal of nutritional science and vitaminology, 66(Supplement), pp.S336-S342.

Pfeifer, D., Chung, Y.M. and Hu, M.C., 2015. Effects of low-dose bisphenol A on DNA damage and proliferation of breast cells: the role of c-Myc. Environmental health perspectives, 123(12), pp.1271-1279.

Porreca, I., Ulloa Severino, L., D'Angelo, F., Cuomo, D., Ceccarelli, M., Altucci, L., Amendola, E., Nebbioso, A., Mallardo, M., De Felice, M. and Ambrosino, C., 2016. "Stockpile" of slight transcriptomic changes determines the indirect genotoxicity of low-dose BPA in thyroid cells. PloS one, 11(3), p.e0151618.

Santovito, A., Cannarsa, E., Schleicherova, D. and Cervella, P., 2018. Clastogenic effects of bisphenol A on human cultured lymphocytes. Human & experimental toxicology, 37(1), pp.69-77.

Sharma, A.K., Boberg, J. and Dybdahl, M., 2018. DNA damage in mouse organs and in human sperm cells by bisphenol A. Toxicological & Environmental Chemistry, 100(4), pp.465-478.

Šutiaková, I., Kovalkovičová, N. and Šutiak, V., 2014. Micronucleus assay in bovine lymphocytes after exposure to bisphenol A in vitro. *In Vitro* Cellular & Developmental Biology-Animal, 50(6), pp.502-506.

Tiwari, D., Kamble, J., Chilgunde, S., Patil, P., Maru, G., Kawle, D., Bhartiya, U., Joseph, L. and Vanage, G., 2012. Clastogenic and mutagenic effects of bisphenol A: an endocrine disruptor. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 743(1-2), pp.83-90.

Tiwari, D. and Vanage, G., 2013. Mutagenic effect of Bisphenol A on adult rat male germ cells and their fertility. Reproductive Toxicology, 40, pp.60-68.

Xin, L., Lin, Y., Wang, A., Zhu, W., Liang, Y., Su, X., Hong, C., Wan, J., Wang, Y. and Tian, H., 2015. Cytogenetic evaluation for the genotoxicity of bisphenol-A in Chinese hamster ovary cells. Environmental toxicology and pharmacology, 40(2), pp.524-529.

Xin, F., Jiang, L., Liu, X., Geng, C., Wang, W., Zhong, L., Yang, G. and Chen, M., 2014. Bisphenol A induces oxidative stress-associated DNA damage in INS-1 cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 769, pp.29-33.

Yang L, Baumann C, De La Fuente R and Viveiros MM, 2020. Mechanisms underlying disruption of oocyte 14988 spindle stability by bisphenol compounds. Reproduction, 159(4), 383—396.

Yin, L., Siracusa, J.S., Measel, E., Guan, X., Edenfield, C., Liang, S. and Yu, X., 2020. High-content image-based single-cell phenotypic analysis for the testicular toxicity prediction induced by bisphenol A and its analogs bisphenol S, Bisphenol AF, and tetrabromobisphenol a in a three-dimensional testicular cell co-culture model. Toxicological Sciences, 173(2), pp.313-335.

Yu, H., Chen, Z., Hu, K., Yang, Z., Song, M., Li, Z. and Liu, Y., 2020. Potent Clastogenicity of Bisphenol Compounds in Mammalian Cells—Human CYP1A1 Being a Major Activating Enzyme. Environmental Science & Technology, 54(23), pp.15267-15276.

Yuan, J., Kong, Y., Ommati, M.M., Tang, Z., Li, H., Li, L., Zhao, C., Shi, Z. and Wang, J., 2019. Bisphenol A-induced apoptosis, oxidative stress and DNA damage in cultured rhesus monkey embryo renal epithelial Marc-145 cells. Chemosphere, 234, pp.682-689.

Yuan, J., Che, S., Zhang, L., Li, X., Yang, J., Sun, X. and Ruan, Z., 2021. Assessing the combinatorial cytotoxicity of the exogenous contamination with BDE-209,

bisphenol A, and acrylamide via high-content analysis. Chemosphere, 284, p.131346.

Zhou, Y., Wang, Z., Xia, M., Zhuang, S., Gong, X., Pan, J., Li, C., Fan, R., Pang, Q. and Lu, S., 2017. Neurotoxicity of low bisphenol A (BPA) exposure for young male mice: Implications for children exposed to environmental levels of BPA. Environmental pollution, 229, pp.40-48.

Zemheri F and Uguz C, 2016. Determining mutagenic effect of nonylphenol and bisphenol A by using Ames/Salmonella/microsome test. Journal of Applied Biological Sciences, 10(3), pp.09-12.

Abbreviations

BP-1	Sulphonylbis(benzene-
	4,1-diyloxy)]diethanol
BP-2	4,4'-Sulphanediyldiphenol
BPA	Bisphenol A
BPAF	Bisphenol AF
BW	birth weight
СА	chromosomal aberrations
Cd	cadmium
СВМА	cytokinesis blocked
	micronucleus assay
CEF	EFSA Panel on Food
	Contact Materials,
	Enzymes, Flavourings
	and Processing Aids
CEP -	EFSA Panel on Food
	Contact Materials,
	Enzymes and Processing
	Aids
CHO cells	Chinese hamster ovary
	cells
DCFH-DA	Dichlorofluorescein
	Diacetate Assay
DBP	dibutyl phthalate
DDR	DNA damage response
E2	Oestradiol
ER	Oestrogen receptor
ECHA	European Chemicals
	Agency
GE	Ginger Extract
GSH	Glutathione
HBCD	hexabromocyclododecane

HBGV	Health Based Guidance
	Value
HFLF	Human fetal lung
	fibroblasts
НОС	health outcome category
HURP	Hepatoma Upregulated
	protein
LYC	lycopene
MDA	Malondialdehyde
MN	micronuclei
MTOCs	microtubule organizing
	centres
МоА	mode of action
MTD	Maximum Tolerated Dose
NAC	N-acetylcysteine
NDI	nuclear division index
ОТМ	olive tail moment
ОР	4-tert-octylphenol
8-OHdG	8-hydroxydeoxyguanosine
SAC	spindle assembly
	checkpoint
SD	Sprague Dawley
PBMC	peripheral blood
	mononuclear cells
PCE	Polychromatic
	erythrocytes
PSO	pumpkin seed oil
ROS	reactive oxygen species
SOD	Superoxide Dismutase
TBARS	Thiobarbituric Acid
	Reactive Substances
TSH	Thyroid Stimulating
	Hormone

WG	working group
WoE	weight of evidence

Annex A

Evaluation of reliability of results of genotoxicity studies – general considerations

1. Reliability is defined as "evaluating the inherent quality of a test report or publication relating to preferably standardized methodology and the way that the experimental procedure and results are described to give evidence of the clarity and plausibility of the findings" (Klimisch *et al.*, 1997).

2. In assigning the reliability score, the compliance with the Organization for European Economic Cooperation and Development (OECD) Test Guidelines (TGs) or standardized methodology and the completeness of the reporting as detailed below were considered.

3. The reliability scores were:

1) reliable without restriction : This includes studies or data from the literature or reports which were carried out or generated according to generally valid and/or internationally accepted testing guidelines (preferably performed according to Good Laboratory Practice (GLP)) or in which the test parameters documented are based on a specific (national) testing guideline (preferably performed according to GLP) or in which all parameters described are closely related/comparable to a guideline method.

2) reliable with restrictions: This includes studies or data from the literature or reports (mostly not performed according to GLP), in which the test parameters documented do not totally comply with the specific testing guideline, but are sufficient to accept the data or in which investigations are described which cannot be subsumed under a testing guideline, but which are nevertheless well documented and scientifically acceptable.

49

This does not represent the views of the Committee and should not be cited.

3) insufficient reliability: testing guideline, but are sufficient to accept the data or in which investigations are described which cannot be subsumed under a testing guideline, but which are nevertheless well documented and scientifically acceptable.

4) reliability cannot be evaluated: This includes studies or data from the literature, that do not give sufficient experimental details and that are only listed in short abstracts or secondary literature (books, reviews, etc.).

5) reliability not evaluated, since the study is not relevant and/or not required for the risk assessment (in case the study is reported for reasons of transparency only): The study is not relevant and/or not useful for the risk assessment.

Evaluation of relevance of results of genotoxicity studies -general considerations

4. The relevance of the study (high, limited or low) is based both on its reliability and on the relevance of the test results.

5. The relevance of the test results was mainly, but not exclusively, based on:

 Genetic endpoint (high relevance for gene mutations, structural and numerical chromosomal alterations as well as results obtained in an in vivo comet assay, which belongs to the assays recommended by the EFSA Scientific Committee (2011) for the follow-up of a positive in vitro result; lower relevance for other genotoxic effects). Other test systems although potentially considered of limited or low relevance may provide useful supporting information.

• Route of administration (*e.g.* oral *vs*. intravenous, intraperitoneal injection, subcutaneous injection, inhalation exposure) in case of in vivo studies.

• Status of validation (*e.g.* for which an OECD TG exists or is in the course of development, internationally recommended protocol, validation at national level only, no validation).

This does not represent the views of the Committee and should not be cited.

• Reliability and relevance of the test system/test design irrespectively of whether a study has been conducted in compliance with GLP or not.

• Information on BPA purity grade and/or the supplier. If only the supplier was available, the company's website was consulted to retrieve the purity grade, or the authors were contacted to ask for it. If none of the two information were reported or obtained, the relevance was considered low and the study was excluded from the WoE assessment.

6. Studies for which the relevance of the result was judged to be low were not considered further.

WoE approach

7. The WoE approach applied to the evaluation of genotoxicity data is based on EFSA Scientific Committee recommendations (EFSA Scientific Committee, 2011, 2017). As recommended by the EFSA Scientific Committee (EFSA Scientific Committee, 2011, 2017), a documented WoE approach for the evaluation and interpretation of genotoxicity data' has been applied, taking into account not only the quality and availability of the data on genotoxicity itself, but also all other relevant data that may be available. The main steps of the WoE approach applied in the genotoxicity assessment of BPA are described below.

Assembling of the evidence into lines of evidence of similar type

8. In a first step, the CEP Panel evaluated all available *in vitro* and *in vivo* studies addressing the three main endpoints of genotoxicity: gene mutations, structural and numerical chromosomal aberrations (CA) in addition to DNA damage endpoint (evaluated by Comet assay). The study results addressing each of these endpoints were grouped into lines of evidence. Only the studies of high and limited relevance were included.

9. Studies investigating the BPA MoA were considered, *e.g.* DNA oxidation, ROS (when genotoxicity was also investigated in the same study), DNA binding,

This does not represent the views of the Committee and should not be cited. interference with proteins involved in chromosome segregation during cell division, modulation of expression of genes involved in DNA repair or in chromosome segregation and markers of DNA double strand breaks (DSBs) (e.g. γH2AX). Evidence from the mechanistic studies may support the lines of evidence for the genotoxicity endpoints

Weighting of the evidence

10. A quantitative method to weight the evidence was not considered appropriate due to the quantity and heterogeneity of the evidence to be integrated. A qualitative method based on expert judgment was applied. All studies evaluated for reliability and relevance (as described above) were listed in tables below). The evaluation of the studies of high and limited relevance was described in the opinion, including the conclusion for each line of evidence. The consistency of the evidence was assessed and presented in the opinion.

Integrating all the evidence

11. Integrating evidence from the MoA with lines of evidence from genotoxicity endpoints allows a reduction in the uncertainty on the potential genotoxicity. In case genotoxic effects were observed, evidence from the MoA may allow clarification if the genotoxicity is due to a direct or indirect mechanism.

Uncertainty analysis for genotoxicity including results

12. The purpose of the uncertainty analysis for genotoxicity was to assess the degree of certainty for the conclusion on whether BPA presents a genotoxic hazard by a direct mechanism (direct interaction with DNA), taking into account the available evidence and also the associated uncertainties. This overall question was divided into two sub-questions, which were assessed by three WG members with specialist expertise in genotoxicity assessment:

Sub-question 1: What is your probability (%) that there is a genotoxic hazard in humans from BPA?

52

This does not represent the views of the Committee and should not be cited.

Sub-question 2: If there would be a genotoxic hazard in humans from BPA, what is your probability that its causes include a direct mechanism?

13. When assessing the two sub-questions, the experts considered all the data they had reviewed for the genotoxicity assessment, including results from *in vitro* studies and animal models, taking into account their relevance to humans; the available data from human studies were considered not relevant.

14. The experts' judgements were elicited by the structured procedure described below:

15. The word 'include' in sub-question 2 was introduced to accommodate the possibility that both direct and indirect mechanisms could operate together.

16. The experts were provided with guidance on how to assess and express their probability judgements for the two questions. They were asked to consider all the data they had reviewed for the genotoxicity assessment, including results from *in vitro* studies and animal models, taking into account their relevance to humans; the available human data were considered not relevant.

17. The three experts first worked on the questions independently, based on the evidence they had already reviewed and evaluated for the opinion, and recorded their probabilities and the reasoning for their judgements in an excel template similar to that which was used for Question 1 in the uncertainty analysis for non-genotoxic endpoints. This was followed by a facilitated meeting, where the three experts presented their judgements and reasoning and discussed them together with the WG Chair. After the meeting, the three experts were invited to review and, if they wished, revise their judgements and reasoning in the light of the discussion.

18. Each expert's revised probabilities for the two sub-questions were multiplied to provide a probability for the overall question. This is appropriate because the second question is conditional on the first. The first sub-question provides a probability for BPA presenting a genotoxic hazard; the second question provides a

53

This does not represent the views of the Committee and should not be cited.

conditional probability that, if BPA presents a genotoxic hazard, there is a direct mechanism. So the product of these is a probability that both are true: that BPA does present a genotoxic hazard and that there is a direct mechanism. As the experts' probabilities were approximate (ranges), the calculation is done by interval arithmetic and the resulting probabilities are also approximate.

19. The three experts presented and discussed their revised judgements and reasoning in a facilitated meeting with the full WG. The WG discussed the results of the calculations combining the experts' probabilities for the two questions and expressed the conclusion of the WG both as a probability range and using verbal likelihood terms from the approximate probability scale, which is recommended by EFSA (EFSA Scientific Committee, 2018) for harmonised use in EFSA assessments. Finally, the WG discussed the implications of their conclusion for whether a TDI could be set for BPA or whether a Margin of Exposure approach was required.

20. Table 1 shows the revised judgements provided by the three experts together after sharing and discussing their initial judgements and reasoning. The third row of Table 1 shows their probabilities for the overall question, which were obtained by multiplying each expert's probabilities for the two sub- questions. These are their probabilities that BPA does present a genotoxic hazard and that there is a direct mechanism. The bottom row of Table 1 shows the complement of the probabilities in the third row, obtained by subtracting each probability from 100%. These are the experts' probabilities for the opposite outcome: that BPA does not present a genotoxic hazard by a direct mechanism. The fifth column of Table 1 shows the 'envelope' of the probabilities for the three experts, obtained by taking the lowest and highest probabilities in each row. These express the range of opinion across the three experts.

Table 1	Results of the	uncertainty an	alysis for the	genotoxicity	assessment
---------	----------------	----------------	----------------	--------------	------------

Expert A	Expert B	Expert C	Envelope	Assessment
			of three	(rounded
			experts	values)*

Experts' probabilities	70-90%	66-90%	70-90%	66-90%	66-90%
that BPA presents a					
genotoxic hazard in					
humans (sub-					
questions 1)					
Experts' probabilities	10-33%	10-33%	20-30%	10-33%	10-33%
that, if BPA is					
genotoxic, there is a					
direct mechanism					
(sub-question 2)					
Calculated	7-29.7%	6.6-	14.27%	6.6-29.7%	5-30%
probabilities that		29.7%			
BPA is genotoxic by					
a direct mechanism					
((sub-question 1) x					
(sub-question 2)					
Calculated	70.3%-	70.3%-	73-86%	70.3-93.4	70-95%
probabilities that	93%	93.4%			
BPA is not genotoxic					
by a direct					
mechanism (100%					
minus row above)					

*The calculated probabilities were rounded to the nearest 5%. The experts probabilities of 33% and 66% were not changed because they correspond approximately to a 1 in 3 chance and a 2 in 3 chance, respectively.

