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TOX/2019/70 
 
COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD,  
CONSUMER PRODUCTS AND THE ENVIRONMENT 
 
Environmental, health and safety alternative testing strategies:  
Development of methods for potency estimation 
 
Background 
 
1. In October 2019 we introduced the topic of developing methods for potency 
estimation in an introductory paper (TOX/2019/61) which discussed the 
development/technologies of the current methodologies for prediction models. 
 
2. The paper also introduced the planned combined workshop with 
physiologically based pharmacokinetic (PBPK) modelling1 on 11th March 2020 in 
which experts/organisations will be invited to speak, review in-house case studies 
and have roundtable discussions on the topic.  
 
Introduction 
 
3. Advances in molecular biology, biotechnology, and other fields are paving the 
way for major improvements in how scientists evaluate the health risks posed by 
potentially toxic chemicals. These advances would make toxicity testing quicker, less 
expensive, and more directly relevant to human exposures. They could also reduce 
the need for animal testing by substituting these for more laboratory tests based on 
human cells. 
 
4. One of the major state-of-the-art methods is potency estimation via a 
collective multidisciplinary approach. Potency is a measure of the chemical activity 
expressed in terms of the amount required to produce an effect of given intensity. 
Potency estimates can be used to directly compare chemical profiles and prioritize 
compounds for confirmation studies or employed as input data for prediction 
modelling and association mapping. 

 
5. Many methods have been developed to predict the toxicity of chemicals. In 
the following paper we discuss the paradigm shift in toxicity testing, the development 
of the current methodologies for prediction models. 

 
6. In 2009, The Committee on Toxicity of Chemicals in Food, Consumer 
Products and the Environment (COT) held a workshop on 21st century toxicology2. 
The workshop addressed the US National Academy report called Toxicity Testing in 
the 21st Century: A Vision and a Strategy3. The report called for accelerated 

 
1 Physiologically based pharmacokinetic (PBPK): a mathematical modelling technique for predicting the absorption, distribution, 
metabolism and excretion (ADME) of synthetic or natural chemical substances in humans and other animal species. PBPK 
modelling is used in pharmaceutical research and drug development, and in health risk assessment for cosmetics or general 
chemicals.  
2 https://cot.food.gov.uk/cotmtgs/cotmtsem/cotwrkshop11feb09  
3 https://www.nap.edu/catalog/11970/toxicity-testing-in-the-21st-century-a-vision-and-a  

https://cot.food.gov.uk/sites/default/files/tox201961introductiondevelopment.pdf
https://cot.food.gov.uk/cotmtgs/cotmtsem/cotwrkshop11feb09
https://www.nap.edu/catalog/11970/toxicity-testing-in-the-21st-century-a-vision-and-a
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development and adoption of human cell in vitro and in silico methods for the 
prediction of hazards, the determination of mechanistic information, and the 
integration of data. 
 
7. The National Academy report set out a 10-20 year strategy in which the goal 
would be to develop and validate toxicological protocols that move away from testing 
in animals through use of in vitro and computer-based (in silico) assessments of 
toxicity and mechanisms. The aim is to enable predictions of human in vivo 
responses to chemicals in a high throughput and cost-effective manner, with less 
use of experimental animals. Among other things, this might facilitate toxicological 
assessment of combined exposure to multiple chemicals, which has been an area of 
increasing interest in recent years. 

 
8. As we are half way through the vision and strategy (10 years) it would be apt 
to review the current methodologies available.  
 
Food Standards Agency (FSA) requirement for potency estimation 
 
9. The FSA have previously put forward a business case for potency estimation 
to aid in risk assessment. When responding to food incidents4 we regularly have 
chemicals, particularly novel foods and sports/dietary supplements such as selective 
androgen receptor modulators where certain ingredients have very little or no 
toxicological information. For certain novel ingredients, a lot of which tend to be from 
plants and have a history of medical use in certain parts of the world, again there is 
very little toxicological information and sometimes it is not possible to give any risk 
advice to our FSA Policy colleagues. 
 
10. The possible toxicological values for the chemical can be estimated by in 
silico models from chemicals with a similar structure or in the same group. A method 
or approach which could provide a means of estimating the potency of these 
chemicals could improve the accuracy of the information and confidence in the risk 
assessment. An in vitro/in silico approach that can provide information on the relative 
potencies would provide essential information for toxicity prediction, where 
information is only available on 1 or 2 compounds from the group. This will allow the 
identification of the level of risk from a given chemical and give greater confidence in 
risk assessments that individual compounds can be assessed, not just assuming that 
all compounds have the same toxicological potency.  

 
11. This will be fundamental in risk assessment scenarios where limited to no 
information is available on the toxicity of a chemical.  
 
Chemical Landscape 
 
12. Thousands of chemicals are in common use, but only a portion of them have 
undergone significant toxicologic evaluation, and as more emerge it is important to 
prioritize the remainder for targeted testing (Judson et al., 2009). This is specifically 
important for chemicals (found in food and in the environment) where little or no 
toxicological information is available. 

 
4 https://www.food.gov.uk/business-guidance/food-incidents-product-withdrawals-and-recalls  

https://www.food.gov.uk/business-guidance/food-incidents-product-withdrawals-and-recalls
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13. To address this issue, organizations are developing chemical screening and 
prioritization programmes. As part of these efforts, it is important to catalogue, from 
widely dispersed sources, the toxicological information that is available (Richard et 
al., 2016). 

 
14. The main objective of these programmes is to define a list of chemicals that 
are candidates for screening and prioritization process, and to catalogue the 
available toxicological information. 

 
15. The combined advances in discovery and clinical sciences, data science and 
technology5 has resulted in toxicity testing reaching a pivotal transformation point. 
The advances in the technology and science sector are taking advantage of the 4th 
industrial revolution (4IR)6.  
 
Toxicology Testing in the 21st Century (Tox21) 
 
16. The phrase ‘21st century toxicology’ (Tox 21) (Hartung, 2010) refers to ‘the 
transformation underway in the tools and approaches used to evaluate chemical 
substances for possible effects on human health’7. Tox21 focuses on toxicity 
pathways (Bhattacharya et al., 2011) mechanisms, modes of action, and adverse 
outcome pathways (AOP) (Tollefsen et al., 2014) in humans.  
 
17. Another related concept is the 3Rs (Hartung, 2010) which was proposed 50 
years ago in the publication of Russell and Burch (1959)8: 
 

• Replace: Methods which avoid or replace the use of animals 
• Reduce: Methods which minimise the number of animals used per experiment 
• Refine: Methods which minimise the number of animals used per experiment 

 
18. The principles of the 3Rs is providing a framework for performing more 
humane animal research.  
 
19. In 2004, The National Centre for the Replacement, Refinement and Reduction 
of Animals in Research (NC3Rs) was set up in the United Kingdom (UK). NC3Rs9 is 
the national organisation for the 3Rs. Their strategy is to advance the 3Rs by 
focusing on their scientific impacts and benefits. They have re-defined the standard 
3Rs definitions so that they are more reflective of contemporary scientific practice 
and developments. 

 
20. Several strategies have been proposed to implement Tox21. In 2004, the 
National Toxicology Program (NTP) published its report “A National Toxicology 
Program for the 21st century”, which aims ‘to support the evolution of toxicology from 
a predominantly observational science at the level of disease specific models to a 

 
5 http://www3.weforum.org/docs/WEF__Shaping_the_Future_of_Health_Council_Report.pdf  
6 The Fourth Industrial Revolution (4IR) is the fourth major industrial era since the initial Industrial Revolution of the 18th 
century. It is characterized by a fusion of technologies that is blurring the lines between the physical, digital and biological 
spheres, collectively referred to as cyber-physical systems 
7 National Research Council, 2007. Toxicity testing in the 21st century: a vision and a strategy. National Academies Press. 
8 https://www.nc3rs.org.uk/the-3rs  
9 https://www.nc3rs.org.uk/  

http://www3.weforum.org/docs/WEF__Shaping_the_Future_of_Health_Council_Report.pdf
https://www.nc3rs.org.uk/the-3rs
https://www.nc3rs.org.uk/
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predominantly predictive science focused upon a broad inclusion of target-specific, 
mechanism-based, biological observations’.10  
 
21. Tox 21 is a federal collaboration among the Environmental Protection Agency 
(EPA)11, the National Institutes of Health (NIH)12, including the National Center for 
Advancing Translational Sciences (NCATS)13 and the National Toxicology Program 
at the National Institute of Environmental Health Sciences (NIEHS)14, and the Food 
and Drug Administration (FDA)15. Tox21 researchers aim to develop better toxicity 
assessment methods to quickly and efficiently test whether certain chemical 
compounds have the potential to disrupt processes in the human body that may lead 
to negative health effects. One of the EPA’s contributions to Tox21 is the chemical 
screening results from the Toxicity Forecaster (ToxCast).  