Source: Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, EFSA, (2021)

21. The results in Table 1 and the reasoning of the three experts were presented and discussed in detail at a facilitated meeting with the full WG. It was agreed to take the envelope of the 3 experts' results as the consensus of the WG, taking account of the available evidence and associated uncertainties. The WG also agreed that their consensus probability that BPA is genotoxic by a direct mechanism should be rounded to 5 - 30%, as shown in the right-hand column of Table 1, to take account that it is based on expert judgement and avoid the implied precision of the calculated

This does not represent the views of the Committee and should not be cited.

values. Similarly, the WG rounded their consensus probability that BPA is not genotoxic by a direct mechanism to 70 – 95%.

22. The width of the consensus probability range for BPA not being genotoxic by a direct mechanism, reflects the uncertainty of the three experts and the other WG members about the judgements on sub- questions 1 and 2. The WG discussed in more detail which lines of evidence tended to support probabilities in the lower end of this range, and which tended to support the upper end of the range (Table 2).

Table 2. Summary of lines of evidence supporting either lower or higher probabilities that BPA does not present a genotoxic hazard by a direct mechanism, within the range assessed by the WG (70-95%).

Evidence supporting probabilities closer to 95 %	 Consistent negative Ames tests Indications of carcinogenic effects of BPA do not indicate direct genotoxic mechanism because only at very low doses and not higher doses (non monotonic), only after development exposure (up to weaning) and only in one target tissue Reactive non-conjugated metabolites of BPA are observed in animals but not in humans Effects only from repeated exposure, so might be secondly Evidence for several indirect mechanisms
Evidence supporting probabilities closer to 70%	 Presence of uncharacterised DNA adducts Mutational spectrum from whole genome assessment

Source: Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, EFSA, (2021)

23. It was concluded that it is Unlikely to Very Unlikely (5 - 30%) probability) that BPA presents a genotoxic hazard, the causes of which include a direct mechanism (combining subquestion 1 and 2, see third row of Table 1). Accordingly, it was concluded that it is Likely to Very Likely (70 - 95\%) probability) that BPA either

presents a genotoxic hazard only through indirect mechanism(s) or is not genotoxic. The likelihood terms used in these conclusions are taken from the approximate probability scale, which is recommended by EFSA (Table 2 in EFSA Scientific Committee, 2018) for harmonised use in EFSA assessments.

24. The EFSA Scientific Committee (2017) has advised that, where the overall evaluation of genotoxicity for a substance leaves no concerns for genotoxicity, HBGVs may be established. However, if concerns for genotoxicity remain, establishing a HBGV is not considered appropriate and a Margin of Exposure (MoE) approach should be followed.

25. Considering the WoE for probabilities closer to either 70% or 95% that BPA does not present a genotoxic hazard by a direct mechanism (Table 2), the CEP Panel concluded that probabilities close to 95% are more strongly supported by the evidence than probabilities close to 70% and, therefore, the balance of evidence allows a HBGV to be established.

Weight of Evidence Studies

26. The following are tables summarising new *in vitro* and *in vivo* genotoxicity studies on BPA identified in the literature (2013 –2021) and studies considered in the 'Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs' (EFSA CEF Panel, 2015). Key : *Indicates that more than one assay is reported/indicates when papers belong to more than one table. **Indicates that both *in vitro* and *in vivo* assays are reported in the same paper

27. The studies have been evaluated based on the criteria described above in Annex A.

Bacterial reverse mutation assay

Table 1. Bacterial reverse mutation assay (OECD TG 471 was considered for the evaluation of reliability

Test system/Test object	Exposure conditions (concentration/ duration/metabolic activation)	Information on the characteristics of the test substance	Results	Reliability/ Comments	Relevance of the result	Reference
Bacterial reverse mutation assay Salmonella Typhimurium strains TA 98 and TA 100 <i>In vivo</i> micronucleus assay (Table 7)**	BPA 1–10 µmoles/plate with or without S9; 3 replicates	BPA (Tokyo Kasei Kogyo Co., Ltd) Purity 99% not reported in the study but available in the website of the company	Negative	Reliability: 2 Only 2 strains Data on negative controls subtracted (but not shown) No positive control	Limited	Masuda <i>et al</i> ., 2005 ^{1**}
Bacterial reverse mutation assay Salmonella	BPA 0, 6.25, 12.5, 25, 50, 100, 150 and 200 μg/plate for 48 h; with	BPA, purity 99% (Sigma Chemical Company)	Negative	Reliability: 2 Only 3 strains used	Limited	Tiwari <i>et al</i> ., 2012 ^{1**}

Typhimurium strains TA98, TA100, TA102	or without S9; preincubation method					
<i>In vivo</i> chromosomal aberration (Table 6) micronucleus assay (Table 7) comet assay (Table 8)**						
Bacterial reverse mutation assay Salmonella Typhimurium strains TA98 and TA 100 In vitro comet assay (Table 5)*	BPA 0, 4, 20, 100, 500 µg/plate for 48 h (TA100) and 72 h (TA98); 3 replicates; with or without S9	BPA, purity >99% (Sigma-Aldrich)	Negative	Reliability: 2 Only 2 strains	Limited	Fic <i>et al</i> ., 2013 ^{1*}
Bacterial reverse mutation assay Salmonella	BPA 10–5000 µg/plate; 48 h incubation; with or without S9; preincubation	BPA (purity 99%) ² , was purchased from Tianjin Guangfu Fine	Negative	Reliability: 1	High	Xin <i>et al</i> ., 2015*

Typhimurium strains TA1535, TA97, TA98, TA100 and TA102 In vitro chromosomal aberration (Table 3)	method in triplicates; 3 independent experiments	Chemical Research Institute (Tianjin, China)				
micronucleus assay (Table 4) comet assay						
(Table 5) in CHO cells*						
Bacterial reverse mutation assay Salmonella Typhimurium strains TA98 and TA100	BPA 0.1, 1, 10 and 100 µg/plate with or without S9; plate incorporation assay in triplicates; 2 independent experiments	BPA (Merck) Purity >97% not reported in the study but available on the website of the company	Negative	Reliability: 2 Only 2 bacterial strains used	Limited	Zemheri and Uguz, 2016
SOS/umuC assay in Salmonella Typhimurium TA1535 pSK1002	BPA 0, 1, 10, 100, 1000 μg/L, without or with metabolic activation (S9)	BPA (Sigma- Aldrich) Purity >97% not reported in the study but available on the	Negative	Reliability: 2 Non-standard test applied as a preliminary analysis of toxicity and mutagenicity	Limited	Balabanič <i>et al</i> ., 2021*

In vitro comet	website of the		
assay	company		
(Table 5)*			

¹Studies considered in the Scientific Opinion on the Risks to Public Health Related to the Presence of Bisphenol A (BPA) in ²Foodstuffs (EFSA CEF Panel, 2015) Information on BPA purity provided by the study authors on 11 October 2021, upon EFSA request

Source: Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, EFSA, (2021)

In vitro gene mutation in mammalian cells

Table 2: In vitro gene mutation in mammalian cells

Test system/Test object	Exposure conditions (concentration/ duration/metabolic activation)	Information on the characteristics of the test substance	Results	Reliability/ Comments	Relevance of the result	Reference
Analysis of	100 µM for 24 h	BPA from TCI	Positive	Reliability: 2	Limited	Hu <i>et al</i> .,
mutational	exposure and WGS	(B04)	Increased lovels of	Although		2021
immortalised	u clonally expanded	94 pully $\geq 99\%$	single base	TG for this		
human embryonic	cells	reported in the	substitutions	type of		
kidnev	populations	study	doublestrand	study, the		
cells HEK 293T		but available on	breaks and	research		
using	No metabolic	the	small	was		
whole genome	Activation	website of the	insertions/deletions	adequately		
sequencing (WGS)		company	in	conducted		
	Cell viability		BPA-treated HEK	and		
DNA double strand	analysed		293T	reported		
breaks as measured	IN HEK 2931 Cells,		cells in comparison	However,		
	0 1 1 and 100 µM		with DiviSO-treated	uncortainty		
staining			CONTIONS	in the		
Stanning	stained with crystal		Single base	level of		
	violet and results		substitutions (C>A	toxicity of		
	reported as colony		transversions) in	the		
	area percentage		BPA treated			

	cells	BPA	
	preferentially occur	treatment	
	at		
	guanines		
	Mutations at A:T		
	bp		
	were also reported		
	Colony formation		
	assav:		
	concentration		
	dependent		
	decrease		
	in % colony area		
	Concentration		
	Concentration		
	DNA double strend		
	brooke oo		
	number of pueloi		
	> 5 YHZAX TOCI		

Source: Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, EFSA, (2021)

In vitro chromosomal aberrations test

Table 3: In vitro chromosomal aberrations test (OECD TG 473 was considered for the evaluation of reliability)

Test system/Test object	Exposure conditions (concentration/ duration/metabolic activation)	Information on the characteristic s of the test substance	Results	Reliability/ Comments	Relevanc e of the result	Reference
Chromosoma I aberrations and SCE assays CHO-K1 cell line Cytotoxicity: cellcycle delay 'recognised by the metaphases without differently staining sister chromatids'	BPA 0, 0.1 to 0.6 mM for 3 h followed by 27 h recovery 100 metaphases SCE: 50 metaphases Without metabolic activation	BPA, purity > 99% (Tokyo Kasei Kogyo Co., Ltd)	Positive Only in presence of severe Cytotoxicity Increased CA (0.5, 0.55, 0.6 mM, % of differently staining sister chromatids 29%, 11%, and 0%, respectively) Increased endoreduplication s (0.45 and 0.55	Reliability: 3 Only short- term treatment; high level of cytotoxicity The recovery time exceeded the recommende d (18–21 h) Cells recovered in	Low	Tayama <i>et</i> <i>al</i> ., 2008 ^{1*}

In vitro comet			mM)	the presence		
assay (Table				of		
5)*			Increased	BrdU		
,			frequency of			
			cmitosis-			
			like figures (above			
			0.3 mM			
			Increased SCE			
			(0.1 and 0.5			
			mM			
Chromosoma	BPA 0 80 100 and 120 µM	RPA (purity	Positivo	Reliability: 2	Limited	Xin et al
I	for 24 h	00%)2 was		Reliability. Z	Linited	2015*
aberration	500 metanhases/group:	nurchased from	Increase of	No short-term		2010
	without metabolic activation	Tianiin	structural	Treatment		
	MTT accove RDA 0, 40, 80	Guanafu	structural	Heatment		
Cito cells	100 and 120 uM for 12 and	Guariyiu Eina Chamiaal	chiomosomai	No positivo		
			from 90 uM with			
	24	Research	nonn ou µivi, with	CONTION		
assay	n		significant			
Bacterial		(Tianjin, China)	decrease in cell			
reverse			viability (but			
mutation			not lower than			
assay			50%)			
(Table 1)			MII assay:			
			increase of cell			
In vitro			proliferation at 40			
micronucleus			μΜ;			
assay			cytotoxicity from			
(Table 4),			80 µM			
comet assay						
(Table					1	
5)*						

Chromosoma	BPA 0, 0.4, 1, 4, 40 and 100	BPA, no	Positive	Reliability: 2	Low	Aghajanpour
1	µg/mL for 48 h; 200 cells	information on				-Mir <i>et al</i> .,
aberration	analysed for each treatment	purity or the	Increase of cells	Cells scored	No	2016
assay in:	(less at highest	supplier	with	less	informatio	
- MCF-7	concentrations	company	chromosome	than	n on	
human	in amniocytes for high		aberrations	recommende	source	
breast cancer	toxicity)		(from 1 µg/mL) in	d in	and purity	
line;	Without metabolic activation		all cell	OECD TG	of BPA	
- human	MTT test: BPA 0, 0.4, 1, 4,		types; the	473		
amniocytes	40,		increase in cells	No short-term		
from	100 and 400 µg/mL for 48 h.		with aberrations	treatment		
male			was not	No positive		
[oestrogen			clearly	control		
receptors			concentration	No concurrent		
(ER)			related	control of		
negative] and			and decreased at	toxicity		
from			the highest			
female (ER			concentrations,			
positive)			possible due			
Cytotoxicity:			to cytotoxicity that			
MTT			was not			
test			concurrently			
			evaluated; no			
			clear association			
			with ER			
			expression			
			In a preliminary			
			evaluation of			
			cytotoxicity by the			
			MTT test,			
			the IC50 of BPA			
			was 100, 40			

			and 4 µg/mL in MCF-7 and ER-negative (male) and ERpositive (female) amniocytes, respectively			
Chromosoma I aberration assay Human peripheral blood lymphocytes from 5 female subjects In vitro micronucleus assay (Table 4)*	BPA 0, 0.20, 0.10, 0.05, 0.02 and 0.01 µg/mL for 24 h 1000 metaphases (200/subject)/concentration Without metabolic activation	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the company	Positive Increase from 0.05 µg/mL (prevalence of chromatid breaks) No numerical aberrations	Reliability: 2 No short-term treatment	Limited	Santovito <i>et</i> <i>al</i> ., 2018*
Chromosoma I Aberrations	BPA 150 μM for 24 h or co-exposure with camptothecin (CPT)	BPA (Sigma- Aldrich) purity ≥97% not reported in the	Negative No significant increase in CA	Reliability: 3 Single concentration	Low	Sonavane <i>et</i> <i>al</i> ., 2018*
initial embryonic fibroblasts (MEF) In vitro comet	were analysed Without metabolic activation	available on the website of the company	Cytotoxicity of BPA alone was not measured but the	number of metaphases analysed No short-term treatment		

assay (Table 5)*			authors refer to 150 µM as concentration with minimal toxic effect from a previous publication			
Chromosoma I aberrations Human peripheral blood mononuclear cells (PBMC) Cell proliferation: MTT test Cell-cycle analysis: FACS vH2AX: western blot and FACS analysis	BPA 0, 25, 50, 100 nM, cells stimulated with PHA for 16h and then treated with BPA for 48 h 30 metaphases/treatment/subjec t (5 donors) MTT test: BPA 0, 5, 10, 25, 50, 100, 200 nM and BPA 25, 50, 100, 200 μM, cells were treated with or without PHA for 16 h and then treated with BPA for 24 and 48 h γH2AX: cells treated with PHA and then with BPA 50 nM for 24 h or 48 h (western blot) or only for 24 h (FACS analysis analysing T and B lymphocytes) Without metabolic activation	BPA (Merck) Purity ≥97% not reported in the study but available on the website of the company	Positive Increased number of aberrant cells, structural chromosomal aberrations and highly fragmented metaphases MTT test: - unstimulated PBMCs: decreased cell proliferation only at 200 µM at both 24 and 48 h PHA stimulated PBMCs: - increased cell proliferation	Reliability: 2 No positive Control No short-term treatment	Limited	Di Pietro <i>et</i> <i>al.</i> , 2020

					•	
			from 10 nM to 100			
			nM;			
			- concentration-			
			dependent			
			decreased cell			
			proliferation			
			from 25 to 200 µM			
			Effect on cell			
			proliferation			
			confirmed using			
			VU2AV (western			
			DIOL).			
			- Increase of			
			protein			
			phosphorylation			
			only at 24 n			
			(BPA 50 nM)			
			YH2AX (FACS):			
			increase in CD3+			
			and in CD4+			
			T cells			0
Chromosoma	BPA 0, 5, 10, 20 and 50	BPA, no	No data on	Reliability: 3	Low	Ozgür <i>et al</i> .,
1	μg/mL for 24 and 48 h	information on	chromosome			2021
aberrations	Mitomycin C (MMC) at 0.10	purity or the	aberrations were	MMC added	No	
assay	µg/mL 'was added to the	supplier	reported	to all	informatio	
in human	negative and a positive	company		Treatments	n on	
peripheral	controls and to each				BPA purity	
blood	concentration and chemical			No mitogenic		
lymphocytes	groups as well'			Stimulation		
	Without metabolic activation					