 
22. Using a high-throughput screening system16 housed at NCATS, researchers 
are testing 10,000 environmental chemicals (called the “Tox21 10K library”17) for 
their potential to disrupt biological pathways that may result in toxicity. Screening 
results help the researchers prioritize chemicals for further in-depth investigation.  
 
Toxicity Forecasting 
 
23. The EPA needs rapid and efficient methods to prioritize, screen and evaluate 
thousands of chemicals. The EPA's Toxicity Forecaster (ToxCast18) generates data 
and predictive models on thousands of chemicals of interest to the EPA. ToxCast19 
uses high throughput screening methods and computational toxicology approaches 
to rank and prioritize chemicals. As a result, the EPA's Endocrine Disruption 
Screening Program (EDSP)20 is working to use ToxCast to identify priority 
chemicals. 
 
24. ToxCast has data for approximately 1,800 chemicals from a broad range of 
sources including industrial and consumer products, food additives, and potentially 
green chemicals21 that could be safer alternatives to existing chemicals. ToxCast 
screens chemicals in more than 700 high-throughput assay endpoints that cover a 
range of high-level cell responses. Part of the EPA's contribution to the “Toxicology 
in the 21st century” federal agency collaboration is some of the ToxCast data. 

 

 
10 https://ntp.niehs.nih.gov/ntp/about_ntp/ntpvision/ntproadmap_508.pdf  
11 https://www.epa.gov/  
12 https://www.nih.gov/  
13 https://ncats.nih.gov/  
14 https://www.niehs.nih.gov/  
15 https://www.fda.gov/home  
16 High-throughput screening (HTS) is a method for scientific experimentation especially used in drug discovery and relevant to 
the fields of biology and chemistry. Using robotics, data processing/control software, liquid handling devices, and sensitive 
detectors, high-throughput screening allows a researcher to quickly conduct millions of chemical, genetic, or pharmacological 
tests. Through this process one can rapidly identify active compounds, antibodies, or genes that modulate a particular 
biomolecular pathway. The results of these experiments provide starting points for drug design and for understanding the 
noninteraction or role of a particular location. 
17 https://ntp.niehs.nih.gov/whatwestudy/tox21/toolbox/index.html  
18 https://www.epa.gov/chemical-research/toxicity-forecasting  
19 ToxCast:  program within the U.S. Environmental Protection Agency (EPA) employs high-throughput in vitro assays to 
efficiently screen large numbers of chemicals to support the development of improved toxicity prediction models, particularly to 
be applied to environmental chemicals for which limited or no in vivo animal toxicity data are available.  
20 https://www.epa.gov/endocrine-disruption/endocrine-disruptor-screening-program-edsp-overview  
21 Green chemicals/chemistry, also called sustainable chemistry, is an area of chemistry and chemical engineering focused on 
the designing of products and processes that minimize or eliminate the use and generation of hazardous substances. 

https://ntp.niehs.nih.gov/ntp/about_ntp/ntpvision/ntproadmap_508.pdf
https://www.epa.gov/
https://www.nih.gov/
https://ncats.nih.gov/
https://www.niehs.nih.gov/
https://www.fda.gov/home
https://ntp.niehs.nih.gov/whatwestudy/tox21/toolbox/index.html
https://www.epa.gov/chemical-research/toxicity-forecasting
https://www.epa.gov/endocrine-disruption/endocrine-disruptor-screening-program-edsp-overview
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25. Another one of the goals of the Tox21 collaboration is to establish in vitro 
signatures of in vivo human and rodent toxicity (i.e. in vitro to in vivo extrapolation22) 
which include cytotoxicity, cellular pathway assays and computer modelling. Some 
examples include adverse outcome pathways23 cardiotoxicity24, skin sensitisation25 
and organ on a chip (Maschmeyer et al., 2015).  

 
26. In 2007, the National Research Council (NRC) published a report “Toxicity 
Testing in the 21st Century: a Vision and a Strategy”26, which proposed using 
computational methods i.e. in silico methods to decrease the number of tested 
animals, make toxicity testing more relevant to humans by using human cells, and 
make toxicity testing cheaper and faster.27 This might also facilitate toxicological 
assessment of combined exposure to multiple chemicals, which has been an area of 
increasing interest in recent years. 
 
Integrated Approaches to Testing and Assessment 
 
27. Integrated approaches to testing and assessment (IATAs) provide a means by 
which all relevant and reliable existing information about a chemical can be used to 
answer a defined hazard characterization question. Information considered can 
include toxicity data, exposure routes, use cases, and production volumes. This 
information is used to characterize outcomes that can inform regulatory decision-
making. 
 
28. The drawbacks of traditional toxicity testing approaches using laboratory 
animals may be overcome by the use of human cell-based, biochemical, and/or 
computational methods to predict chemical toxicity. Due to the complexity of toxicity 
mechanisms, data from several methods usually need to be considered in 
combination to adequately predict toxic effects. IATAs provide a means by which 
these data can be considered in combination. When necessary, IATAs can guide 
generation of new data, preferably using non-animal approaches, to inform 
regulatory decision-making28. 
 
Legislation and Laws 
 
USA 
 
Frank R. Lautenberg Chemical Safety for the 21st Century Act 
 
29. The Frank R. Lautenberg Chemical Safety for the 21st Century Act29 is a law 
passed by the 114th United States Congress and signed into law by US President 
Barack Obama in 2016. Administered by the US EPA, which regulates the 
introduction of new or already existing chemicals, the Act amends and updates the 

 
22 https://ntp.niehs.nih.gov/whatwestudy/niceatm/test-method-evaluations/comptox/ct-ivive/ivive.html  
23 https://ntp.niehs.nih.gov/whatwestudy/niceatm/test-method-evaluations/comptox/ct-
aop/aop.html?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=niceatm-aop  
24 https://ntp.niehs.nih.gov/whatwestudy/niceatm/test-method-evaluations/cardio/index.html  
25 https://ntp.niehs.nih.gov/whatwestudy/niceatm/test-method-evaluations/immunotoxicity/nonanimal/index.html  
26 https://www.nap.edu/catalog/11970/toxicity-testing-in-the-21st-century-a-vision-and-a  
27 https://www.nap.edu/read/11970/chapter/1#iii  
28 https://ntp.niehs.nih.gov/whatwestudy/niceatm/integrated-testing-strategies/index.html  
29 https://www.congress.gov/bill/114th-congress/house-bill/2576  

https://ntp.niehs.nih.gov/whatwestudy/niceatm/test-method-evaluations/comptox/ct-ivive/ivive.html
https://ntp.niehs.nih.gov/whatwestudy/niceatm/test-method-evaluations/comptox/ct-aop/aop.html?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=niceatm-aop
https://ntp.niehs.nih.gov/whatwestudy/niceatm/test-method-evaluations/comptox/ct-aop/aop.html?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=niceatm-aop
https://ntp.niehs.nih.gov/whatwestudy/niceatm/test-method-evaluations/cardio/index.html
https://ntp.niehs.nih.gov/whatwestudy/niceatm/test-method-evaluations/immunotoxicity/nonanimal/index.html
https://www.nap.edu/catalog/11970/toxicity-testing-in-the-21st-century-a-vision-and-a
https://www.nap.edu/read/11970/chapter/1#iii
https://ntp.niehs.nih.gov/whatwestudy/niceatm/integrated-testing-strategies/index.html
https://www.congress.gov/bill/114th-congress/house-bill/2576
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Toxic Substances Control Act30 (TSCA) 31 that went into force in 1976, the nation’s 
primary chemicals management law. 
 
30. Among the implementation strategies they issued a Strategic Plan to promote 
the development and implementation of alternative test methods and strategies to 
reduce, refine or replace vertebrate animal testing32. 

 
31. The TSCA, as amended by the Frank R. Lautenberg Chemical Safety for the 
21st Century Act, directs the EPA to: 
 

• Reduce and replace, to the extent practicable and scientifically 
justified, the use of vertebrate animals in the testing of chemical 
substances or mixtures. 
 

• Promote the development and timely incorporation of alternative test 
methods or strategies that do not require new vertebrate animal 
testing. 

 
32. The TSCA also requires the EPA to develop a strategic plan on this topic and 
provide a progress report on the implementation of the plan to Congress every five 
years since the date of the enactment of the Lautenberg Chemical Safety Act, i.e. 
beginning in 2021. 
 
33. In 2018, the EPA published its Strategic Plan to Promote the Development 
and Implementation of Alternative Test Methods within the TSCA Program. The 
Strategic Plan incorporated input from two public meetings and written comments 
submitted on the draft strategic plan. 

 
34. The Strategic Plan has three core components: (1) identifying, developing and 
integrating New Approach Methodologies (NAMs) for TSCA decisions; (2) building 
confidence that the NAMs are scientifically reliable and relevant for TSCA decisions; 
and (3) implementing the reliable and relevant NAMs for TSCA decisions. 

 
35. On September 10th 2019, the U.S. EPA signed a directive that prioritizes 
efforts to reduce animal testing33.  It stated that the EPA’s plan would identify 
tangible steps to ensure that the Agency’s regulatory, compliance and enforcement 
activities, including chemical and pesticide approvals and agency research, remain 
fully protective of human health and the environment while pursing these reduction 
goals. Among them, “demonstration that NAMs are applicable for use in risk 
assessment and that new decision-making approaches are as protective of human 
health and the environment as existing approaches”. 

 
30 https://www.epa.gov/laws-regulations/summary-toxic-substances-control-act  
31 The Toxic Substances Control Act (TSCA) is a United States law, passed by the United States Congress in 1976 and 
administered by the United States Environmental Protection Agency (EPA), that regulates the introduction of new or already 
existing chemicals. 
32 https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/alternative-test-methods-and-strategies-reduce  
33 https://www.epa.gov/research/administrator-memo-prioritizing-efforts-reduce-animal-testing-september-10-2019  

https://www.epa.gov/laws-regulations/summary-toxic-substances-control-act
https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/alternative-test-methods-and-strategies-reduce
https://www.epa.gov/research/administrator-memo-prioritizing-efforts-reduce-animal-testing-september-10-2019
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European Union (EU) 
 
Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)  
 
36. REACH is an EU regulation dating from 18 December 200634. REACH 
addresses the production and use of chemical substances, and their potential 
impacts on both human health and the environment. It is the strictest law to date 
regulating chemical substances and will affect industries throughout the world. 
REACH entered into force on 1 June 2007, with a phased implementation over the 
next decade. The regulation also established the European Chemicals Agency 
(ECHA)35, which manages the technical, scientific and administrative aspects of 
REACH. 

Animal testing under REACH  
 
37. REACH aims to ensure a high level of protection of human health and the 
environment from effects of hazardous chemicals. It strives for a balance: to increase 
our understanding of the possible hazards of chemicals while at the same time 
avoiding unnecessary testing on animals. Learning more about chemicals 
sometimes requires testing them on animals as a last resort. Registrants may only 
carry out new tests using animals when they have exhausted all other relevant and 
available data sources36. 
 
38. On January 2017, REACH updated its information requirements in which they 
made non-animal testing the default method for skin corrosion/irritation, serious eye 
damage/eye irritation and skin sensitisation. In addition, the guidance introduces a 
new possibility, to use a weight-of-evidence approach for acute toxicity. 

 
39. The guidance update expands on the information on alternative methods37 
and clarifies when and how to use them for REACH purposes.  

 
40. The Cosmetics Regulation38 prohibits the placing on the market of cosmetic 
products, or products containing ingredients, which have been tested on animals to 
meet the requirements of that regulation using a method other than a validated 
alternative method. 
 
Potency Estimation 
 
41. Potency measures can be applied for rapid identification of pharmacoactive 
hits or toxicological assessment and used as input data for prediction modelling or 
association mapping39. 
 

 
34 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410  
35 https://echa.europa.eu/home  
36 https://echa.europa.eu/animal-testing-under-reach  
37 https://echa.europa.eu/support/testing-methods-and-alternatives  
38 https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009R1223  
39 Association mapping, also known as "linkage disequilibrium mapping", is a method of mapping quantitative trait loci that 
takes advantage of historic linkage disequilibrium to link phenotypes to genotypes, uncovering genetic associations.  

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410
https://echa.europa.eu/home
https://echa.europa.eu/animal-testing-under-reach
https://echa.europa.eu/support/testing-methods-and-alternatives
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009R1223
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42. Toxicity is a measure of any undesirable or adverse effect of chemicals. 
Specific types of these adverse effects are called toxicity endpoints, such as 
carcinogenicity or genotoxicity, and can be quantitative (e.g. LD50: lethal dose to 50% 
of tested individuals) or qualitative, such as binary (e.g. toxic or non-toxic) or ordinary 
(e.g. low, moderate, or high toxicity). 
 
43. Toxicity tests aim to identify harmful effects caused by substances on 
humans, animals, plants, or the environment through acute-exposure (single dose) 
or multiple-exposure (repeat dose) (Raies and Bajic 2016).  

 
44. The toxicity of a substance usually depends on the following factors40: 
 

• Form and innate chemical activity 
• Dosage, especially dose-time relationship 
• Exposure route 
• Species 
• Life stage, such as infant, young adult, or elderly adult 
• Gender 
• Ability to be absorbed 
• Metabolism 
• Distribution within the body 
• Excretion 
• Health of the individual, including organ function and pregnancy, which 

involves physiological changes that could influence toxicity 
• Nutritional status 
• Presence of other chemicals 
• Circadian rhythms (the time of day a drug or other substance is administered)  

 
45. Animal models have been used for a long time for toxicity testing.  However, 
in vitro toxicity tests became increasingly possible due to the advances in high 
throughput screening. In silico toxicology (computational toxicology) is one type of 
toxicity assessment that uses computational resources. In silico toxicology aims to 
complement existing toxicity tests to predict toxicity, prioritize chemicals, guide 
toxicity tests, and minimize late-stage failures in drugs design. There are various 
methods for generating models to predict toxicity endpoints. 

 
46. Using the results of animal tests to predict human health effects involves a 
number of assumptions and extrapolations that remain a topic of debate. 

 
47. This paper will outline some of the current methodologies available. 
 
In silico 
 
48. In silico is an expression meaning "performed on computer or via computer 
simulation" in reference to biological experiments. 
 

 
40 https://toxtutor.nlm.nih.gov/03-002.html  

https://toxtutor.nlm.nih.gov/03-002.html
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49. In silico toxicity modelling is carried out using computational resources (i.e. 
methods, algorithms, software, data) to organise, analyse, model, simulate, visualize 
or predict toxicity of chemicals (Deeb et al., 2012; Valerio, 2009).  Computational 
methods aim to complement in vitro/in vivo toxicity testing to potentially minimize the 
need for animal testing, reduce the cost and time of toxicity tests and improve toxicity 
prediction. 

 
50. However, in silico techniques are used in a wide variety of scenarios within 
and between industries including, but not limited to, screening, prioritisation, 
classification and labelling, risk assessment, and product development. 