				No short-term		
				treatment		

Source: Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, EFSA, (2021)

In vitro mammalian cell micronucleus test

Table 4: In vitro mammalian cell micronucleus test (OECD TG 487 was considered for the evaluation of reliability)

Test system/Test object	Exposure conditions (concentration/ duration/metabolic activation)	Information on the characteristics of the test substance	Results	Reliability/ Comments	Relevance of the result	Reference
Cytokinesis block micronucleus assay (CBMN) AHH-1 cell line (human lymphoblastoid cells) Effects on mitotic spindle using staining: brilliant blue and safranin O; α- and y-tubulin immunofluorescence staining	BPA 0, 1.5, 3.1, 6.2, 7.7, 9.2, 10.8, 12.3, 18.5, 24.6, 37 µg/mL for a complete cell cycle (22–26 h), Five experiments: average of 8082 cells scored for each treatment Effects on mitotic spindle: BPA 0, 4.2– 14 µg/mL for 20 h (one cell cycle); 100 cells undergoing mitosis scored in each experiment, 3 experiments	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the company	Positive increased BNMN cells from 12.3 µg/m I Aberrant mitotic divisions (multiple spindle poles)	Reliability: 1 BN cells % as parameter of cytotoxicity High number of analysed binucleated cells	High	Johnson and Parry, 2008 ¹

	Without metabolic					
	activation					
Micronucleus test in:	BPA 0, 44 nM and	BPA, no	Positive in	Reliability: 2	Low	Ribeiro-
- human umbilical	4.4	information	HUVEC	-		Varandas
vascular endothelial	µM, (i.e. 10 ng/mL	on purity or the	cells: slight	No analysis	No	et
cells	and	supplier	increase	of cell	information	al., 2013
(HUVEC);	1 µg/mL) for 72 h	company	of MN	proliferation;	on	
- human colon	BPA 10 ng/mL and 1		frequency	no	source and	
adenocarcinoma	μ g/ml for 24 or 72 h		Negative in	positive	purity of	
(HT29)	CellTiter-Blue assay:		HT29	control; no	BPA	
cell line	BPA 10 ng/mL and 1		cells	short-term		
Immunofluorescence	µg/mL for 24, 48 or		Multipolar	treatment		
analysis of	72		spindles			
cytoskeleton	h		and			
organisation of			microtubule			
HUVEC	Without metabolic		misalignment			
	activation		associated			
cells with anti-α-			with BPA			
tubulin			exposure			
and anti-γ-tubulin						
Apoptosis using			No effects on			
TUNEL			cell			
assay and cell			viability,			
viability			proliferation			
using CellTiter-Blue			and apoptosis			
assay			in both			
			cell lines			
Cytokinesis block	BPA 1×10−4,	BPA (Sigma-	Positive	Reliability: 2	Limited	Šutiaková
micronucleus assay;	1×10−5,	Aldrich)				et al.,
bovine peripheral	1×10-6 and 1×10-7	Purity ≥97% not	concentration-	No short-		2014
blood	mol/L for 48 h	reported in the	related	term		
lymphocytes;		study	increase in MN			
cell proliferation:	Without metabolic	but available on	frequency.	treatment:		
----------------------	-----------------------	-------------------------------------	----------------	----------------	---------	---------------------
nuclear	activation	the	statistically	bovine		
division index (NDI)		website of the	significant at	lymphocytes		
()		company	the	are not		
		· · · · · · · · · · · · · · · · · ·	highest	commonly		
			concentration:	used in the		
			no	micronucleus		
			effect on NDI	test. and		
			at anv	their use has		
			concentration	not been		
				validate.		
				However the		
				study		
				appears to		
				be		
				adequately		
				performed		
				and reported		
Micronucleus assay	BPA 0, 80, 100 and	BPA (purity	Positive	Reliability: 2	Limited	Xin <i>et al</i> .,
CHO cells	120	99%)2,				2015*
Cytotoxicity: MTT	µM for 24 h, without	was purchased	increase in MN	No short-		
test	cytochalasin B; 1000	from	frequency at	term		
Bacterial reverse	cells were scored for	Tianjin Guangfu	100 and	Treatment		
mutation assay	each sample; 3	Fine	120 µM			
(Table 1)	independent	Chemical	MTT assay:	No positive		
In vitro chromosomal	experiments	Research	concentration-	control		
aberration (Table 3)	Without metabolic	Institute	related			
comet assay (Table	activation	(Tianjin,	decrease in			
5)*	MTT test:	China)	cell			
	- BPA 0, 40, 80, 100		viability from			
	and		100 µM			

This is a paper for discussion. This does not represent the views of the Committee and should not be cited.

	120 µM for 12 and					
	24 h					
Cytokinesis-blocked micronucleus assay in murine macrophage RAW264.7 cells 1000 binucleated cells/concentration Cell viability: MTT test In vitro comet assay (Table 5)*	BPA 0, 3, 10, 30, or 50 μ M for 24 h BPA 10 μ M tested for MN assay and cell viability, in the presence or absence of pretreatment with N-acetyl- L-cysteine (NAC) at the concentration of 10 μ M for 30 min Without metabolic activation MTT test: BPA 0, 3, 10, 30, or 50 μ M for 12 or 24 h	BPA (Sigma- Aldrich) Purity ≥97% not reported in the study but available on the website of the company	Positive Concentration dependent increase in MN frequency from 10 µM In the presence of NAC, MN frequencyand cytotoxicity were statistically significantly reduced (see also data on ROS in Table 5) MTT test: concentration- and time- dependent decrease of cell viability	Reliability: 2 No short- term treatments; no positive controls; no data on cell proliferation	Limited	Huang <i>et</i> <i>al</i> ., 2018*

This is a paper for discussion. This does not represent the views of the Committee and should not be cited.

Cytokinesis block	BPA 0, 0.20, 0.10,	BPA (Sigma-	Positive	Reliability: 2	Limited	Santovito
micronucleus assay	0.05,	Aldrich)				et al.,
Human peripheral	0.02 and 0.01 μg/mL	Purity ≥97% not	Increase in MN	No short-		2018*
blood	for	reported in the	frequency from	term		
lymphocytes	48 h	study	0.02	treatment		
from 5 female		but available on	µg/mL. At 0.2			
subjects	Without metabolic	the	µg/mL			
1000 binucleated	activation	website of the	4-fold increase			
lymphocytes/subject		company	with			
(5000 binucleated			respect to the			
cells			vehicle			
per concentration)			control			
In vitro chromosomal			(DMSO) level			
aberrations assay			No significant			
(Table			reduction of			
3)*			the CBPI			
			value			
Mitotic abnormalities	BPA 0.44 nM, 4.4	BPA (Sigma)	Positive	Reliability: 3	Low	Ramos <i>et</i>
and	nM,	purity				<i>al</i> ., 2019*
micronuclei	4.4 µM (0.1 ng/mL, 1	≥97% not	Slight (two-	No short-		
evaluated in	ng/mL, 1 µg/mL) for	reported in	fold)	term		
DAPI stained cells:	48	the study but	increase in MN	treatment		
- Hep-2 cells (human	h; 1000 cells scored	available on the	frequency from	Proliferation		
epithelial cells from	for	website of the	BPA	of the cell		
laryngeal	each treatment	company	4.4 nM in both	population		
carcinoma);			cell	not		
- MRC-5 cells			lines	determined;		
(human			Mitotic index:	extremely		
lung fibroblasts)			- in Hep-2	low % of		
Cell viability using			cells, no	mitosis is		
CellTiter-Blue assay,			effects;	indicative of		
after				a very		

48 h exposure			- in MRC-5	low rate of		
In vitro comet assay			cells,	cell		
(Table 5)*			statistically	division,		
, ,			significant	which is not		
			increase	appropriate		
			Cytotoxicity: no	to		
			effects on cell	measure MN		
			viabilitv	formation		
			· · · · · · · · · · · · · · · · · · ·			
				Protocol of		
				MN assay		
				not reported;		
				no		
				positive		
				control		
Micronucleus assay	1) Micronucleus	BPA (99.6%),	1)	Reliability: 2	Limited	Yu <i>et al</i> .,
in	assay in	AccuStandard	Micronucleus	Micronucleus		2020
Chinese hamster	V79-derived cell	Inc.	assay (9 h +	method		
V79-	lines:		15 h):	poorly		
derived cell lines	- BPA 0, 40, 80, 160		 Negative in 	described		
expressing various	μM		V79-	No short-		
human CYP	for 9 h + 15 h;		Mz;	term		
enzymes	(recovery period);		- Positive in	treatment		
Micronucleus assay	- 2000 cells		V79-			
in	analysed for		hCYP1A1 cells			
C3A cells (human	each treatment		and in			
hepatoma cell line,	2) Micronucleus		V79-hCYP1B1			
endogenously	assay		cells;			
express	in:		 Cytotoxicity: 			
various CYP	- V79-Mz, V79-		statistically			
enzymes,	hCYP1A1 cells: BPA		significant			
	0 to		decrease			

including CYP1A1,	80 µM for 24 h + 0 h	at the highest		
1A2,		concentrations		
1B1, 2E1, 3A4, and	with or without ABT;	2)		
phase	- C3A cells: BPA 0	Micronucleus		
II metabolic	to 80	assay (24 h +		
enzymes,	µM for 72 h + 0 h;	0 h):		
such as UGTs and	with	- Negative in		
SULTs)	or without ABT or 7-	V79-		
2000 cells analysed	HF	Mz;		
for	3) Micronucleus	- Positive in		
each treatment	assay in	V79-		
Cytotoxicity: CCK-8	C3A cells: BPA 0 to	hCYP1A1		
Assay	5	cells, effect		
γ-H2AX in V79-Mz,	µM for 72 h + 0 h,	abrogated by		
V79-	with	ABT		
hCYP1A1 cells and	or without KET or	2)Micronucleus		
in C3A	PCP	assay		
cells; analysis using	(phase II enzyme	(72 h + 0 h):		
In-	inhibitors), an	- Positive in		
Cell Western Blot	inhibitor	C3A		
Immunofluorescence	of UGT1 and	cells, effect		
staining of CENP-B	SULT1,	abrogated by		
of MN	respectively	ABT or		
induced in C3A cells	Immunofluorescence	7-HF;		
	staining of CENP-B	 Cytotoxicity: 		
	was	statistically		
	applied	significant		
	Cytotoxicity	decrease		
	performed	at the highest		
	for each test using	concentrations		
	the	3)Micronucleus		
		assay		

same testing	in C3A cells		
conditions	(72 h +		
of the MN assay or	Ò h):		
of	- Positive		
vH2AX analysis	- Effects		
vH2AX: BPA 0, 10,	enhanced		
20, 40, 80,	by KET or		
160 µM for 9 h; ABT	PCP;		
(1-	statistically		
aminobenzotriazole	significant		
а	increase of		
CYP inhibitor) or 7-	MN negative		
HF (a	for		
selective CYP1A1	CENP-B		
inhibitor) were	staining,		
added	(clastogenic		
from 2 h ahead of	mechanism)		
test	Cytotoxicity:		
compound exposure	statistically		
to	significant		
the end of cell	increase in		
culture	cell viability		
	from 2.5		
BPA 0, 10, 20, 40,	μM		
80,	γH2AX:		
160 µM for 9 h; ABT	- increase in		
(1-	V79-Mz,		
aminobenzotriazole	in V79-		
а	hCYP1A1 cells		
CYP inhibitor) or 7-	and in C3A		
HF (a	cells		
selective CYP1A1	(concentration		

inhibitor) were		dependent);		
added		effect		
from 2 h ahead of		reduced by		
test		ABT or 7-		
compound exposur	e	HF - Effects		
to		enhanced		
the end of cell		by KET or		
culture		PCP;		
		statistically		
		significant		
		increase of		
		MN negative		
		for		
		CENP-B		
		staining,		
		(clastogenic		
		mechanism)		
		Cytotoxicity:		
		statistically		
		significant		
		increase in		
		cell viability		
		from 2.5		
		μM		
		γH2AX:		
		- increase in		
		V79-Mz,		
		in V79-		
		hCYP1A1 cells		
		and in C3A		
		cells		
		(concentration		

dependent);
effect
reduced by
ABT or 7-
HF

Source: Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, EFSA, (2021)

In vitro DNA damage (comet assay)

Table 5: In vitro DNA damage (comet assay)

Test system/Tes t object	Exposure conditions (concentration / duration/meta bolic activation)	Information on the characteristics of the test substance	Results	Reliability/ Comments	Relevance of the result	Reference
Alkaline	MCF-7 cells	BPA (Wako Pure	Positive	Reliability: 2	Limited	Iso <i>et al</i> ., 2006 ¹
comet	exposure:	Chemicals				
assay	- BPA 0, 0.1 10,	Industries,	MCF-7:	Only 30 cells		
MCF-7	100 µM	Ltd) purity ≥99%	increased comet tail	were		
(oestrogen	for 3 h;	not reported in	length after 3 h at	Analysed		
receptor	- BPA 100 μΜ	the	10, 100 µM and			
(ER)	for 1, 3,	study but	after all exposure	No positive		
positive)	24 h	available on the	times at 100 µM	control		
and MDA-	MDA-MB-231	website of	MDA-MB-231:			
MB-231 (ER	cells	the company	increased comet tail			
negative)	exposure:		length after 3 and			
γH2AX foci	- BPA 100 µM		24 h exposure times			
using	for 3, 24		at 100 µM			
immunofluor	h;		No toxicity in comet			
escence in	30 cells		assays			
MCF-7 cells	analysed (10		Induction of yH2AX			
	cells/slide)		foci in MCF-7 cells			
	Immunofluoresc		(10 µM)			
	ence in		ER-positive			

	MCF-7 cells: BPA 10 µM for 3 h Without metabolic activation		MCF-7 cells are more sensitive than ER-negative MDA-MB-231 cells to BPA-induced DNA damage			
Alkaline comet assay in CHO-K1 cell line In vitro chromosom al aberrations (Table 3)*	BPA 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 mM; 1 h exposure Positive control: H2O2 200 cells were scored Quantification of DNA damage: a score of 0–3 (mean score value = mean comet points/cell, comet points) Cell viability (trypan blue) Without metabolic activation	BPA, purity > 99% (Tokyo Kasei Kogyo Co., Ltd)	Positive Increased DNA strand breaks only at the highest concentration tested (0.7 mM)	Reliability: 3 Non-standard method of DNA damage quantification Data of cytotoxicity not clearly reported	Low	Tayama <i>et al</i> ., 20081*

Alkaline	BPA 0, 0.1, 1.0	BPA, purity >99%	Negative after 4 h	Reliability: 2	Limited	Fic <i>et al</i> ., 2013 ^{1*}
comet	and 10.0	(Sigma-Aldrich)	of exposure	-		
assay	µM for 4 and 24			Only 50		
HepG2 cells	h; 50		Equivocal after 24	nuclei		
Cell viability:	nuclei		h exposure (no	scored		
MTT test	scored/treatme		concentration			
Bacterial	nt;		related			
reverse	at least 2		effect)			
mutation	independent					
assay	experiments;		No cytotoxicity was			
(Table	positive		observed			
1)*	control:					
	benzo[a]pyrene					
	MTT test: 12.5,					
	25, 50,					
	100 µM for 24 h					
Comet	BPA 0, 25, 50,	BPA, purity 99%	Positive	Reliability: 2	Limited	Xin <i>et al</i> ., 2014
assay in	100 µM	(Sigma-Aldrich)	concentration			
rat INS-1	for 24 h; or		related	No positive		
insulinoma	pretreatment		increase in	control;		
cells	with or		tail DNA %, tail	results on		
Cell viability:	without NAC		moment and tail	cytotoxicity		
Hoechst	(10 mM) for		length at 50 and	assessment		
staining kit	1 h then BPA		100 µM	are		
and trypan	(100 µM)			not reported		
blue	was added for		Significant decrease			
(apoptotic	24 h;		in tail DNA % in			
cells	vvithout		cells pre-treated			
detection)	metabolic		WITH NAC			
Expression	activation					
of nuclear			No apoptotic cells			

p53 and p-	50 cells/slide		and 90% cell			
Chk2 (T68)	were		survival were used			
proteins:	analysed; 3		in comet assays			
western	experiments		(results are not			
blotting	ROS and GSH		shown)			
Intracellular	analysis:					
(ROS):	BPA 0, 25, 50,		Increase of			
DCFH-DA	100 µM		expression of DNA			
Glutathione	for 24 h		damage-associated			
(GSH):			proteins: p53 (from			
detection	ROS		50 µM) and p-Chk2			
with	measurements		(at 100 µM)			
ophthalalde	also		Levels of p53 are			
hvde	in cells pre-		reduced by NAC			
(ÓPT)	treated with		pre-treatment			
()	NAC and		Intracellular ROS:			
	exposed to 100		increase at 50 and			
	µM BPA		100 µM			
			Decrease of ROS			
			upon NAC			
			pretreatment			
			GSH: concentration			
			related			
			decrease			
Alkaline	BPA 0, 40, 80,	BPA (purity	Positive	Reliability: 2	Limited	Xin <i>et al</i> ., 2015*
comet	100 and	99%)2, was	Concentration	-		
assay in	120 µM for 12	purchased	related	No positive		
CHO cells	and 24 h;	from Tianjin	increase in	control		
Cytotoxicity:	100 cells were	Guangfu Fine	(%) tail DNA from			
MTT assay		Chemical	80 µM with 12 h			

Bacterial reverse mutation assay (Table 1) In vitro chromosom al aberration (Table 3) micronucleu s assays (Table 4)*	analysed/sampl e. Without metabolic activation MTT assay: BPA 0, 40, 80, 100 and 120 µM for 12 and 24 h	Research Institute (Tianjin, China)	treatment, and at all tested concentrations after 24 h MTT assay: decrease in cell viability (but less than 50%) from 80 µM after 12 and 24 h			
Alkaline comet assay NIH3T3 cells (mouse embryonic fibroblast cell line) At least 100 nucleoids/sa mple Cytotoxicity: CCK-8 assay and LDH release	BPA 0, 2, 10 and 50 μ M (0.4–11 μ g/mL) for 24 h CCK-8 and LDH assays, ROS, 8-OHdG, γ H2AX analysis: BPA 0, 2, 10 and 50 μ M for 24 h At least 100 nucleoids of each sample were obtained in 3 independent experiments	BPA (Sigma- Aldrich) purity >97% not reported in the study but available on the website of the company	Positive increase tail DNA% at 50 μM Cytotoxicity: 80% cell survival at 50 μM γH2AX, ROS and 8- OHdG: increase at 50 μM	Reliability: 2 No positive control	Limited	Chen <i>et al</i> ., 2016

Intracellular	without					
ROS:	metabolic					
DCFHDA	activation					
8-OHdG:						
EpiQuick 8-						
OHdG DNA						
damage						
quantificatio						
n direct kit						
yH2AX:						
immunofluor						
escence						
and						
western blot						
Alkaline	BPA 10 ⁻⁹ M for	BPA (Sigma-	Comet assay on	Reliability: 3	Low	Porreca <i>et al</i> .,
comet	6h, 48h,	Aldrich), purity	BPA			2016
assay in	96 h; 100 cells	≥97% not	alone: Negative	Comet assay:		
FRTL-5 rat	for each	reported in the	Intracellular ROS:	- one low		
immortalise	condition	study but	statistically	concentration		
d	Transcriptome	available on	significant increase	tested;		
thyrocyte	analysis	the website of the	after 1 and 3 days	- no positive		
cell line	and intracellular	company	exposure	control		
Cell	ROS:		Transcriptome	Small effects		
proliferation	cells exposed		analysis: decreased	on		
(population	for 1, 3,		expression of genes	transcription		
doubling)	and 7 days to		involved in DNA	Large		
Transcripto	10-9 M		replication,	variations in		
me analysis	BPA		recombination and	DNA strand		
(microarray)	Without		repair (confirmed by	breaks		
Intracellular	metabolic		RT-PCR) (after 3	in the comet		
ROS:	activation		and 7 days BPA	assay		
H2DCFDA			exposure)			

Comet	BPA 0, 1, 10,	BPA, purity >	Positive	Reliability: 3	Low	Lei <i>et al</i> ., 2017
assay	25, 50 µM;	98% (Tokyo				
MCF-7 cells	24 h	Chemical	Concentration	Excessive		
(from	Positive control:	Industry)	dependent	toxicity		
human	tBHP		increase in % tail	at the		
breast	(tert-butyl		DNA from 10 µM	analysed		
adenocarcin	hydroperoxide);		Cell viability:	positive		
oma)	300 cells		at 1 µM	concentration		
Cell viability:	from each		increase in cell	S		
CCK-8	sample were		viability; inhibition of			
assay	analysed		cell viability at	Results of		
Cell	Without		concentrations from	positive		
membrane	metabolic		10 µM (70%) to 100	control are		
damage:	activation		μM (80%)	not		
LDH	CCK-8 assay:		Cell membrane	reported		
ROS	0, 0.01,		damage:			
	0.1, 1, 10, 25,		increase in LDH	Comet		
	50, 100		release in a	methods		
	µM for 24 h		concentration	are not		
	LDH: 0, 1, 10,		dependent	described		
	25, 50,		manner	in detail		
	100 µM for 24 h		from 10 µM			
	ROS: 0, 0.01,		ROS formation:			
	0.1, 1, 10,		concentration			
	25, 50 µM for		dependent			
	24 h		increase			
			in ROS levels			
			No measurement at			
			50 µM, because of			
			excessive cell death			
			(90%)			

Alkaline	BPA from 10–8	BPA purity >	Positive	Reliability: 2	Limited	Li <i>et al</i> ., 2017
comet	to 10–6	99.8% (Sigma-				
assay	mol/L (0.02–	Aldrich)	Concentration	No sufficient		
HepG2 cells	22.8 µg/mL)		related	details on the		
Cytotoxicity:	for 24 h		increase of	comet		
MTT assay			tail DNA (%)	method		
Oxidative	MTT: BPA from		MTT: concentration			
stress:	10–8 to		related	(e.g. number		
intracellular	10–4 mol/L for		increase of	of		
ROS:	24 h		cytotoxicity;	cells		
DCFHDA	ROS, MDA and		increase of ROS	analysed is		
in the same	SOD		and	not specified)		
cells,	analysis: BPA		MDA; decrease of			
also MDA	from 10–8		SOD			
and SOD	to 10–4 mol/L					
	for 6 h					
	Positive control:					
	H2O2					
Alkaline and	Alkaline comet	BPA, 99–99.5%	Positive	Reliability: 2	Limited	Mokra <i>et al</i> .,
neutral	assay:	purity (Sigma-				2017
comet	- BPA 0.1, 1	Aldrich)	Both alkaline and	unusual		
assay	and 10		neutral comet	software		
Human	µg/mL for 1 h;		DNA repair of DNA	for comet		
PBMC (3	- 0.01, 0.1, 1		breaks:	analysis		
donors)	and 10		decrease at 60 min,			
450	µg/mL for 4 h		but the repair was	No positive		
cells/concen	Neutral comet		not complete after	control		
tration	assay:		120 min			
Cytotoxicity	- BPA 0.1, 1					
using flow	and 10					
cytometry	µg/mL for 1 h					

	DNA repair: BPA at 10 µg/mL Without metabolic activation					
Alkaline comet assay and modified comet assay with Fpg enzyme in human peripheral blood lymphocytes	1 h exposure to BPA: 0.001 mM, 0.1 mM, 2.5 mM Three experiments	BPA (Sigma- Aldrich) Purity ≥97% not reported in the study but available on the website of the company	Positive Increase of % tail DNA, only at the first 2 concentrations tested With Fpg a higher increase of % tail DNA was observed at all concentrations, but not concentration related	Reliability: 3 Inadequate response of positive control; the use of hydrogen peroxide as positive control is not adequate for the comet + Fpg Number of cells scored in not specified	Low	Durovcova <i>et</i> <i>al</i> ., 2018
Comet assay in human sperm cells	BPA 0, 1, 1.5, 2 and 3 µmol/L for 1 h Without metabolic	BPA (purity >99%, Sigma- Aldrich)	Negative No differences in % tail DNA between control samples and BPA-treated cells at all concentrations	Reliability: 3 Test not validated and not adequate for	Low	Sharma <i>et al</i> ., 2018**

Cell viability	activation		tested	cryopreserve		
measured	Each		Cell viability assay:	d		
with a	concentration		concentrationdepen	samples		
Nucleocount	was		dent	-		
er NC	scored in 3		decrease			
3000	independent		in cell viability from			
In vivo	experiments		3 µmol/L (reduced			
comet	and 2 replicates		cell viability to 60%)			
assay	of each					
(Table 8)**	experiment					
	600 cells were					
	scored/concentr					
	ation					
	Cell viability:					
	BPA from 0					
	to 5 µmol/L					
Comet	BEAS-2B cells	BPA (Sigma-	Increase of DNA	Reliability: 3	Low	George and
Comet assay in	BEAS-2B cells were	BPA (Sigma- Aldrich) purity	Increase of DNA damage, but no	Reliability: 3	Low	George and Rupasinghe,
Comet assay in human	BEAS-2B cells were exposed to BPA	BPA (Sigma- Aldrich) purity ≥97% not	Increase of DNA damage, but no quantitative data are	Reliability: 3 Only one	Low	George and Rupasinghe, 2018
Comet assay in human bronchial	BEAS-2B cells were exposed to BPA 200 µM	BPA (Sigma- Aldrich) purity ≥97% not reported in the	Increase of DNA damage, but no quantitative data are reported	Reliability: 3 Only one concentration	Low	George and Rupasinghe, 2018
Comet assay in human bronchial epithelial	BEAS-2B cells were exposed to BPA 200 μM for 24 h	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but	Increase of DNA damage, but no quantitative data are reported MTS assay:	Reliability: 3 Only one concentration tested, which	Low	George and Rupasinghe, 2018
Comet assay in human bronchial epithelial BEAS-2B	BEAS-2B cells were exposed to BPA 200 µM for 24 h MTS assay:	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on	Increase of DNA damage, but no quantitative data are reported MTS assay: -	Reliability: 3 Only one concentration tested, which resulted in	Low	George and Rupasinghe, 2018
Comet assay in human bronchial epithelial BEAS-2B cells	BEAS-2B cells were exposed to BPA 200 µM for 24 h MTS assay: 12.5 to 200	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the	Increase of DNA damage, but no quantitative data are reported MTS assay: - concentrationdepen	Reliability: 3 Only one concentration tested, which resulted in high	Low	George and Rupasinghe, 2018
Comet assay in human bronchial epithelial BEAS-2B cells Cytotoxicity:	BEAS-2B cells were exposed to BPA 200 μM for 24 h MTS assay: 12.5 to 200 μM; tests	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the company	Increase of DNA damage, but no quantitative data are reported MTS assay: - concentrationdepen dent	Reliability: 3 Only one concentration tested, which resulted in high cytotoxicity	Low	George and Rupasinghe, 2018
Comet assay in human bronchial epithelial BEAS-2B cells Cytotoxicity: MTS assay	BEAS-2B cells were exposed to BPA 200 μM for 24 h MTS assay: 12.5 to 200 μM; tests performed in	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the company	Increase of DNA damage, but no quantitative data are reported MTS assay: - concentrationdepen dent cytotoxic	Reliability: 3 Only one concentration tested, which resulted in high cytotoxicity Comet assay	Low	George and Rupasinghe, 2018
Comet assay in human bronchial epithelial BEAS-2B cells Cytotoxicity: MTS assay after 24 h	BEAS-2B cells were exposed to BPA 200 μM for 24 h MTS assay: 12.5 to 200 μM; tests performed in triplicates and	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the company	Increase of DNA damage, but no quantitative data are reported MTS assay: - concentrationdepen dent cytotoxic effect;	Reliability: 3 Only one concentration tested, which resulted in high cytotoxicity Comet assay results not	Low	George and Rupasinghe, 2018
Comet assay in human bronchial epithelial BEAS-2B cells Cytotoxicity: MTS assay after 24 h treatment	BEAS-2B cells were exposed to BPA 200 μM for 24 h MTS assay: 12.5 to 200 μM; tests performed in triplicates and for at	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the company	Increase of DNA damage, but no quantitative data are reported MTS assay: - concentrationdepen dent cytotoxic effect; - cytotoxicity at 200	Reliability: 3 Only one concentration tested, which resulted in high cytotoxicity Comet assay results not reported in	Low	George and Rupasinghe, 2018
Comet assay in human bronchial epithelial BEAS-2B cells Cytotoxicity: MTS assay after 24 h treatment γ-H2AX foci	BEAS-2B cells were exposed to BPA 200 μM for 24 h MTS assay: 12.5 to 200 μM; tests performed in triplicates and for at least 3	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the company	Increase of DNA damage, but no quantitative data are reported MTS assay: - concentrationdepen dent cytotoxic effect; - cytotoxicity at 200 µM: 84.7 ± 2.1%;	Reliability: 3 Only one concentration tested, which resulted in high cytotoxicity Comet assay results not reported in detail,	Low	George and Rupasinghe, 2018
Comet assay in human bronchial epithelial BEAS-2B cells Cytotoxicity: MTS assay after 24 h treatment γ-H2AX foci using	BEAS-2B cells were exposed to BPA 200 µM for 24 h MTS assay: 12.5 to 200 µM; tests performed in triplicates and for at least 3 independent	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the company	Increase of DNA damage, but no quantitative data are reported MTS assay: - concentrationdepen dent cytotoxic effect; - cytotoxicity at 200 μM: 84.7 ± 2.1%; γ-H2AX:	Reliability: 3 Only one concentration tested, which resulted in high cytotoxicity Comet assay results not reported in detail, (no	Low	George and Rupasinghe, 2018
Comet assay in human bronchial epithelial BEAS-2B cells Cytotoxicity: MTS assay after 24 h treatment γ -H2AX foci using immunofluor	BEAS-2B cells were exposed to BPA 200 µM for 24 h MTS assay: 12.5 to 200 µM; tests performed in triplicates and for at least 3 independent times	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the company	Increase of DNA damage, but no quantitative data are reported MTS assay: - concentrationdepen dent cytotoxic effect; - cytotoxicity at 200 μM: 84.7 ± 2.1%; γ-H2AX: BPAinduced	Reliability: 3 Only one concentration tested, which resulted in high cytotoxicity Comet assay results not reported in detail, (no quantitative	Low	George and Rupasinghe, 2018
Comet assay in human bronchial epithelial BEAS-2B cells Cytotoxicity: MTS assay after 24 h treatment γ-H2AX foci using immunofluor escence	BEAS-2B cells were exposed to BPA 200 μ M for 24 h MTS assay: 12.5 to 200 μ M; tests performed in triplicates and for at least 3 independent times Without	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the company	Increase of DNA damage, but no quantitative data are reported MTS assay: - concentrationdepen dent cytotoxic effect; - cytotoxicity at 200 μM: 84.7 ± 2.1%; γ-H2AX: BPAinduced phosphorylation	Reliability: 3 Only one concentration tested, which resulted in high cytotoxicity Comet assay results not reported in detail, (no quantitative data)	Low	George and Rupasinghe, 2018