 
51. As an example, within the pharmaceutical industry, knowledge-based systems 
and Quantitative Structure Activity Relationships (QSAR)s are used to predict 
mutagenicity of impurities as part of the ICH Harmonised Guideline M7 scheme41 
(Amberg et al., 2018). 

 
52. The cosmetics industry, foresee the use of in silico techniques as part of an 
ab initio42 approach to assess the overall impact of a chemical. The assessment 
typically includes information on mechanisms of action, exposure, and uses case 
scenarios, as well as the more traditional and accepted use for toxicity prediction 
(Berggren et al., 2015). 
 
Overview of in silico toxicology 
 
53. In silico toxicology encompasses a wide variety of computational tools (Figure 
1): databases for storing data about chemicals, their toxicity, and chemical 
properties; software for generating molecular descriptors; simulation tools for 
systems biology and molecular dynamics; modelling methods for toxicity prediction; 
modelling tools such as statistical packages and software for generating prediction 
models; expert systems that include pre-built models in web servers or standalone 
applications for predicting toxicity; and visualization tools. In general, modelling 
methods include the following steps while developing prediction models (Figure 1):  
gathering biological data that contain associations between chemicals and toxicity 
endpoints, calculating molecular descriptors of the chemicals, generating a 
prediction model, evaluating the accuracy of the model, and interpreting the model. 
 

 
41http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M7/M7_R1_Addendum_Step_4_31
Mar2017.pdf  
42 Ab initio: a Latin term meaning "from the beginning". 

http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M7/M7_R1_Addendum_Step_4_31Mar2017.pdf
http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M7/M7_R1_Addendum_Step_4_31Mar2017.pdf
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Key 
QSARs: Quantitative Structure Activity Relationships 
PK: Pharmacokinetic 
PD: Pharmacodynamic 

Figure 1. Overview of in silico toxicology. Tools, steps for generating model and 
methods for generating model (Figure adopted from Raies and Bajic 2016). 

Models 
 
Structural alerts and rule-based models 
 
54. Structural alerts (SAs) also known as toxicophores43 and “expert rules”, are 
molecular structures that indicate or associate to toxicity (Roncaglioni et al., 2013). 
SAs can consist of only one atom or several connected atoms (Lepailleur et al., 
2013). Alerts have been used since a series of studies published on chemical 
carcinogenicity and mutagenicity (Ashby et al., 1991; Ashby et al., 1988, Ashby et 
al., 1985).  
 
55. A combination of SAs may contribute to toxicity more than a single SA. SAs 
are often used in rules defined in the form ‘if A is B then T,’ where A is an SA, B is 
the value of the SA, and T is the toxicity prediction with assigned certainty level, as 
illustrated in the following example: 
 
IF (chemical_substructure) IS (present) THEN (skin_sensitizer IS certain) 

 
43 A toxicophore is a chemical structure or a portion of a structure (e.g., a functional group) that is related to the toxic properties 
of a chemical. Toxicophores can act directly (e.g., dioxins) or can require metabolic activation (e.g., tobacco-specific 
nitrosamines). 
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56. There are two main types of rule-based models: human-based rules (HBRs) 
and induction-based rules (IBRs) (Venkatapathy et al., 2013).  
 
57. HBRs are derived from human knowledge of subject matter expertise or from 
literature, but IBRs are derived computationally (Valerio et al., 2009). HBRs are 
limited to human knowledge that could be incomplete or biased but tend to be more 
accurate. However, updating HBR can be challenging to review and require 
extensive literature analysis.      

 
58. IBRs can be generated efficiently from large datasets. IBRs may propose 
hypotheses about associations between chemical structural properties (or their 
combinations) and toxicity endpoints, which may not be identified through human 
insights. IBRs are implemented using probabilities to determine if SAs correspond to 
the toxic or non-toxic class. It is possible to have hybrid-based rules systems that 
contain IBRs and HBRs, with new rules being generated computationally. These are 
used in drug design and help to determine how drugs should be altered to reduce 
their toxicity.  

 
59. Using structure to predict toxicity allows for identifying the structure of 
potential metabolites too (Toropov et al., 2014). However, SAs use only binary 
features (e.g. chemical structures are either present or absent) and only qualitative 
endpoints (e.g. carcinogenic or non-carcinogenic) (Venkatapathy et al., 2013).  

 
60. SAs do not provide insights into the biological pathways of toxicity and may 
not be sufficient for predicting toxicity. Depending on the concurrent absence or 
presence of other chemical properties, toxicity may decrease or increase (Milan et 
al., 2011).  

 
61. The list of SAs and rules may be incomplete, which may cause a large 
number of false negatives predictions (Roncaglioni et al., 2013).  

 
62. It has been discussed in the scientific community that most alerts represent 
functional groups or substructures that can be found in many compounds, both toxic 
and non-toxic, leading to predictions with overly high sensitivity. 

 
63. Some SAs and rule-based models examples include: 
 

• Hepatotoxicity: a scheme for generating chemical categories for read-
across, structural alerts and insights into mechanism (s) of action 
(Hewitt et al., 2013). 
 

• Interaction of cytotoxic agents: a rule-based system for computer-
assisted cell survival analysis (Gentile et al., 1992). 
 

• Evaluation of SARs for the prediction of skin irritation/corrosion 
potential–structural inclusion rules in the BfR decision support system 
(Gallegos et al., 2007). 
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• Development and prevalidation of a list of structure-activity relationship 
rules to be used in expert systems for prediction of the skin-sensitising 
properties of chemicals (Gerner et al., 2004). 

 
64. Several systems provide pre-built rule-based/knowledge base and SAs lists, 
for example: 

 
Toxtree44 : open source application, which is able to estimate toxic hazard by 
applying a decision tree approach. 

Derek Nexus45 : knowledge-based toxicology predictions for various 
endpoints e.g. carcinogenicity, mutagenicity or skin sensitization.  

HazardExpert46 : initial estimation of toxic symptoms of organic compounds in 
humans and in animals through rule-based system. HazardExpert can also 
consider the bioavailability of the compounds. 

Meteor47 : knowledge base prediction for metabolic fate of chemical. 

65. Other tools are available that can extract SAs from datasets that contains 
toxic or non-toxic compounds such as: 
 

CASE: Computer-assisted structure elucidation is the technique of using 
software to generate all possible molecular structures that are consistent with 
a particular set of spectroscopic data (Jaspars et al., 1999). 

PASS: prediction of activity spectra for substances is a web-based application 
that predicts the biological activity spectrum of a compound based on its 
structure (Parasuraman et al., 2011). 

Cat-SAR: categorical-structure activity relationship expert system that 
analyses categorical data and two-dimensional fragments has been 
successfully used in the analysis of chemical compounds that cause toxicity 
(Kumar et al., 2014) 

Chemical Category 
 
66. A chemical category is a group of chemicals whose physicochemical and 
human health and/or ecotoxicological properties and/or environmental fate properties 
are likely to be similar or follow a regular pattern, usually as a result of structural 
similarity. 
  
67. The OECD Guidance on Grouping of Chemicals48 lists several methods for 
grouping, such as chemical identity and composition, physicochemical and 
Adsorption Distribution Metabolism and Excretion (ADME) properties, mechanism of 
action (MoA), and chemical/biological interactions.49  

 
44 http://toxtree.sourceforge.net/  
45 https://www.lhasalimited.org/products/derek-nexus.htm  
46 https://www.compudrug.com/hazardexpertpro  
47 https://www.lhasalimited.org/products/meteor-nexus.htm  
48 https://www.oecd.org/chemicalsafety/risk-assessment/groupingofchemicalschemicalcategoriesandread-across.htm  
49 https://read.oecd-ilibrary.org/environment/guidance-on-grouping-of-chemicals-second-edition_9789264274679-en#page1  

http://toxtree.sourceforge.net/
https://www.lhasalimited.org/products/derek-nexus.htm
https://www.compudrug.com/hazardexpertpro
https://www.lhasalimited.org/products/meteor-nexus.htm
https://www.oecd.org/chemicalsafety/risk-assessment/groupingofchemicalschemicalcategoriesandread-across.htm
https://read.oecd-ilibrary.org/environment/guidance-on-grouping-of-chemicals-second-edition_9789264274679-en#page1
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68. The similarities may be based on the following: 
 

• A common functional group (e.g. aldehyde, epoxide, ester, specific metal ion). 
 

• Common constituents or chemical classes, similar carbon range numbers. 
 

• An incremental and constant change across the category (e.g. a chain-length 
category). 
 

• The likelihood of common precursors and/or breakdown products, via physical 
or biological processes, which result in structurally similar chemicals (e.g. the 
metabolic pathway approach of examining related chemicals such as 
acid/ester/salt). 
 

Read-Across 
 
69. Read-across is a method of predicting unknown toxicity of a chemical using 
similar chemicals (called chemical analogues) with known toxicity from the same 
chemical category (Dimitrov and Mekenyan 2010). 
 
70. In the OECD guideline on Grouping of Chemicals: Chemical Categories and 
Read-Across it states that: In the read-across approach, endpoint information for one 
chemical (the source chemical) is used to predict the same endpoint for another 
chemical (the target chemical), which is considered to be "similar" in some way 
(usually on the basis of structural similarity or on the basis of the same mode or 
mechanisms of action). In principle, read-across can be used to assess 
physicochemical properties, toxicity, environmental fate and ecotoxicity. For any of 
these endpoints, it may be performed in a qualitative or quantitative manner. 

 
71. Qualitative read-across is similar to the use of a SAR, and the process 
involves: 

 
• the identification of a chemical substructure or mode or mechanism of action 

that is common to two substances (which are considered to be analogues). 
 

• the assumption that the presence (or absence) of a property/activity for a 
substance can be inferred from the presence (or absence) of the same 
property/activity for the analogous substance. 

 
The main application of qualitative read-across is in hazard identification. 
 
72. Quantitative read-across involves: 
 

• the identification of a chemical substructure or mode or mechanism of action 
that is common to two substances (which are considered to be analogues). 
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• the assumption that the known value of a property for one substance can be 
used to estimate the unknown value of the same property for another 
substance. 
 

In both cases, expert judgement is needed and some justification should be 
provided. 
 
Trend Analysis 
 
73. Trend analysis is a method of predicting toxicity of a chemical by analysing 
toxicity trends (increasing, decreasing, or constant) of tested chemicals. An example 
of trend analysis shows that when carbon chain length (CCL) increases, acute 
aquatic toxicity increases (Figure 2) (Jeliazkova et al., 2010) 
 

 
Figure 2. Different approaches of read-across: analogue versus category 
approaches, interpolation versus extrapolation, category boundary and outliers. 
(Figure adopted from Raies and Bajic 2016). 

74. Trend analysis and read across are developed in similar ways. 
 
75. There are two ways to develop a read-across method (Venkatapathy et al., 
2013, Vink et al., 2010), analogue approach (AN) (called one-to one), which uses 
one or few analogues, and a category approach (CA) (called many-to-one), which 
uses many analogues. AN may be sensitive to outliers because two analogues may 
have different toxicity profiles (Venkatapathy et al., 2013). 

 
76. Using many analogues for CA is useful to detect trends within a category and 
may increase confidence in the toxicity predictions (Venkatapathy et al., 2013., Modi 
et al., 2012). CA requires defining a category boundary to determine if a chemical 
belongs to the category (Venkatapathy et al., 2013) and implementing a ‘combination 
of predictions’ method for analogues that have conflicting toxicity profiles. A 
combination of predictions can be done using (if applicable) minimum, maximum, 
mode, median, average, linear, quadratic, or other nonlinear combinations of the 
predictions (Dimitrov et al., 2010). 
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77. Read-across can be qualitative if the toxicity endpoint is qualitative; otherwise, 
read-across is quantitative (Valerio et al., 2009; Benigni et al., 2013) Also, 
interpolation using source chemicals surrounding the target chemical (see Figure 2) 
is better than extrapolation from one side (Worth et al., 2013). In Figure 2, 
interpolation is used with the chemical that has CCL of length 6, but extrapolation is 
used with a chemical that has CCL of length 12. 

 
78. Identifying similar chemicals can be done in two steps: representing 
chemicals as feature vectors of chemical properties, and then calculating similarity of 
chemicals.  

 
79. The first step is implemented using either binary or holographic fingerprints.  

 
80. Molecular fingerprints are widely used in several areas of chemoinformatics 
including diversity analysis and similarity searching (Fernández de Gortari et al., 
2017). 

 
81. A binary fingerprint is a feature vector of binary bits representing presence (1) 
or absence (0) of a property (e.g. presence of a methyl group) (Civjan, 2012). 

 
82. A holographic fingerprint uses frequency of properties (e.g. number of methyl 
groups) (Igaki et al., 1992). 

 
83. Continuous chemical properties (e.g. melting point) can be used as well. 

 
84. A hierarchy of categories and subcategories can be better than a single 
feature vector. At each level of the hierarchy, a property is applied for category 
formation. 

 
85. Subsequently, categories are divided using another property to generate 
subcategories and so on. The hierarchy can allow for investigating the significance of 
properties and can simplify model interpretation. 

 
86. An example of hierarchal categories is “Hierarchical cluster analysis of 
environmental pollutants through P450 induction in cultured hepatic cells: Indications 
for a toxicity screening test” (Dubois et al., 1996). 
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87. Statistical similarity of two chemicals can be calculated using different types of 
distances, such as Hamming50, Euclidean51, Cosine52, Mahalanobis53, Tanimoto (or 
Jaccard) distance54 coefficient, or linear or nonlinear relationships of the features. 

 
88. Read across has several advantages and disadvantages. Read-across is 
transparent (Cronin et al., 2011) easy to interpret and implement (Enoch et al., 
2010). Read-across can model quantitative and qualitative toxicity endpoints, and it 
allows for a wide range of types of similar measurements to be used to express 
similarity between chemicals. 

 
89. However, statistical similarity measurements do not provide biological insight 
of toxicity (Dimitrov et al., 2010). Moreover, complex similarity measures may 
complicate model interpretation. In reality, read-across uses small datasets 
compared to other approaches such as QSAR because there are usually only a few 
analogues for a given chemical. Additionally, accuracy depends on the number and 
choice of analogues, similarity metrics, strength in chemicals’ similarity, chemical 
properties, and category boundaries (Dimitrov et al., 2010).  

 
90. These parameters are very subjective, mutually dependent, endpoint-specific, 
and may require expert opinions. Moreover, this approach could be inapplicable or 
inaccurate if analogues have conflicting toxicity profiles or the number of analogue 
chemicals is insufficient. In such cases, the QSAR approach can be used55 (Modi et 
al., 2012). 
 
Dose-Response and Time-Response 
 
91. Dose-response (or time-response) models are relationships between doses 
(or time) and the incidence of a defined biological effect (e.g. toxicity or mortality).  A 
dose is ‘the total quantity of a substance administered to, taken up, or absorbed by 
an organism, organ, or tissue and can be measured with in vitro or in vivo 
experiments’ (El-Masri, 2013). 
 
92. The time element can be the time to produce a response or the time for 
recovery (Bliss and Stevens, 1937). Exposure time can be continuous, intermittent, 
or random, and exposure can be acute, short-term, sub-chronic, or chronic (El-Masri, 
2013). 

 
93. Time-dose models describe the relationship between time and dose for a 
constant response (Brown and Foureman, 2005). Figure 3 shows different types of 
dose/time-response models. 