Intracellular ROS: DCF proteins involved in the DNA damage response (p-ATM, p- ATR, p- Chk1, p-p53) using western blot	activation		phosphorylation of ATM/ATR complex and triggered Chk1 and p53 proteins Statistically significant increase of ROS	No positive control		
Comet assay in TM3 murine Leydig cells Cell viability: MTT assay Real-time cell growth kinetics [cellular index (CI)] Cell-cycle analysis (PI, FACS analysis)	BPA 0, 1, 10 and 100 µM for 3 h; cell viability analysed with trypan blue exclusion method; Positive control: doxorubicin; 250 nucleoids were analysed in each repetition (3 experiments) Without metabolic	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the company	Negative No increase in damage index (DI) Cell viability was evaluated using trypan blue exclusion method, and only treatments with an index greater than 80% were considered (results not shown) Cell viability: statistically significant and concentrationrelated decrease	Reliability: 3 Results are reported as damage index (not a standard parameter)	Low	Gonçalves <i>et</i> <i>al.</i> , 2018

Morphologic	activation	from 5 and from 50		
al analysis	BPA	µM after 24 and 48		
of	concentrations	h exposure,		
cell death:	for	respectively		
chromatin	MTT assay and	CI: TM3 cells		
staining with	real-time	exhibited a		
the	cell growth	decrease		
Hoechst	kinetics: 0,	in their CI after 34 h		
33342 dye	0.5, 1, 5, 10,	of exposure at		
	50, 100,	concentrations from		
	250, 500 µM	10 µM		
	MTT assay	BPA 100, 250 and		
	exposure: 24	500 µM decreased		
	or 48 h	CI within a few		
	Real-time cell	hours of exposure		
	growth	Cell-cycle analysis:		
	kinetics:	BPA 100 μΜ		
	measurement	induced		
	every 30 min for	an increase in the		
	96 h	sub-G1 phase cell		
	Cell-cycle	population		
	analysis,			
	chromatin	No other effects		
	staining: BPA	induced in the		
	0, 1, 10 and	distribution of TM3		
	100 µM for	cells in the G0 + G1,		
	24 or 48 h	S, and G2 + M		
		phases		
		Morphological		
		analysis of cell		
		death: increase in		
		chromatin staining		

			upon exposure to BPA 100 µM for 24			
Alkaline comet assay with repair enzymes [with DNA glycosylase s, i.e. endonuclea se III	BPA 0, 0.01, 0.1 and 1 μg/mL for 4 h and 0, 0.001, 0.01 and 0.1 μg/mL for 48 h Positive control: H2O2 (2 blood donors)	BPA, 99–99.5% purity (Sigma- Aldrich)	BPA 100 µM for 24 or 48 h Positive After 4 h incubation: - statistically significant and concentrationdepen dent oxidative damage to purines (from 0.01 µg/mL) and to pyrimidines	Reliability: 2 No appropriate positive control unusual software for comet analysis	Limited	Mokra <i>et al</i> ., 2018
(Nth) and human 8- oxoguanine DNA glycosylase (hOGG1)] Oxidised	Without metabolic activation		(from 0.1 μg/mL) After 48 h incubation: - concentration- dependent oxidative DNA damage to			
purines and pyrimidines Human PBMC 300 comets from 2 independent			purines (from 0.001 µg/mL) and to pyrimidines from (0.01 µg/mL) Statistically significant differences for DNA			
experiments Cell viability: flow cytometry			damage between 4 h and 48 h exposure at the highest			

			concentrations tested (0.01 and 0.1 μg/mL) Cell viability: no significant changes			
Alkaline comet assay (CometChip platform) in mouse embryonic fibroblasts (MEF) Analysis of γH2AX (immunofluo rescence) In vitro chromosom al aberrations test (Table 3)*	BPA 150 μ M for 24 and 48 h (24 h for γ H2AX), or co-exposure with camptothecin (CPT) Data of 4 replicates, each with 1500 \pm 300 comets Without metabolic activation	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the company	Negative No significant increase in the % tail DNA No significant increase in the percentage of γH2AX-positive nuclei	Reliability: 3 No positive controls, no sufficient details on the methods applied; single concentration ; cytotoxicity not evaluated	Low	Sonavane <i>et al</i> ., 2018*
Comet assay in murine macrophage RAW264.7 cells Cell viability: MTT assay	BPA 0, 3, 10, 30, or 50 µM for 24 h; no positive control; a minimum of 50 cells/slide were analysed	BPA (Sigma- Aldrich) purity ≥97% not reported in the study but available on the website of the company	Positive Increase in tail moment and tail length in a concentrationdepen dent manner	Reliability: 2 No positive control	Limited	Huang <i>et al</i> ., 2018*

Intracellular ROS level: semiquantit ative DCFHDA fluorescenc e assay Assessment of the antioxidative enzymes activities: CAT, SOD, and GPx In vitro micronucleu s assay	MTT assay: BPA 0, 3, 10, 30, or 50 μ M for 12 or 24 h DCFH-DA assay and assessment of antioxidative enzymes activities: - BPA 0, 3, 10, 30, or 50 μ M for 24 h Without metabolic activation		starting from 10 µM of BPA Cytotoxicity: concentration- and time-dependent decrease of cell viability BPA-induced ROS generation and reduced antioxidative enzyme activities from 10 µM			
(Table 4)*						
Comet assay and comet modified with FpG In cryopreserv ed: - Hep-2 cells (human	BPA 0.44 nM, 4.4 nM, 4.4 µM for 48 h; Hep-2 cells: 300 cells analysed for each treatment MRC-5 cells: 100 cells analysed for each	BPA (Sigma) purity ≥97% not reported in the study but available on the website of the company	Inconclusive	Reliability: 3 Comet assay is not validated and recommende d for testing cryopreserve d cell samples	Low	Ramos <i>et al</i> ., 2019*

epithelial cells from laryngeal carcinoma); - MRC-5 cells (DNA damage responsive cell line, human lung fibroblasts) Cell viability: CellTiter- Blue assay In vitro	treatment Cell viability: BPA 0.44 nM, 4.4 nM, 4.4 µM, 48 h exposure in both Hep-2 and MRC-5 cells			No positive control		
micronucleu s assay (Table 4)*						
Comet assay in sperm cells from Sprague Dawley rats Analysis: ROS, LPO, SOD In vivo comet assay	BPA 0, 1, 10, and 100 μg/L for 2 h No positive control Without metabolic activation	BPA (99% purity) Santa Cruz Biotechnology	Positive Increase of tail DNA% only at 100 µg/L BPA increased SOD, ROS, TBARS [thiobarbituric acid reactive substances (TBARS) as an index of LPO] only at 100	Reliability: 3 The study was performed following a nonstandard, neutral protocol and unusual evaluation	Low	Ullah <i>et al</i> ., 2019**

(Table 8)**			µg/L	of comets		
· · · ·				based		
				on the		
				analysis of		
				microphotogr		
				aphs.		
				No positive		
				control		
Comet	BPA 10–6 to	BPA (purity >	Positive	Reliability: 2	Limited	Yuan <i>et al</i> .,
assay in	10–3 M for 24	99%) Sigma-		-		2019
Marc-	h; 50 cells from	Aldrich	Increase in % tail	No positive		
145 cells	each of		DNA, tail length and	control		
(rhesus	6 independent		tail moment (10–6 -			
monkey	experiments		10–3 M);			
embryo	were		Cytotoxicity:			
renal	analysed		concentrationrelated			
epithelial	MTT assay:		increase;			
cells)	BPA 10–6 to		excess of toxicity at			
Cytotoxicity:	10–1 M for 24		10–3 and 10–4 M			
MTT and	h;		BPADCFH-DA,			
LDH assays	DCFH-DA and		TBARS			
Intracellular	TBARS		assays:			
ROS	assays: BPA		-			
levels:	10–6 to 10–3		concentrationrelated			
DCFH-DA	M for 24 h;		increase of			
Lipid	SOD activity		ROS and lipid			
peroxidation	and GSH		peroxidation;			
: - TBARS;	content: BPA		 SOD activity and 			
- SOD	10–6 to 10–3		GSH content:			
activity and	M for 24 h		concentrationrelated			
GSH	Without		decrease			
content	metabolic					

	activation					
Alkaline comet assay and Fpg modified comet assay RWPE-1 cells [human papilloma virus 18 (HPV18) immortalise d, non- tumorigenic prostatic cell line] Cell viability: modified MTT assay and trypan blue exclusion Enzymatic and nonenzymat ic antioxidants :	BPA 0, 45 μM (IC20) for 24 h 450 comets analysed/treatm ent; experiments in triplicates Cell viability: 0, 50, 100, 200, 300, 600 μM for 24 h Enzymatic and nonenzymatic antioxidants: BPA 0, 45 μM (IC20) for 24 h Without metabolic activation	BPA (>99% pure)	Positive Comet assay: increase (2.5-fold) in tail intensity (at IC20 BPA) Fpg modified comet: increase in tail intensity Cell viability: decrease in cell viability (IC20 45 µM) Enzymatic and nonenzymatic antioxidants: decrease in: - GPx1 and SOD activity (29% and 24% respectively); - TAOC levels (20%); increase in: - GR activity (4.5- fold); - total GSH level (30%)	Reliability: 2 One concentration tested No positive control No metabolic activation	Limited	Kose <i>et al.</i> , 2020

analysis of GPx, GR, SOD, GSH and TAOC levels						
Comet assay in HepG2 cells (human hepatocellul ar carcinoma cell line) Cell viability: MTT test SOS/umuC assay (Table 1)*	BPA 0, 1, 10, 100 and 1000 μ g/L, for 4 and 24 h; 3 independent experiments; 50 nuclei analysed/treatm ent MTT test: BPA 0, 1, 10, 100 and 1000 μ g/L, for 24 h	BPA (Sigma- Aldrich) purity >97% not reported in the study but available on the website of the company	Positive increase of % tail DNA from 10 µg/L at both 4 h and 24 h exposure MTT test: no effects on cell viability	Reliability: 2 Low number of nuclei analysed	Limited	Balabanič <i>et al</i> ., 2021*

Source: Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, EFSA, (2021)

In vivo chromosomal aberrations assay

Table 6: *In vivo* chromosomal aberrations assay (OECD TG 475 was considered for the evaluation of the reliability)

Test system/Test object	Exposure conditions (concentration/ duration/metabolic activation)	Information on the characteristics of the test substance	Results	Reliability/ Comments	Relevance of the result	Reference
Chromosomal	BPA 0, 10, 50 and	BPA, purity 98%	Negative No significant	Reliability: 2	Limited	Naik and Vijavalavmi
assav in	ma/ka hw [.] 2% aum	(Loba Chemie, Mumbai India)	increase	low number of		2009 ¹ *
bone marrow	acacia was used as		of structural	animals/sex_but		2000
Swiss albino	the suspending		chromosomal	in		
mice	medium for BPA		aberrations	total 6		
Six animals	Single oral dose		Significant	animals/group		
(3 females	administered by		increases in	Low number of		
and 3	gavage		the frequencies of	metaphases		
males)/group	Sampling of bone		gaps at all doses at	scored,		
(control and	marrow at 6, 24, 48		48	treatment with		
BPAtreated	and 72 h		and 72 h sampling	colchicine shorter		
animais)	Cumulative dose		time and at 50 and	(1.5 b) then		
metanhases	10 mg/kg bw for 5		24 h sampling time	recommended		
were	consecutive days		C-mitotic effects	(5-6h)		
scored per	Sampling of the		through increases of			
animal	bone		mitotic indices and			
Mitotic effects	marrow 24 h after		decrease in			
In vivo	the		anaphase			
micronucleus			for both higher dose			

assay (Table	last administration		level at 24, 48 and			
7)*	of		72			
	BPA		h sampling times			
Chromosomal	BPA 0, 2.4 μg, 10	BPA, ~99%	Positive	Reliability: 2	Limited	Tiwari <i>et al</i> .,
aberration in	μg,	purity				2012 ^{1*} ,**
bone	5 mg and 50 mg/kg	(Sigma	Dose-related	Mitotic index as a		
marrow	bw administered	Chemical	increase	measure of		
	orally	Company)	of structural	cytotoxicity not		
Holtzman rats	once a day for 6		chromosomal	determined		
Ten animals	consecutive days;		aberrations starting			
(5	BPA		from 10 µg			
females and	dissolved in distilled					
5	ethyl alcohol and					
males)/group	diluted with sesame					
(control	oil					
and BPA-	Sampling of the					
treated	bone					
animals)	marrow 24 h after					
Analysis of	the					
100	last administration					
metaphases	OT					
per	BPA					
animai						
III VIVO mieropuolouo						
assay (Table						
r) anu						
(Table						
(1 abic 8)*						
Bacterial						
ravarsa						

mutation			
1)**			
,			

Source: Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, EFSA, (2021)

In vivo micronucleus assay

Table 7: In vivo micronucleus assay(OECD TG 474 was considered for the evaluation of the reliability)

Test system/Te st object	Exposure conditions (concentration/ duration/metabolic activation)	Information on the characteristics of the test substance	Results	Reliability/ Comments	Relevance of the result	Reference
Micronucle	228 mg/kg bw of	BPA purity >99%	Inconclusive	Reliability: 2	Low	Masuda et
us assay	BPA	(Tokyo Kasel	/	0		<i>al.</i> ,
	dissolved in DIVISO,	Kogyo	(negative with no	Single dose		2005
mice	once by gavage;	Co., Ltd)	demonstration of	tested,		
Peripheral	controls received		bone	although		
blood	vehicle alone		marrow exposure)	relatively high;		
reticulocyte	Peripheral blood		No increase of	1000 scored		
S	collected at 24, 48		micronucleated	reticulocytes/ani		
(1000/anim	and 72 h after		reticulocytes at any	mal		
al	administration		sampling time	instead of 2000		
analysed, 5			Cytotoxicity was not	as in		
mice per			evaluated	OECD TG 474		
group)				(1997)		

Bacterial reverse mutation assay (Table				No positive control		
1)**						
Micronucle us assay in	BPA 0, 0.002, 0.02 and 0.2 mg/kg bw	BPA (Sigma- Aldrich)	Inconclusive	Reliability: 2	Low	Pacchierott i <i>et al</i> .,
bone	oral gavage on 2	purity >97% not	(negative with no	No positive		2008 ¹
marrow	days	reported in the	demonstration of	control;		
Male mice	Cells collected 24 h	study	bone	very low doses		
(102/ElxC3	after last	but available on	marrow exposure)	applied		
H/EI)F1 (5	administration	the	No induction of			
animals	2000 polychromatic	website of the	micronuclei in the			
per group)	erythrocytes (PCE)	company	bone			
	were scored per		marrow			
	animai		polychromatic			
Cytogeneti	Acute exposure: 0.2	BDA (Sigma	Negative	Poliobility: 2	Limited	Pacchierott
	or 20 mg/kg	Aldrich)	negalive		Linited	i et el
of oncytes	Sub-acute		No significant	This study was		20081
and	exposure.		induction	adequately		2000
zvootes in	0.04 mg/kg for 7		of hyperploidy or	planned.		
female	davs		polyploidy in	performed and		
C57BI/6	by gavage		oocytes	reported, even		
mice	Sub-chronic		and zygotes in any	though		
Assessme	exposure:		treatment condition	specific		
nt of	0.5 mg/L for 7			guidelines for		
meiotic	weeks		No delay of meiotic	the effects in		
delay in	in drinking water 0.2		divisions	germ cells		
spermatoc	mg/kg bw starting		No induction of	are not available		
ytes by	on day 8 after BrdU,		hyperploidy or			

BrdU incorporati on and aneuploidy in	for 6 consecutive days BPA 0, 0.002, 0.02 and 0.2 mg/kg for 6 consecutive days		polyploidy in epididymal sperms	No positive control Very low doses for the analysis of sperm		
epididymai sperm by multicolor FISH in male				aneupioidy		
102/ElxC3 H/El)F1 mice (5 mice per						
dose) Micronucle us in bone marrow Swiss albino mice Six animals (3 females and 3 males)/gro up (control and BPAtreated animals);	BPA 0, 10, 50 and 100 mg/kg bw; 2% gum acacia was used as the suspending medium for BPA Single oral dose administered by gavage sampling of bone marrow at 6, 24, 48 and 72 h Cumulative dose level: 10 mg/kg bw for 5 consecutive days	BPA purity 98% (Loba Chemie, Mumbai, India)	Negative No significant decrease of PCE/NCE ratio Significant increase of gaps and C-mitoses	Reliability: 2 Low number of animals/sex in each group, but in total 6 animals/group	Limited	Naik and Vijayalaxm i, 20091*

2000 PCE/anima I In vivo chromoso	Sampling of the bone marrow 24 h after the last administration					
mal aberration (Table 6)*	of BPA					
Micronucle us in bone marrow Male Sprague Dawley rats 8 rats/group (control and BPA- treated animals) In vivo comet assay (Table 8)*	BPA 0, 200 mg/kg bw per day for 10 days Orally via drinking water Bone marrow processed at the end of treatment	BPA (Sigma- Aldrich) purity >97% not reported in the study but available on the website of the company	Inconclusive (negative with no demonstration of bone marrow exposure) No data on bone marrow toxicity are reported	Reliability: 2 Exposure of the bone marrow not demonstrated Single dose tested No positive control	Low	De Flora <i>et</i> <i>al.</i> , 2011 ^{1*}
Micronucle us in bone marrow Holtzman rats Ten animals (5	BPA 0, 2.4 μg, 10 μg, 5 mg and 50 mg/kg bw per day administered orally for 6 consecutive days	BPA, ~99% purity (Sigma Chemical Company)	Positive Dose-related increase of MN-PCE starting from 10 µg/kg bw per day	Reliability: 2 Inappropriate staining	Limited	Tiwari <i>et al</i> ., 2012 ^{1*} ,**

females and 5 males)/gro up (control and BPA- treated animals) In vivo chromoso mal aberration (Table 6)* Comet assay (Table 8)* Bacterial reverse mutation assay	Sampling of the bone marrow 24 h after the last administration of BPA Analysis of 2000 PCE					
assay (Table 1)**						
Micronucle us test in peripheral blood reticulocyte s and in bone marrow of	BPA 5, 10, or 20 mg/kg bw per day for 2 weeks in drinking water Animals were sacrificed 24 h after the end of treatment	BPA, no information on purity or the supplier company	Positive in reticulocytes at 10 and 20 mg/kg bw after 2 weeks of exposure Negative in reticulocytes after 1 week of treatment	Reliability: 2 No criteria for scoring micronuclei were described No positive control	Low No information on source and purity of BPA	Gajowik <i>et</i> <i>al</i> ., 2013*

Pzh:Sfis	Blood was collected		Negative in bone			
female	at		marrow			
mice	1 and 2 weeks of					
No. of	exposure					
animals/gr						
oup:						
9 in						
control, 6						
in BPA						
5 mg/kg						
bw, 8 in						
BPA						
10 mg/kg						
bw, 6 in						
BPA 20						
mg/kg bw;						
1000						
reticulocyte						
s or						
PCE were						
scored						
In vivo						
comet						
assay						
(Table 8)*			D			
Micronucle	Oral administration	BPA (<99% pure)	Positive	Reliability: 3	Low	Srivastava
us test in	of	purchased from				and Gupta,
bone	5 µg, 50 µg and 100	Sigma-Aldrich,	Increases (2–3-fold	Major limitation in		2016 [
marrow	µg BPA/100 g bw					
	once a day for 90	IN OIVE OII	the highest dose) in	presentation and		
Adult male	days, sacrifice and		the	analysis: low		
vvistar	sampling of bone		trequency of	number of		

aibino rats Ten animals per group	day		micronuciel in polychromatic erythrocytes and normochromatic erythrocytes Statistical significance of the difference with negative controls not determined No decrease in PCE/NCE ratio	scored cells per animal lack of historical control data		
Micronucle us test in bone marrow Male Swiss albino mice, 10 animals/gr oup; analysis of 2000 PCE/anima I In vivo comet assay (Table 8)*	50 mg/kg bw, orally once a day for 28 days Sampling of the bone marrow at the end of treatment	BPA, purity ≥ 99%, (Sigma-Aldrich)	Positive Increase in the mean values of MNPCEs (66.40 ± 9.94 vs 10.40 ± 2.96) Cytotoxic (reduction in the ratio of PCE/NCE compared to control)	Reliability: 2 No positive control only one dose	Limited	Fawzy <i>et</i> <i>al.</i> , 2018*
Micronucle	0, 50 and 100 µg/kg	BPA (Sigma-	Positive	Reliability: 2	Limited	Panpatil <i>et</i>
--------------	---------------------	------------------	----------------------	----------------	---------	--------------------
us test in	bw per day, 4	Aldrich)	Significant dose-			al., 2020*
bone	weeks,	purity >97% not	related	No positive		
marrow	by gavage	reported in the	increase (up to 3-	control only		
Male	Sampling at the end	study	fold)	2 doses		
Wistar rats;	of treatment	but available on	in the mean values			
6		the	of			
animals/gr		website of the	MNPCEs compared			
oup		company	with			
Analysis of			control			
2000 PCE			Cytotoxic (a weak			
for MN			statistically			
scoring			significant			
and of			decrease in			
200 cells			PCE/NCE			
for			ratio); dose-related			
PCE/NCE			increase of MDA in			
Ratio			blood and of urinary			
			8-			
Lipid			OHdG levels			
peroxidatio						
n:						
serum level						
of						
malondiald						
ehyde						
(MDA)						
(8-OHdG)						
in urine						
comet						
assay						

(Table 8)*				
	attana af the and all a farmer delta h	i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i - i		

Source: Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, EFSA, (2021)

In vivo DNA damage

Table 8: *In vivo* DNA damage (comet assay, OECD TG 489 was considered for the evaluation of the reliability)

	Results	Comments	of the	Reference
aracteristics of			result	
stance				
A (Sigma- rich) ity >97% not orted in the dy available on osite of the npany	Negative	Reliability: 2 Tail moment, used as only parameter to report the results for the comet assay, is not recommended by the Comet international Committee; single dose tested; no positive	Limited	De Flora <i>et</i> <i>al.</i> , 2011 ^{1*}
A ritional and the second seco	racteristics of test stance (Sigma- ich) y >97% not irted in the y available on site of the pany	racteristics of test stanceNegative(Sigma- ich) y >97% not irted in the y available onNegativesite of the pany	racteristics of test stanceNegativeComments. (Sigma- ich) y >97% not orted in the y available onNegativeReliability: 2Tail moment, used as only parameter to report the results for the comet assay, is not recommended by the Comet international Committee; single dose tested; no positive control	racteristics of test stanceCommentsof the result(Sigma- ich) y >97% not urted in the y available onNegativeReliability: 2LimitedTail moment, used as only parameter to report the results for

In vivo micronucle us assay (Table 7)*						
Comet assay in peripheral whole blood cells of Wistar rats (6 animals/gr oup BPAtreated animals; 5 animals in the control group; 3 animals in the positive control group)	0, 125 and 250 mg/kg bw; oral administration (gavage) for 4 weeks Positive control: MMS (i.p., sampling after 24 h); 50 cells were analysed on each replicated slide	BPA purity > 99% (Merkolab Chemistry)	Positive Increase of both tail length and tail moment at 250 mg/kg bw	Reliability: 3 Inappropriate presentation and evaluation of results Group mean tail length and tail moment values, rather than the means of animal median values (OECD TG 489) Sampling time, and frequency of administrations not stated	Low	Ulutaş <i>et</i> <i>al</i> ., 2011 ¹
Comet assay in blood lymphocyte s Holtzman rats	2.4 µg, 10 µg, 5 mg and 50 mg/kg bw per day administered once a day	BPA, ~99% purity (Sigma Chemical Co.)	Positive Dose-related increase starting from 10 µg/kg bw per day	Reliability: 2 Inappropriate sampling time Low number of nucleoids scored	Limited	Tiwari <i>et</i> <i>al</i> ., 2012 ^{1*} ,**

Ten	for 6 consecutive	Significant increase		
animals (5	days	in		
females	Sampling 24 h after	plasma		
and 5	the	concentration of 8-		
males)/gro	last administration	OHdG only at 50		
up	of BPA	mg/kg		
(control		bw per day		
and		Dose-related		
BPAtreated		increase of		
animals);		MDA and decrease		
analysis of		of		
50		glutathione in liver		
nucleoids/a		Inconsistent results		
nimal		of 8-		
Plasma		OHdG with comet		
concentrati		assay		
ons				
of 8-				
hydroxyde				
oxyguanosi				
ne				
(8-OHdG),				
peroxidatio				
n (MDA)				
and				
giutathione				
micronucle				
us				

assay (Table 7)* chromoso mal aberrations assay (Table 6)* Bacterial reverse mutation assay (Table 1)**						
Comet assay in bone marrow, spleen, liver and kidney and germ cells Male Pzh:SFIS mice; 5 animals/gr oup; 100 cells were analysed	0, 5, 10, 20 or 40 mg/kg bw Orally in drinking water Daily for 2 weeks Animals were sacrificed 24 h after the last treatment	BPA, no information on purity or the supplier company	Positive Increases of DNA tail moment in bone marrow, spleen, kidney and lung cells at any dose level without a clear dose response No increase of tail moment was detected in liver cells In sperm cells	Reliability: 3 No information on purity; drinking water consumption (containing BPA) not measured, inadequate sampling time, poor study report; tail moment, used as only parameter to report the results for the	Low	Dobrzyńsk a and Radzikows ka, 2013 ¹

			tail moment: at all doses 24 h after the end of exposure; at the 2 highest doses 5 weeks after the end of treatment	comet assay, is not recommended by the Comet International Committees		
Alkaline comet assay in epididymal sperm of Holtzman rats In vivo dominant lethal mutations in male rats (Table 9)*	Oral gavage of 10 µg/kg bw and 5 mg/kg bw BPA dissolved in ethyl alcohol and diluted in sesame oil, for 6 consecutive day	BPA ~99% purity (Sigma Chemical Co.)	Positive Significant increase in the sperm DNA damage at 5 mg/kg bw	Reliability: 3 Comet assay is not considered appropriate to measure DNA strand breaks in mature germ cells due to the high and variable background levels in DNA damage in this cell type (OECD TG 489); moreover, the sampling time, i.e. 8 weeks after last treatment, is	Low	Tiwari and Vanage, 2013 ^{1*}

				inappropriate for		
				in		
				vivo comet assay		
Comet	BPA 5, 10, or 20	BPA, no	Positive in lung at 5	Reliability: 2	Low	Gajowik et
assay in	mg/kg	information	and	,		al.,
lung,	bw/day for 2 weeks	on purity or the	10 mg/kg	Inappropriate	No	2013*
spleen,	in	supplier company	Negative in spleen,	sampling time,	information	
kidneys,	drinking water		kidneys, liver and	tail moment, used	on	
liver	Sampling 24 h after		bone	as	source and	
and bone	the		marrow	only parameter to	purity	
marrow of	end of treatment			report the results	of BPA	
Pzh:Sfis				for		
female				the comet assay,		
mice				is		
No. of				not		
animals/gr				recommended by		
oup				the Comet		
9 in				International		
control, 6				Committees		
in BPA 5						
mg/kg bw,						
8 in BPA						
10						
mg/kg bw;						
6 in BPA						
20						
mg/kg bw						
100						
nucleoids						
scored/ani						
mal						

In vivo micronucle us assay (Table 7)*						
Alkaline comet assay in brain cells of KM male mice; (11 animals/gr oup); 200 cells for each group analysed	BPA 0.5, 50 and 5000 µg/kg bw (daily dose, diluted in tea oil, by gavage) for 8 weeks After 8 weeks of exposure, mice were sacrificed and the brain samples were immediately removed The tail DNA%, tail length and tail moment were measured using CASP comet analysis software Based on the DNA percentage of the tail intensity, the damage	BPA from Sigma- Aldrich (HPLC grade) purity >97% not reported in the study but available on the website of the company	Positive Significant increase of damaged cells from 23.0% in the control group to 47.3%, 66.6% and 72.5% in the low-, medium and high-exposed groups Severity of DNA damage, expressed as arbitrary units (AUs), increased with AUs of 0.28 in the control to AUs of 0.59, 0.96 and 1.28 in the low, medium and highly exposed	Reliability: 2 DNA damage was evaluated using arbitrary units and considering the distribution of DNA damage in the cell population analysed (n = 440), rather than using median animals data as the statistical unit, as recommended in OECD TG 489	Limited	Zhou <i>et al</i> ., 2017

	level was divided into 5 grades Arbitrary units computed with the score of DNA damage in analysed cells		groups, respectively			
	were used to express the					
	DNA damage					
Comet assay in liver female Wistar rats; (7 animals/gr oup) Serum biochemica I analysis: ALT, ALP, TP, Alb, GGT, TC, Triglycerid es, HDL; LDL	7 animals/group: control (corn oil) BPA 10 mg/kg bw; daily administration via gavage for 30 days Sampling at the end of treatment	BPA (Sigma- Aldrich) purity >97% not reported in the study but available on the website of the company	Positive: increase of tail DNA % BPA-induced: - increase of ALT, ALP, GGT, TC, LDL, MDA, caspase-3; - decrease of Alb, TP, GPx, SOD, CCYPR450 Histopathological analyses showed deleterious hepatic changes ranging from hepatocytes' vacuolisation and	Reliability: 3 Use of frozen tissues; without a positive control; a single dose applied; toxic effects in liver	Low	Abdel- Rahman et al., 2018

Hepatic			nuclei to focal			
antioxidant			necrosis and			
S			fibrosis			
and lipid						
peroxidatio						
'n						
level: GPx.						
SOD. MDA						
CYPR450						
(ELISA)						
Histopathol						
oav						
Immunohis						
tochemical						
evaluation						
of						
caspase-3						
Comet	BPA, 25 mg/kg by	BPA, no	Positive	Reliability: 3	Low	Kazmi <i>et</i>
assay in	i.p.	information	increase of tail DNA	,		<i>al.</i> , 2018
liver of	negative control	on purity or the	%	Limitations:	A single	,
Sprague	group;	supplier company	28.35 ± 1.2 vs 0.01	- a single	administrati	
Dawley	vehicle control		±	administration by	on by	
rats of	aroup		0.005	i.p.	i.p.	
either sex;	(10% DMSO in		BPA-induced:	and comet,	No	
7	olive oil)		- increase of WBC,	analysis	information	
animals/gr	Sampling: 4 weeks		ALT,	after 4 weeks;	on	
oup	after		AST, ALP, bilirubin,	- unusual	source and	
Serum	the treatment		H2O2,	software	purity	
analysis:			nitrite	used for the	of BPA	
ALT,			- decrease of RBC,	comet		
ALP, AST,			platelets, Hb,	analysis;		
bilirubin			albumin,	•		

Analysis of antioxidant effects: CAT, POD, SOD, GSH Lipid peroxidatio n assay, hydrogen peroxide assay, nitrite assay Liver histopathol			CAT, POD, SOD, GSH, 'Histopathological examination of BPAtreated animals revealedintense hepatic cytoplasm inflammation, centrilobular necrosis, cellular hypertrophy, fatty degeneration, vacuolisation, steatosis and distortion of	- the results reported using the different parameters (tail length, % of DNA in tail, tail moment) are not consistent; - the value of % of DNA in tail in controls is extremely low with respect to the data reported		
ogy			vein'	the scientific literature; - high liver toxicity		
Comet assay in liver of Male Swiss albino mice (10 animals/gr oup); images of 50 randomly	BPA dissolved in ethanol and diluted in corn oil by gavage at 50 mg/kg bw, once a day for 28 successive days	BPA (≥ 99 %) Sigma- Aldrich	Positive Mean tail length, tail moment and % tail DNA were significantly increased (p < 0.05) in liver of BPA-treated mice Increase of AST, ALT,	Reliability: 3 Major deviation from OECD TG 489: -too low number of analysed cells per animal -aggregated mean	Low	Elhamalaw y <i>et al</i> ., 2018

selected nuclei/ experiment al group Analysis of liver toxicity markers (AST and ALT) and liver histopathol ogy			marked histopathological alteration in liver of BPAtreated animals 'congestion of the hepatic blood vessels as well as marked vacuolar degeneration of the hepatocytes with many necrotic cells'	data analysed (instead of animal median) -no positive control - too high liver toxicity associated with treatment		
Alkaline comet	Gavage 0, 125, 250 and	BPA (purity >99%, Sigma-Aldrich)	Negative	Reliability: 1	High	Sharma et al.,
assay in	500 mg/kg bw BPA	5 ,	None of the tissues	This study		2018**
liver,	(maximum tolerated		showed an effect of	basically		
kidney,	dose)		BPA	followed the		
testes,	as suspensions in		except in testicular	OECD		
urinary	corn oil		cells, in which an	TG 489		
bladder,	prepared by		increased level of			
colon	ultrasonication		DNA strand has also (n. s			
and lungs	2 doses (24 n apart)		strand breaks (p <			
	Animals were		0.01 compared with			
mice (5	h after 2nd dose		control			
mice/aroup	200 cells		droup) was			
)	analysed/mice		observed at			
Ín vitro	(100 cells per gel		the lowest dose only			
comet	and 2		, ,			
assay	gels per mouse)					