 
50Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are 
different.  
51 Euclidean distance or Euclidean metric is the "ordinary" straight-line distance between two points in Euclidean space. With 
this distance, Euclidean space becomes a metric space.  
52 Cosine similarity is a measure of similarity between two non-zero vectors of an inner product space that measures the cosine 
of the angle between them.  
53 Mahalanobis distance is a measure of the distance between a point P and a distribution D, introduced by P. C. Mahalanobis 
in 1936. It is a multi-dimensional generalization of the idea of measuring how many standard deviations away P is from the 
mean of D.  
54Jaccard similarity index (sometimes called the Jaccard similarity coefficient) compares members for two sets to see which 
members are shared and which are distinct. It’s a measure of similarity for the two sets of data, with a range from 0% to 100%. 
The higher the percentage, the more similar the two populations.  
55 https://www.oecd.org/publications/guidance-on-grouping-of-chemicals-second-edition-9789264274679-en.htm  

https://www.oecd.org/publications/guidance-on-grouping-of-chemicals-second-edition-9789264274679-en.htm
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Figure 3. Different types of relationships for dose-response models. (Figure adopted 
from Rais and Bajaic 2016) 

94. The first dose-response model relates to concentration (C) and time (t) with 
response (K), which is: 
 
Haber’s law (law of toxicity56) (El-Masri, H., 2013.  Miller et al., 2000): 
 
C × t =K 

 
95. On the other hand, Haber’s law does not hold in many situations and does not 
take detoxification into consideration. The law assumes that any combination of 
concentration and time that has the same C × t product should produce the same 
level of toxicity. However, in reality, this is not the case. 
 
96. Toxicity of some chemicals can be more dependent on concentration than 
time. Subsequently, Haber’s law was generalized. Let C0 denote a threshold 
concentration, and n and m are constants.  

 
97. Several well-known generalizations of Haber’s law are shown below: 
 

• Ostwald: (C – C0)n t = K that emphasizes concentration (Bliss,1940) 

• Druckery: C × tn = K that emphasizes time (Miller et al., 2000) 

• Miller et al., (2000) : (C – C0)n tm = K that emphasizes both concentration 
and time 

98. One of the frequently measured responses is mortality (the number of 
deceased individuals).  
 

 
56 Haber's rule or Haber's law is a mathematical statement of the relationship between the concentration of a poisonous gas 
and how long the gas must be breathed to produce death, or other toxic effect. The rule was formulated by German chemist 
Fritz Haber in the early 1900s. 
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99. The Bliss method (Bliss, (1935)) (or Probit model) (Figure 4) transforms time-
mortality and dose-mortality relationships into linear relationships. This 
transformation follows the next steps: (a) link mortality frequency (the number of 
deceased subjects) to dose or time; (b) convert frequency to percentages 
(percentage of deceased subjects); (c) transform percentages to probits (probability 
units) and express dose or time on a logarithmic scale. Probits are inferred doses (or 
time) that correspond to a given mortality percentage. 

 
100. Bliss devised a special table called ‘probits table’ to calculate the probits 
(Bliss, 1935). 
 

 
 

Figure 4. Bliss method (A) Plot mortality frequency (the number of dead subjects) 
versus dose or time (B) Convert frequency to percentages (percentage of deceased 
subjects) (C) Transform percentages to probits and transform dose or time to 
logarithms. (Figure adopted from Rais and Bajaic, 2016). 

101. This method takes into consideration the variation of an individual’s 
susceptibility to toxic agents. For example, a certain dose (or time exposure) can 
cause the mortality of some individuals but not others (Bliss, 1935; 1937). 
 
102. There are many inherited differences between dose-mortality and time-
mortality models. Time-mortality curves are based on the same individuals whose 
susceptibility is measured at specific intervals. The percentage of mortality at a given 
interval cannot be less than that of the preceding interval, and the susceptibility of 
individuals in successive time intervals are correlated. However, dose-mortality 
curves are based on different individuals for each dose. Therefore, susceptibility of 
individuals at successive doses is unrelated, especially if there are individuals who 
have a high toxicity resistance (Bliss, 1937). 
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103. The effectiveness of time-mortality curves depends on the ‘whole’ distribution 
of susceptibilities and their relationship to the response. Time-mortality curves that 
measure the response time can be incomplete for small doses due to individuals 
who have a high resistance and fail to show the measured response. Similarly, time-
response curves that measure the recovery time may be incomplete for large doses 
if some individuals fail to recover. Bliss explained how to estimate the truncated 
distribution of time-mortality models (Bliss, 1937).  

 
104. Miller et al. (2000) proposed a three-dimensional model for concentration-
time-response that can reliably interpolate within the scope of experimental data, and 
they provided an estimation of error when extrapolating outside the scope. 

 
105. Brown and Foureman (2005) used a time-concentration-response model to 
generalize the concentration-response models using time as a parameter. 

 
106. There are many advantages of time-response, dose-response, and dose-
time-response models: ease of interpretation and implementation, consideration of 
dose and time of exposure, interpolation of effects between different doses of the 
same chemical within the range of experimental data (Bliss, 1937; Miller et al., 2000) 
using dose-response models, and interpolation between different exposure times for 
the same toxicant and dose within the range of experimental data (Bliss, 1937; Miller 
et al., 2000) using time-response models. 

 
107. There are some limitations to the models, such as, they cannot extrapolate to 
other chemicals (El Masri, 2013). In addition, time-response models cannot 
extrapolate to other doses of the same chemical. Time-response models require that 
tested individuals have uniform susceptibility levels, or these models may be 
unreliable if some individuals have an extremely low or high resistance. If time 
intervals are long, time-response models may overestimate or underestimate the 
response at a given moment. The three models do not take into consideration target 
tissue, biological process, ADME, toxicokinetics, toxicodynamics, detoxification, 
damage or repair, or chemical properties. 

 
108. These time-response and dose-response models are complementary to one 
another and must be used together to achieve reliable conclusions. Several 
databases include dose–response data such as: 

 
• Chemical Effects in Biological Systems (CEBS)57 is an integrated public 

repository for toxicogenomics data, including the study design and timeline, 
clinical chemistry and histopathology findings and microarray and proteomics 
data. CEBS contains data derived from studies of chemicals and of genetic 
alterations, and is compatible with clinical and environmental studies. 
 

• PubChem58 is a database of chemical molecules and their activities against 
biological assays. The system is maintained by the National Center for 

 
57 https://manticore.niehs.nih.gov/cebssearch  
58 https://pubchem.ncbi.nlm.nih.gov/  

https://manticore.niehs.nih.gov/cebssearch
https://pubchem.ncbi.nlm.nih.gov/
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Biotechnology Information, a component of the National Library of Medicine, 
which is part of the US NIH. 
 

• ToxRefDB59 provides detailed chemical toxicity data in a publicly accessible 
searchable format. As an example, ToxRefDB contains mammal toxicity 
information that when combined with other sources of information, such as 
exposure and metabolism, form the basis for pesticide risk assessments. 
 

109. Some usage examples of these models include modelling rectal cancer 
(Appelt, 2015), mutagenicity (Pottinger et al., 2009) and developmental toxicity (Hunt 
et al., 2008). 
 
Pharmacokinetic Models and Pharmacodynamic Models 
 
110. Pharmacokinetic60 (PK) models relate chemical concentration in tissues to 
time, estimate the amount of chemicals in different parts of the body, and quantify 
ADME processes (Jack et al., 2012, Sung et al., 2014). 
 
111. Toxicokinetic (TK) models are PK models used to relate chemical 
concentration in tissues to the time of toxic responses. PK models can be 
compartmental and non-compartmental (El Masri, 2013, Sung et al., 2014). 

 
112. A compartment is the whole or part of an organism in which the concentration 
is uniform (Ingrisch and Sourbron 2013). Compartmental models consist of one or 
more compartments, and each compartment is usually represented by differential 
equations (Sung et al., 2014).  

 
113. In PK, compartmental models are in widespread use for describing the 
concentration-time curves of a drug concentration following administration. This 
gives a description of how long it remains available in the body, and is a guide to 
defining dosing regimens, method of delivery, and expectations for its effects 
(Bassingthwaighte et al., 2012). 

 
114. One-compartment models represent the whole body as a single compartment, 
assume rapid equilibrium of chemical concentration within the body after 
administration, and do not consider the time to distribute the chemical. The 
concentration C at a given time t is computed by: 
  
C (t) =C0 x e−kt 

where C0 is the initial concentration and k is the elimination constant. A plot of log of 
concentration versus time results in a straight line of slope −k (Sung et al., 2014). 