(Table 5)**						
Comet	50 mg/kg bw, orally	BPA, purity ≥ 99%	Positive	Reliability: 3	Low	Fawzy et
assay in	once	(Sigma-Aldrich)		-		<i>al</i> ., 2018*
liver	a day for 28 days		Increase (p ≤ 0.05)	No positive		
and testes	Sampling at the end		in the	control,		
of male	of		mean values of tail	low number of		
Swiss	treatment		length,	nucleoids		
albino mice			percentage of tail	analysed,		
Male Swiss			DNA and	toxic effects		
albino			Olive tail moment in	observed in liver		
mice,			liver	and		
10			and testes	testes, a single		
animals/gr			Histopathological	dose		
oup			examination	applied		
50			hepatocyte	The standard		
nuclei/grou			vacuolar	alkaline		
p were			degeneration with	comet assay		
analysed			many necrotic cells	applied		
In vivo			Defective	is not considered		
micronucle			spermatogenesis	appropriate to		
us			characterised by	measure DNA		
assay			severe	strand		
(Table 7)*			necrosis and loss of	breaks in mature		
			the	germ cells		
			spermatogonial			
			layers with			
			multiple spermatid			
			giant			
			cells formation in			
			most of			
			the seminiterous			
			tubules			

			and a congestion of			
			the			
			interstitial blood			
			vessels			
Comet assay in	BPA dissolved in corn oil	BPA Sigma- Aldrich;	Positive	Reliability: 3	Low	Amin <i>et al</i> ., 2019
heart of	30 mg/kg bw per	purity >97% not	Increase tail DNA %	Single dose; no	route of	
Wistar rats;	day	reported in the	(6.88	positive control;	administrati	
20	injected	study	vs 1.67)	inadequate cell	on:	
animals/gr	subcutaneously	but available on	Histopathological	preparation for	subcutaneo	
oup	(SC) 6 days/week	the	changes:	comet assay;	us	
	for 4	website of the	focal disruption of	high		
	weeks	company	cardiomyocytes with	toxicity		
	Sacrifice at the end		some			
	of		nuclear changes,			
	treatment		such as			
			karyolysis and			
			pyknosis			
			and sarcoplasmic			
			vacuolisation			
			The mitochondria			
			appeared swollen			
			and			
			deranged with			
			different			
			sizes and shapes			
Comet	BPA (50 mg/kg bw)	BPA analytical	Positive	Reliability: 3	Low	Majid <i>et</i>
assay in	injected	grade				<i>al</i> ., 2019
testes	intraperitoneal on	(Merck KGaA);	Histopathology:	Single dose; no	BPA was	
of Sprague	alternate days for	purity	'BPA	positive controls;	administere	
Dawley	21 days	>97% not reported	caused significant	an	d by	
		in	damage		i.p.	

rats; 7	Sacrifice 24 h after	the study but	and abrasions to	unusual software	
rats/group	the	available on the	seminiferous	for	
Histopathol	end of treatment	website of the	tubules with	the comet	
ogy		company	low cellular density'	analysis	
Antioxidant			BPA-induced:	used; the comet	
enzymes:			- decrease of body	presented in the	
CAT, SOD,			weight,	microphotograph	
GSH,			epididymis and	S	
POD,			testes	are of low quality	
NO			weight,	The standard	
			testosterone, FSH,	alkaline	
			LH, CAT, SOD,	comet assay	
			GSH, POD;	applied	
			- decrease of sperm	is not considered	
			count,	appropriate to	
			viability, motility	measure DNA	
			- increase of	strand	
			estradiol	breaks in mature	
				germ cells	

Comet	Animals treated by	BPA (99% purity)	Positive	Reliability: 3	Low	Ullah <i>et al</i> .,
assay	gavage with 5, 25	from Santa Cruz				2019**
(neutral)	and 50	Biotechnology	Both tail moment	The study was		
on	mg BPA/kg bw per		and %	performed		
spermatoz	day for		tail DNA were	following		
oa of	28 days and		significantly	a non-standard,		
Sprague	sacrificed on		(p < 0.05) increased	neutral protocol		
Dawley	day 29th, control		in the	and		
rats	received		BPA 50 mg/kg bw	unusual		
(7 per	the vehicle alone		per day	evaluation		
group)	(0.1%		group compared to	of comets based		
100 scored	ethanol)		vehicle	on the analysis of		
cells per	,		controls, while no	microphotograph		
animal			significant difference	S		
In vitro			with	No detailed		
comet			controls was	information on		
assay			observed in	data		
(Table 5)**			the BPA 5 and 25	analysis is		
			mg/kg	provided		
			bw per day groups	e.g. the use of		
				median vs mean		
				as		
				individual animal		
				descriptor)		
				No positive		
				control		
Comet	Animals were	BPA (purity 99%,	Positive	Reliability: 3	Low	Zhang <i>et</i>
assay in	randomly	Sigma)				<i>al</i> ., 2019
testes	divided into 7		The results obtained	The results		
of offspring	groups. One		showed significantly	obtained		
of BPA			increased Olive tail	showed		
treated				significantly		

mice (pregnant Kumming mice, 20 in each group)	group served as control, the others received BPA in drinking water at 0.05, 0.5, 5, 10, 20 or 50 mg/kg bw per day, for 40 days from gestation day 0 to lactation day 21. F1 male mice were sacrificed at weaning (post-natal day		moment (OTM) in testes cells of F1 animals treated with 5, 10, 20 and 50 mg/kg bw per day, compared with the control group (p < 0.05).	increased Olive tail moment (OTM) in testes cells of F1 animals treated with 5, 10, 20 and 50 mg/kg bw per day, compared with the control group (p < 0.05).		
	testes evaluated by comet assav					
Alkaline comet assay in thyroid tissue Male albino rats 20 rats/group	BPA dissolved in corn oil 200 mg/kg bw per day (1/20 of the oral LD50) for 35 days Sacrifice 24 h after the last administration	BPA (99.5% purity) was obtained from Sigma-Aldrich Co.	Positive % tail DNA 4 times increase compared with control level The histopathological examinations of thyroid	Reliability: 3 Only one dose level No positive control Comet method poorly described The	Low	Mohamme d <i>et al</i> ., 2020

Biochemic	gland showed	microphotograph	
al	severe	s of	
investigatio	congestion of	comets are of low	
n of MPO	interstitial	quality	
activity	blood capillaries	High toxicity	
GSH SOD	severe		
activity and	lymphocytic		
	infiltration		
	associated with		
	variablesized		
	follicles most of		
	which contain		
	scanty		
	colloid secretion		
	and		
	some are atrophied		
	in RDA		
	aroun		
	Significant induction		
	of		
	MPO activity and		
	concentration		
	associated		
	with significant		
	docroasos		
	of SOD potivity and		
	000		
	thursid gland of DDA		
	group		

Alkaline	Gavage 8 weeks	BPA (Sigma-	Negative	Reliability: 3	Low	Sahu et
comet	BPA (100 mg/kg bw	Aldrich)	All comet assav	The standard		al., 2020
assav in	ber	Purity >99% not	parameters (tail	alkaline		, 2020
testes	dav) dailv/5 davs	reported in the	length.	comet assav		
Male	per	study	Olive tail moment	applied		
iuvenile	week by gavage for	but available on	and %	(OECD TG 489)		
, Sprague	8	the	DNA in the tail) and	is		
Dawley	consecutive weeks	website of the	the	not considered		
(SD) rats	Animals were	company	nuclear diffusion	appropriate to		
(7	sacrificed		factor in	measure DNA		
animals/gr	after 8 weeks		Halo assay, were	strand		
oup)			slightly	breaks in mature		
Sperm			but not significantly	germ cells		
DNA			increased in testes	Other test		
damage			cells of	methods		
was			BPA-treated rats	(Halo and		
evaluated			compared	immunohistoche		
by the			with controls	mical		
comet and			TUNEL-positive	determination of		
Halo			cells and	8-		
assays			per cent of 8-OHdG	OHdG) are not		
using			positive areas in	standardised		
duplicate			testicular	and/or		
slides;			tissue were also	validated for		
apoptosis			slightly	regulatory use		
in testes			but non-significantly	For all end-		
cells			increased in BPA-	points,		
was			treated	only a single		
quantified			rats	dose		
using				was tested		
TUNEL				Sampling time		
assay, and				not		

testicular levels of 8- OHdG were determined by immunohist ochemistry				specified No positive control		
Comet assay on whole brain cells from KM mice of F1 and F2 (8 male and 8 female)	Pregnant mice (F0) were orally dosed with BPA dissolved in tea oil at 0.5, 50, 5000 µg/kg bw per day from gestational day 1 until weaning (post-natal day 21). Then, the first generation (F1) of mice were used to generate the F2 DNA damage in brain cells was evaluated by comet assay in mice from both F1 and F2	BPA (purity: 98 %) Sigma-Aldrich	Equivocal DNA damage, expressed as arbitrary units, was slightly (less than twofold) increased in the F1male mice at the lowest dose and in females at the intermediate dose. No effect of BPA exposure was observed in the F2 mice	Reliability: 3 The study protocol is only shortly described The presentation and interpretation of the results is inadequate No positive control	Low	Zhang <i>et</i> <i>al.</i> , 2020

Comet	0, 50, and 100	BPA, (Sigma-	Positive	Reliability: 2	Limited	Panpatil <i>et</i>
assay in	µg/kg, per	Aldrich)				al.,
blood	oral (gavage) for a	purity >97% not	A weak but	Low number of		2020*
liver and	period	reported in the	statistically	nucleoids		
kidney	of 4 weeks	study	significant and	analysed		
Male	Sampling at the end	but available on	doserelated	No positive		
Wistar rats	of	the	increase of tail	controls		
(WNIN)	treatment	website of the	length in liver			
6		company	In kidney increase			
animals/gr			of DNA			
oup			damage observed			
50			only at			
nuclei/slide			the dose of 50 µg/kg			
s were			Comet parameters			
scored			are not			
Lipid			reported for blood			
peroxidatio			cells			
n:			Dose-related			
serum level			increase of			
of			MDA in serum and			
malondiald			of 8-			
ehyde			OHdG levels in			
(MDA)			urine			
8-Hydroxy-						
2□-						
deoxyguan						
osine (8-						
OHdG) in						
urine						
collected						
24 h before						

the						
sacrifice						
In vivo						
micronucle						
us						
assay						
(Table 7)*						
Evaluation	BPA diluted in 10%	BPA, no	Positive	Reliability: 3	Low	Zahra <i>et</i>
of sperm	DMSO	information				<i>al</i> ., 2020
DNA	was injected	on purity or the	Significant (p <	The standard	For	
damage by	intraperitoneally at	supplier company	0.01)	alkaline	insufficient	
alkaline	25		increase of all	comet assay	reliability	
comet and	mg/kg bw on		comet	applied	and lack	
DNA	alternate		parameters in BPA-	(OECD TG 489)	of	
ladder	days for 30 days		treated	is	information	
assays			animals compared	not considered	on	
Male			with	appropriate to	test item	
Sprague			vehicle controls	measure DNA	purity	
Dawley			Electrophoresis on	strand		
rats			agarose	breaks in mature		
(groups of			gel showed	germ cells		
7			extensive DNA			
animals)			fragmentation in	The comet		
ROS,			testes of	protocol		
Catalase,			BPA-treated rats	is shortly		
POD			Significant increase	described,		
and SOD,			in ROS	with no		
GSH, Lipid			level and decreased	information		
peroxidatio			levels	on the number of		
n, TBARS,			of CAT, GSH SOD	analysed sperm		
hydrogen			and POD	cells		
peroxide,						

nitrite	in the testis of BP	PA- per animal;
assay,	treated	sampling
AOPP	group	time not
		specified;
		cytotoxicity not
		evaluated; no
		positive control
		The DNA ladder
		assay is a
		biochemical
		method
		not validated for
		genotoxicity
		assessment

Source: Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, EFSA, (2021)

In vivo dominant lethal assay

Table 9: In vivo dominant lethal assay (OECD TG 478 was considered for the evaluation of the reliability)

Test system/Te st object	Exposure conditions (concentration/ duration/metabolic activation)	Information on the characteristics of the test substance	Results	Reliability/ Comments	Relevance of the result	Reference
Dominant	Rats treated by oral	BPA ~99% purity	Positive	Reliability: 2	Limited	Tiwari and
lethal test	gavage with BPA	(Sigma Chemical				Vanage,
with male	dissolved in ethyl	Co.)	Significant	No positive		2013 ¹ *
Holtzman			decrease in	control		

rats (7 per	alcohol and diluted	total	No negative	
group)	in	implants/female	historical	
Each	sesame oil, at dose	and live	control	
treated	levels of 10 µg/kg	implants/female,	Limited study	
male was	bw	in	desian.	
mated with	and 5 mg/kg bw	females mated	with less	
2 females	once	with	analysable	
per week	a day for 6	males treated	total implants and	
over a	consecutive days	with 5.0	resorptions than	
period of 8	Negative controls	mg BPA/kg bw	recommended	
, weeks; the	were	the	(OECD	
mated	treated with vehicle	fourth week and	TG 478)	
females		sixth	,	
were		week after		
sacrificed		treatment		
on 15th				
day				
of				
gestation				
and				
uterine				
content				
examined				
In vivo				
comet				
assay in				
rat				
epididymal				
sperm				
(Table 8)*				

Source: Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs, EFSA, (2021)

References

Abdel-Rahman HG, Abdelrazek HMA, Zeidan DW, Mohamed RM and Abdelazim AM, 2018. Lycopene: hepatoprotective and antioxidant effects toward bisphenol A-induced toxicity in female Wistar rats. Oxidative Medicine and Cellular Longevity, 2018

Aghajanpour-Mir SM, Zabihi E, Akhavan-Niaki H, Keyhani E, Bagherizadeh I, Biglari S and Behjati F, 2016. The genotoxic and cytotoxic effects of bisphenol-A (BPA) in MCF-7 cell line and amniocytes. International Journal of Molecular and Cellular Medicine, 5(1), 19–29

Amin DM, 2019. Role of copeptin as a novel biomarker of bisphenol A toxic effects on cardiac tissues: Biochemical, histological, immunohistological, and genotoxic study. Environmental Science and Pollution Research International, 26(35), 36037–36047.

Balabanič D, Filipič M, Krivograd Klemenčič A and Žegura B, 2021. Genotoxic activity of endocrine disrupting compounds commonly present in paper mill effluents. Science of the Total Environment, 794, 148489.

Chen ZY, Liu C, Lu YH, Yang LL, Li M, He MD, Chen CH, Zhang L, Yu ZP and Zhou Z, 2016. Cadmium exposure enhances bisphenol A-induced genotoxicity through 8-oxoguanine-DNA glycosylase-1 OGG1 inhibition in NIH3T3 fibroblast cells. Cellular Physiology and Biochemistry, 39(3), 961–974.

De Flora S, Micale RT, La Maestra S, Izzotti A, D'Agostini F, Camoirano A, Davoli SA, Troglio MG, Rizzi F, Davalli P and Bettuzzi S, 2011. Upregulation of clusterin in prostate and DNA damage in spermatozoa from bisphenol A-treated rats and formation of DNA adducts in cultured human prostatic cells. Toxicological Sciences, 122(1), 45–51.

Di Pietro P, D'Auria R, Viggiano A, Ciaglia E, Meccariello R, Russo RD, Puca AA, Vecchione C, Nori SL and Santoro A, 2020. Bisphenol A induces DNA damage in cells exerting immune surveillance functions at peripheral and central level. Chemosphere, 254, 126819.

Dobrzyńska MM and Radzikowska J, 2013. Genotoxicity and reproductive toxicity of bisphenol A and Xray/ bisphenol A combination in male mice. Drug and Chemical Toxicology, 36(1), 19–26.

Durovcova I, Spackova J, Puskar M, Galova E and Sevcovicova A, 2018. Bisphenol A as an environmental pollutant with dual genotoxic and DNA-protective effects. Neuro Endocrinology Letters, 39(4), 294–298

EFSA CEF Panel, 2015. (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal 2015;13(1):3978.

Elhamalawy OH, Eissa FI, El Makawy AI and El-Bamby MM, 2018. Bisphenol-A hepatotoxicity and the protective role of sesame oil in male mice. Jordan Journal of Biological Sciences, 11(4), 461–467

Fawzy EI, El Makawy AI, El-Bamby MM and Elhamalawy HO, 2018. Improved effect of pumpkin seed oil against the bisphenol-A adverse effects in male mice. Toxicology Reports, 5, 857–863.

Fic A, Žegura B, Sollner Dolenc M, Filipič M and Peterlin Mašič L, 2013. Mutagenicity and DNA damage of bisphenol A and its structural analogues in HepG2 cells. Arhiv za Higijenu Rada i Toksikologiju, 64(2), 189–200.

Gajowik A, Radzikowska J and Dobrzyńska MM, 2013. Genotoxic effects of bisphenol A on somatic cells of female mice, alone and in combination with X-rays. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 757(2), 120–124.

George VC and Rupasinghe HPV, 2018. DNA damaging and apoptotic potentials of bisphenol A and bisphenol S in human bronchial epithelial cells. Environmental Toxicology and Pharmacology, 60, 52–57.

Gonçalves GD, Semprebon SC, Biazi BI, Mantovani MS and Fernandes GSA, 2018. Bisphenol A reduces testosterone production in TM3 Leydig cells independently of its effects on cell death and mitochondrial membrane potential. Reproductive Toxicology, 76, 26–34.

Hu X, Biswas A, Sharma A, Sarkodie H, Tran I, Pal I and De S, 2021. Mutational signatures associated with exposure to carcinogenic microplastic compounds bisphenol A and styrene oxide. NAR Cancer, 3(1), zcab004. doi:10.1093/narcan/zcab004 [RefID 295-G]

Huang FM, Chang YC, Lee SS, Ho YC, Yang ML, Lin HW and Kuan YH, 2018. Bisphenol A exhibits cytotoxic or genotoxic potential via oxidative stress-associated mitochondrial apoptotic pathway in murine macrophages. Food and Chemical Toxicology, 215–224.

Iso T, Watanabe T, Iwamoto T, Shimamoto A and Furuichi Y, 2006. DNA damage caused by bisphenol A and oestradiol through estrogenic activity. Biological and Pharmaceutical Bulletin, 29(2), 206–210.

Johnson GE and Parry EM, 2008. Mechanistic investigations of low dose exposures to the genotoxic compounds bisphenol-A and rotenone. Mutation Research, 651(1–2), 56–63.

Kazmi STB, Majid M, Maryam S, Rahat A, Ahmed M, Khan MR and Haq IU, 2018. BPA induced hepatotoxicity in Sprague Dawley rats. Biomedicine and Pharmacotherapy, 102, 728–738.

Kose O, Rachidi W, Beal D, Erkekoglu P, Fayyad-Kazan H and Kocer Gumusel B, 2020. The effects of different bisphenol derivatives on oxidative stress, DNA damage and DNA repair in RWPE-1 cells: A comparative study. Journal of Applied Toxicology, 40(5), 643–654.

Lei BL, Xu J, Peng W, Wen Y, Zeng XY, Yu ZQ, Wang YP and Chen T, 2017. In vitro profiling of toxicity and endocrine disrupting effects of bisphenol analogues by employing MCF-7 cells and two-hybrid yeast bioassay. Environmental Toxicology, 32(1), 278–289.

Li XH, Yin PH and Zhao L, 2017. Effects of individual and combined toxicity of bisphenol A, dibutyl phthalate and cadmium on oxidative stress and genotoxicity in HepG 2 cells. Food and Chemical Toxicology, 105, 73–81.

Majid M, Ijaz F, Baig MW, Nasir B, Khan MR and Haq IU, 2019. Scientific validation of ethnomedicinal

use of Ipomoea batatas L. Lam. as aphrodisiac and gonadoprotective agent against bisphenol A induced testicular toxicity in male Sprague Dawley rats. BioMed Research International, 2019, 8939854.

Masuda S, Terashima Y, Sano A, Kuruto R, Sugiyama Y, Shimoi K, Tanji K, Yoshioka H, Terao Y and Kinae N, 2005. Changes in the mutagenic and estrogenic activities of bisphenol A upon treatment with nitrite. Mutation Research, 585(1–2), 137–146.

Mohammed ET, Hashem KS, Ahmed AE, Aly MT, Aleya L and Abdel-Daim MM, 2020. Ginger extract ameliorates bisphenol A (BPA)-induced disruption in thyroid hormones

synthesis and metabolism: Involvement of Nrf-2/HO-1 pathway. Science of the Total Environment, 703, 134664.

Mokra K, Kuźmińska-Surowaniec A, Woźniak K and Michałowicz J, 2017. Evaluation of DNA-damaging potential of bisphenol A and its selected analogs in human peripheral blood mononuclear cells (in vitro study). Food and Chemical Toxicology, 100, 62–69.

Mokra K, Woźniak K, Bukowska B, Sicińska P and Michałowicz J, 2018. Low-concentration exposure to BPA, BPF and BPAF induces oxidative DNA bases lesions in human peripheral blood mononuclear cells. Chemosphere, 201, 119–126.

Naik P and Vijayalaxmi KK, 2009. Cytogenetic evaluation for genotoxicity of bisphenol-A in bone marrow cells of Swiss albino mice. Mutation Research, 676(1–2), 106–112.

Özgür M, Gül Yılmaz ŞG, Uçar A and Yılmaz S, 2021. Cytotoxic effects of bisphenol A as an endocrine disruptor on human lymphocytes. Iranian Journal of Toxicology, 15(2), 115–120.

Pacchierotti F, Ranaldi R, Eichenlaub-Ritter U, Attia S and Adler ID, 2008. Evaluation of aneugenic effects of bisphenol A in somatic and germ cells of the mouse. Mutation Research, 651(1–2), 64–70.

Panpatil VV, Kumari D, Chatterjee A, Kumar S, Bhaskar V, Polasa K and Ghosh S, 2020. Protective effect of turmeric against bisphenol-A induced genotoxicity in rats. Journal of Nutritional Science and Vitaminology, 66(Supplement), S336–S342.

Porreca I, Ulloa Severino L, D'Angelo F, Cuomo D, Ceccarelli M, Altucci L, Amendola E, Nebbioso A, Mallardo M, De Felice M and Ambrosino C, 2016. "Stockpile" of slight transcriptomic changes determines the indirect genotoxicity of low-dose BPA in thyroid cells. PLoS ONE, 11(3), e0151618

Ramos C, Ladeira C, Zeferino S, Dias A, Faria I, Cristovam E, Gomes M and Ribeiro E, 2019. Cytotoxic and genotoxic effects of environmental relevant concentrations of bisphenol A and interactions withdoxorubicin. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 838, 28–36.

Ribeiro-Varandas E, Viegas W, Sofia Pereira HS and Delgado M, 2013. Bisphenol A at concentrations found in human serum induces aneugenic effects in endothelial cells. Mutation Research, 751(1), 27–33.

Sahu C, Charaya A, Singla S, Dwivedi DK and Jena G, 2020. Zinc deficient diet increases the toxicity of bisphenol A in rat testis. Journal of Biochemical and Molecular Toxicology, 34(10), e22549.

Santovito A, Cannarsa E, Schleicherova D and Cervella P, 2018. Clastogenic effects of bisphenol A on human cultured lymphocytes. Human and Experimental Toxicology, 37(1), 69–77.

Sharma AK, Boberg J and Dybdahl M, 2018. DNA damage in mouse organs and in human sperm cells by bisphenol A. Toxicological and Environmental Chemistry, 100(4), 465–478.

Sonavane M, Sykora P, Andrews JF, Sobol RW and Gassman NR, 2018. Camptothecin efficacy to poison top1 is altered by bisphenol A in mouse embryonic fibroblasts. Chemical Research in Toxicology, 31(6), 510–519.

This is a paper for discussion.

This does not represent the views of the Committee and should not be cited.

Srivastava S and Gupta P, 2016. Genotoxic and infertility effects of bisphenol A on Wistar albino rats. International Journal of Pharmaceutical Sciences Review and Research, 41(1), 126–131

Šutiaková I, Kovalkovičová N and Šutiak V, 2014. Micronucleus assay in bovine lymphocytes after exposure to bisphenol A in vitro. In Vitro Cellular and Developmental Biology. Animal, 50(6), 502– 506.

Tayama S, Nakagawa Y and Tayama K, 2008. Genotoxic effects of environmental estrogenlike compounds in CHO-K1 cells. Mutation Research, 649(1–2), 114–125.

Tiwari D and Vanage G, 2013. Mutagenic effect of bisphenol A on adult rat male germ cells and their fertility. Reproductive Toxicology, 40, 60–68.

Tiwari D, Kamble J, Chilgunde S, Patil P, Maru G, Kawle D, Bhartiya U, Joseph L and Vanage G, 2012. Clastogenic and mutagenic effects of bisphenol A: An endocrine disruptor. Mutation Research, 743(1–2), 83–90.

Ullah A, Pirzada M, Jahan S, Ullah H and Khan MJ, 2019. Bisphenol A analogues bisphenol B, bisphenol F, and bisphenol S induce oxidative stress, disrupt daily sperm production, and damage DNA in rat spermatozoa: A comparative in vitro and in vivo study. Toxicology and Industrial Health, 35(4), 294–303.

Ulutaş OK, Yıldız N, Durmaz E, Ahbab MA, Barlas N and Çok İ, 2011. An in vivo assessment of the genotoxic potential of bisphenol A and 4-tert-octylphenol in rats. Archives of Toxicology, 85(8), 995–1001.

Xin F, Jiang LP, Liu XF, Geng CY, Wang WB, Zhong LF, Yang G and Chen M, 2014. Bisphenol A induces oxidative stress-associated DNA damage in INS-1 cells. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 769, 29–33.

Xin LL, Lin Y, Wang AQ, Zhu W, Liang Y, Su XJ, Hong CJ, Wan JM, Wang YR and Tian HL, 2015. Cytogenetic evaluation for the genotoxicity of bisphenol-A in Chinese hamster ovary cells. Environmental Toxicology and Pharmacology, 40(2), 524–529.

Yu H, Chen Z, Hu K, Yang Z, Song M, Li Z and Liu Y, 2020. Potent clastogenicity of bisphenol compounds in mammalian cells – human CYP1A1 being a major activating enzyme. Environmental Science and Technology, 54(23), 15267–15276.

Yuan J, Kong Y, Ommati MM, Tang Z, Li H, Li L, Zhao C, Shi Z and Wang J, 2019. Bisphenol A-induced apoptosis, oxidative stress and DNA damage in cultured rhesus monkey embryo renal epithelial Marc- 145 cells. Chemosphere, 234, 682–689.

Zahra Z, Khan MR, Majid M, Maryam S and Sajid M, 2020. Gonadoprotective ability of Vincetoxicum arnottianum extract against bisphenol A-induced testicular toxicity and hormonal imbalance in male Sprague Dawley rats. Andrologia, 52(6), e13590.

Zemheri F and Uguz C, 2016. Determining mutagenic effect of nonylphenol and bisphenol A by using Ames/Salmonella/microsome test. Journal of Applied Biological Sciences, 10(3), 9–12

Zhang S, Bao J, Gong X, Shi W and Zhong X, 2019. Hazards of bisphenol A—blocks RNA splicing leading to abnormal testicular development in offspring male mice. Chemosphere, 230, 432–439.

Zhang H, Wang Z, Meng L, Kuang H, Liu J, Lv X, Pang Q and Fan R, 2020. Maternal exposure to environmental bisphenol A impairs the neurons in hippocampus across generations. Toxicology, 432, 152393.

Zhou YX, Wang ZY, Xia MH, Zhuang SY, Gong XB, Pan JW, Li CH, Fan RF, Pang QH and Lu SY, 2017. Neurotoxicity of low bisphenol A (BPA) exposure for young male mice: implications for children exposed to environmental levels of BPA. Environmental Pollution, 229, 40–48.

Abbreviations

7-HF	7-hydroxyflavone
8-OHdG	8-hydroxy-2'-deoxyguanosine
ABT	1-Aminobenzotriazole
ALP	Alkaline phosphatase
ALT	Alanine aminotransferase
AOPP	Advanced oxidation protein products
ATM	Ataxia-telangiectasia mutated
AU	Arbitrary units
BPA	Bisphenol A
BrdU	5-bromo-2-deoxyuridine
Bw	Body weight
СА	Chromosomal aberrations
CAT	Catalase
ChE	Cholinesterase
CHO cells	Chinese hamster ovary cells
CI	Cellular index
CYPR450	Cytochrome P450 reductase
DCF	Dichlorofluorescein
DMSO	Dimethylsulphoxide
EM	Electron microscopy
ER	Oestrogen receptor
FACS	Fluorescence activated cell sorting
FISH	Fluorescence in situ hybridisation
Fpg	Formamide pyrimidine glycosylase
GGT	Gamma glutamyl transferase
GPx	Glutathione peroxidase
GR	Glutathione reductase
GSH	Reduced glutathione
Hb	Haemoglobin
HDL	High-density lipoprotein cholesterol
HPLC	High performance liquid chromatography
HUVEC	Human umbilical vascular endothelial cells
i.p.	Intraperitoneal
KET	Ketoconazole
LDH	Lactate dehydrogenase
LDL	Low density lipoprotein cholesterol
MDA	Malondialdehyde
MMC	Mitomycin
MMS	Methyl methane sulfonate
MPO	Myeloperoxidase
NAC	N-Acetyl-L-cysteine
NO	Nitric oxide
OECD	Organisation for Economic Co-operation
	and Developement
ОТМ	Olive tail moment
PBMC	Human peripheral blood mononuclear cells
PCE	Polychromatic erythrocytes
PCP	Pentachlorophenol
PHA	Phytohemagglutinin
POD	Peroxidase

This is a paper for discussion.

This does not represent the views of the Committee and should not be cited.

RBC	Red blood cells
ROS	Reactive oxygen species
RT-PCR	Real time polymerase chain reaction
SCE	Sister chromatid exchange
SD	Sprague Dawley
SOD	Superoxide dismutase
TBARS	Thiobarbituric acid reactive substances
ТС	Total cholesterol
TG	Test guideline
ТР	Total protein
TUNEL	Terminal deoxynucleotidyl transferase
	dUTP nick end labelling
WBC	White blood cells
WGS	Whole genome sequencing

Technical Information

Aneugen: is a substance that causes a daughter cell to have an abnormal number of chromosomes or aneuploidy.

Clastogen: is a mutagenic agent that disturbs normal DNA related processes or directly causes DNA strand breakages, thus causing the deletion, insertion, or rearrangement of entire chromosome sections. These processes are a form of mutagenesis which if left unrepaired, or improperly repaired, can lead to cancer.