115. However, these models do not consider the distribution time of chemicals. 
Additionally, concentrations in some organs reach equilibrium faster than in others. 
 

 
59 https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCCT&dirEntryId=227139  
60 Pharmacokinetics: Process of the uptake of drugs by the body, the biotransformation they undergo, the distribution of the 
drugs and their metabolites in the tissues, and the elimination of the drugs and their metabolites from the body over a period of 
time. 

https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCCT&dirEntryId=227139


This is a preliminary background paper for discussion. 
It does not reflect the views of the Committee and should not be cited. 

21 
 

116. Two-compartment models consist of two compartments: central (for rapidly-
perfused tissues e.g., liver or kidney) and peripheral (for slowly perfused tissues e.g., 
muscle or skin). Each compartment is represented by a differential equation similar 
to the one-compartment models. After solving the coupled equations, the 
concentration is the sum of two exponential terms of time (interpreted as distribution 
phase with initial concentration Ca and slope -a and elimination phase with initial 
concentration Cb and slope -b). The concentration C based on this model is 
represented by: 
 
C (t) = Ca x e -at + Cb x e -bt 

117. These models, however, cannot extrapolate between species or provide a 
mechanistic insight (Sung et al., 2014). 
 
118. On the other hand, physiologically based pharmacokinetic (PBPK) models 
include, in addition to concentration and time, physiological descriptors of tissues 
and ADME processes such as volumes, blood flows, chemical binding/partitioning, 
metabolism and/or excretion (Jack et al., 2013; El Masri 2013). 
 
119. PBPK models represent each organ as a compartment, represented by a 
differential equation that includes PK parameters (Jack et al., 2013, El Masri, 2013, 
Sung et al., 2014, Mager et al., 2014). 

 
120. An organ can be split into several compartments if there is a high variability in 
organ tissue. Also, one compartment can represent several similar organs (Sung et 
al., 2014). A general PBPK model to calculate plasma concentration (CP) uses a 
feature vector of PK parameters (θ PK), time (t), and dose (X) as follows: 

 
CP = f (θ PK, X, t) 

where f is a function that models the relationship. 

121. Due to the equation structure and because the physiological parameters are 
tissue specific, PBPK models allow for interspecies extrapolation and provide a 
mechanistic basis of ADME (Modi et al., 2012, El Masri 2013, Sung et al., 2014). 
 
122. PBPK models can convert administered doses to tissue dosimetry, which is 
‘the amount of chemical that is distributed to a tissue or part of a tissue,’ (Jack et al., 
2013) and generate concentration versus time models (Modi et al., 2012). 

 
123. Pharmacodynamic (PD) models relate a biological response to the 
concentration of chemical in the tissue (Sung et al., 2014). Toxicodynamic models 
are PD models that relate toxicity to the concentration of the chemical. PD models 
that are based on anatomy, physiology, biochemistry, and biology are called 
physiologically based pharmacodynamic (PBPD) models (Andersen et al., 2001). 

 
124. Similar to dose–response models, PD models can be linear or nonlinear. 
Linear models should be used with caution because they do not consider the upper 
limit of responses and assume that responses always increase when concentrations 
increase (Sung et al., 2014). Similar to PBPK models, PBPD can be described by 
differential equations. 
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125. A general PBPD model calculates the response (R) using a feature vector of 
PD parameters (θPD), plasma concentration (CP), which is calculated using the PBPK 
model given above, or biophase concentration (Ce), and chemical-independent 
system parameters (Z) (Mager et al., 2014) can be represented as: 
 
R= f (θPD, Cp or Ce, Z) 

where f is a function that models the relationship. PD models can be combined with 
PK models (Sung et al., 2014).  The resulting model is called biologically based 
dose-response models (BBDR) and can be used to relate doses with responses. 
Jack et al., 2013; El Masri 2013; Sung et al., 2014; Andersen et al., 2001).  

126. In addition to PK and PD parameters, BBDR may include biological 
parameters such as cell division rates, mortality rates, or production rates of 
hormones. BBDR models are more powerful than dose-response models because 
the former consider time-dependent changes of concentration and can extrapolate at 
low doses and between species (Crump et al., 2010). 
 
127. There are many advantages for these models. Determining internal doses 
rather than administered doses and key metabolites allows for a more direct 
relationship with the response (El Masri, 2013). Additionally, using ADME, PK, and 
PD properties permits route-to-route and species-to-species (e.g., animal-to-human) 
extrapolations and in vitro-to-in vivo extrapolation (El Masri, 2013). BBDR is useful 
for extrapolating at low doses. Such low doses provide realistic estimates for human 
toxicity as human exposure to toxicants is at much lower doses than those tested on 
animals (Crump et al., 2010). 

 
128. However, there are a number of disadvantages. PK and PD parameters may 
be unavailable or inaccurate. In such cases, the parameters are estimated using in 
vitro-to-in vivo or species-to-species extrapolation (Sung et al., 2014). Otherwise, 
QSAR modelling could be more appropriate because it depends only on molecular 
descriptors (Modi et al., 2012; El Masri, 2013). Additionally, if biological data is not 
available, empirical dose-response models are used instead of BBDR.   

 
129. Using BBDR for extrapolation between species assumes that the relationship 
between dose and response in animals is the same in humans (Crump et al., 2010; 
Haber et al., 2001).  

 
130. The same problem applies when using animal studies to estimate PK or PD 
parameters for modelling toxicity in humans (Egorov et al., 2013). 

 
131. Although BBDR models were proposed more than 20 years ago as a tool to 
minimize uncertainty for low-dose and interspecies extrapolation, it was recently 
shown that BBDR has not progressed to reach such expectations due to uncertainty 
in modelled parameters and data, limited applicability of BBDR models to a small 
group of chemicals, or inherited complexity of BBDR models or toxicity mechanisms 
as discussed in Crump et al (2010).  
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132. Expert knowledge is required for defining MoA, toxicity pathways and 
chemical interactions that cause the response.  

 
133. Different types of PK and PD models are reviewed in Mager et al. (2003). 
Also, methods for estimating PK parameters are reviewed in Avent et al. (2013). 

 
134. Examples of PK and PD modelling tools are WinNonlin61,62 Kinetica63 and 
ADAPT 564.  Some examples include route-to-route extrapolation (Chiu and White, 
2006), toxicity and risk assessment (Andersen, 1995) and carcinogenicity 
assessment (Clewell et al., 2007). 
 
COT consideration of PBPK modelling 

 
135. In July 2019, a discussion paper “Review of physiologically-based 
pharmacokinetic (PBPK) modelling used for human health risk assessment” 
(TOX/2019/3) was presented to COT.  

 
136. The COT recognised that PBPK modelling could be used to verify the 
appropriateness of test concentrations used for in vitro assays through their 
comparison with estimates of human internal exposure. Furthermore, it was 
considered that the values generated by high-throughput and in silico methods for 
some model parameters (e.g. partition coefficients and transporter activity) can be 
associated with varying degrees of uncertainty. 

 
137. The COT said it was necessary to assess how realistic and reliable these 
parameter values are. In addition, the Committee considered that further guidance 
on the use and application of PBPK models developed for nanomaterials would be 
helpful. 

 
138. A deficiency of human pharmacokinetic data was often noted for those 
xenobiotics for which PBPK models are developed and assessed by the Committee. 
This was central to the discussion held in 2003 when PBPK modelling was last 
brought to the Committee. 

 
139. Approaches that were considered to assess model reliability in this context 
included use of the read-across approach and conducting interspecies extrapolations 
to animal species other than humans. Thus, it was noted that in-house expertise in 
the field of PBPK modelling will be needed increasingly in the future for the 
interpretation of these models. 

 
140. The Committee agreed it would be useful to have further information in the 
form of case studies, for example where in vitro data have been successfully 
extrapolated to in vivo, or cases where risk assessments considered in retrospect 

 
61 Phoenix® WinNonlin® is the industry standard for non-compartmental analysis (NCA), pharmacokinetic/pharmacodynamic 
(PK/PD), and toxicokinetic (TK) modeling.  
62 https://www.certara.com/software/pkpd-modeling-and-simulation-2/phoenix-winnonlin-
2/?ap%5B0%5D=PKPD&ap%5B1%5D=PKPD  
63 http://tools.thermofisher.com/content/sfs/brochures/KIN410.pdf  
64 https://bmsr.usc.edu/software/adapt/  

https://cot.food.gov.uk/sites/default/files/tox2019-34.pdf
https://www.certara.com/software/pkpd-modeling-and-simulation-2/phoenix-winnonlin-2/?ap%5B0%5D=PKPD&ap%5B1%5D=PKPD
https://www.certara.com/software/pkpd-modeling-and-simulation-2/phoenix-winnonlin-2/?ap%5B0%5D=PKPD&ap%5B1%5D=PKPD
http://tools.thermofisher.com/content/sfs/brochures/KIN410.pdf
https://bmsr.usc.edu/software/adapt/
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may have benefitted from PBPK modelling. It was also noted a workshop on PBPK 
would be beneficial since the last one hosted by the COT was in 2003. 

 
141. Henceforth, a paper on PBPK case studies (TOX/2019/73) is also presented 
at this meeting and a joint workshop with potency estimation models is planned for 
next year. 
 
Uncertainty Factor Models Uncertainty factors  
 
142. Uncertainty factors (UFs) (also called assessment/extrapolation/risk factors) 
are used in the assessment of risk from chemical exposure or the recommended 
daily intake of chemicals (Falk-Filipsson et al., 2007).  
 
143. UFs are used to compensate for a deficiency in knowledge concerning the 
accuracy of test results and the difficulty in estimating the health effects in a different 
species and/or in different exposure conditions. UFs date back to 1954 when 
Lehman and Fitzhugh (1954) proposed a 100-fold factor (which they referred to as a 
“margin of safety”) for extrapolating from animal toxicity data to safe levels of human 
exposure to food additives and pesticide residues. 

 
144. An UF model is the simplest form of model for inter-species extrapolation (e.g. 
from animals to humans), intra-species extrapolation (e.g. from healthy people to 
special groups of the population such as elderly people, pregnant women, children, 
and foetuses), or exposure duration extrapolation (e.g. from short exposure to long 
exposure). It requires two main factors (Martin et al., 2013): no observed adverse 
effect levels (NOAEL), which is the highest dose not exhibiting observable toxicity 
and an UF, which is a numerical value to account for variability in inter-species, intra-
species, exposure duration, or exposed dose. Extrapolation is done by dividing the 
NOAEL by the UF. 

 
145. However, there are two limitations for using the NOAEL approach (Martin et 
al., 2013): (1) the definition of NOAEL indicates the absence of the ‘appreciable risk’ 
of toxicity, but it does not indicate a zero-effect threshold; (2) NOAEL values are not 
constants and can vary depending on experimental designs such as the number of 
tested animals, number of doses, and toxicity endpoints. It was shown that low 
statistical power (e.g. a small number of tested animals or a small number of tested 
doses) would result in a higher NOAEL.  

 
146. On the other hand, it is possible to use a least observable adverse effect level 
(LOAEL, which is the lowest dose or concentration that causes the observed effect) 
or to use a benchmark dose level (BMDL, which is ‘the lower statistical confidence 
limit of the dose resulting in a predetermined response’) if a NOAEL is not available 
(Falk-Filipsson et al., 2007; Martin et al., 2013). 

 
147. In addition to UFs, ‘modifying factors’ (MFs) are used to account for 
uncertainties in the data and the database. Additionally, ‘safety factors’ (SFs) are 
used for irreversible effects, such as teratogenicity and non-genotoxic 
carcinogenicity.  
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148. Although, existing UFs account for intra-species variability, the use of 
additional factors for child safety is recommended. 

 
149. The values of MFs and SFs cannot exceed 10 (Falk-Filipsson et al., 2007). 

 
150. UFs are necessary to estimate reference dose (RfD) and reference 
concentration (RfC). RfD or RfC “provide quantitative information for use in risk 
assessments for health effects known or assumed to be produced through a 
nonlinear (presumed threshold) MoA (El Masri, 2013”). 

 
151. The reference values are calculated as: 
 
RfD or RfC =   POD 
                        ¯¯¯¯ 
                     UF × MF 

where POD is the point of departure (e.g., NOAEL, LOAEL, or BMDL) (El Masri, 
2013). A default UF of 100 was first proposed in 1954 (Falk-Filipsson et al., 2007). 

152. However, this default value does not account for the quality of the database, 
the nature of the effect, the duration of the exposure, route-to-route extrapolation, 
and consideration of special groups of the population.  
 
153. Therefore, several factors have been calculated by different agencies as 
explained in Falk-Filipsson et al (2007) and Martin et al (2013). 

 
154. There are several advantages of UF models such as it’s easy to implement 
and understand them and they provide adequate safety levels for a single chemical 
and mixtures of chemicals (Martin et al., 2013).  Additionally, they account for inter-
species and inter-individual as well as PK and PD differences.  

 
155. However, there are some limitations of UF models. Default UFs or sub-factors 
are not conservative nor do they assume the worst-case scenario. Therefore, 
extrapolated safety levels of chemicals are not always below the realistic safety 
threshold for humans (Martin et al., 2013).  

 
156. These models cannot be used to extrapolate toxicity levels of genotoxic 
carcinogens as these chemicals always cause toxicity effects that are proportional to 
the dose, even at small doses (Falk-Filipsson et al., 2007). 
 
Quantitative Structure–Activity Relationship 
 
157. Structure-activity relationships represent a core aspect of medicinal chemistry. 
The fact that a small change in structure (usually) leads to a small change in 
biological activity, allows chemists to rationalize substitutions at specific positions, 
giving them the freedom to modify a molecule to improve various properties such as 
lipophilicity, bioavailability without sacrificing potency (to a large extent) (Guha, 
2012). 
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158. Quantitative structure-activity relationship (QSAR) is a family of models that 
uses molecular descriptors to predict chemicals’ toxicity. 

 
159. The models relate a set of "predictor" variables (X) to the potency of the 
response variable (Y), while classification QSAR models relate the predictor 
variables to a categorical value of the response variable. 

 
160. It is assumed that chemicals that fit the same QSAR model may work through 
the same mechanism (Toropov et al., 2014). A general QSAR model to predict 
toxicity (T) using a feature vector of chemical properties (θP) and a function f that 
calculates T given θP is: 
 

T= f (θP) 

161. A local QSAR is generated from congeneric chemicals (i.e. similar chemicals); 
a global QSAR is made from diverse chemicals. 
 
162. Local QSARs are more accurate as they are customized for specific 
chemicals. However, there is an overhead to develop a local QSAR for each type of 
chemical. Therefore, global QSARs are more practical but may be less accurate. 
 
163. Local QSARs can also provide insight on the MoA of specific chemicals, 
which global QSARs may overlook. 

 
164. Quantitative Structure Toxicity/Property Relationship (QSTR/QSPR) models 
are QSAR models that predict toxicity and chemical properties, respectively 
(Toropov et al., 2014).  

 
165. Structure activity relationships (SARs) are used for categorical endpoints 
(Devillers, 2013).  

 
166. Several types of molecular descriptors can be used to describe chemicals: 
 

• 1D QSAR: 1D descriptors represent the structure of the chemicals such as 
atoms and functional groups (Devillers, 2013). 
 

• 2D QSAR: 2D descriptors represent the physico-chemical, physico-biological 
properties (Kortagere and Ekins 2010) and topological indices (Devillers, 
2013). 
 

• 3D QSAR: 3D descriptors represent filed properties in 3D such as energy 
fields: steric, electrostatic and hydrophobic (Devillers, 2013). 
 

• 3D QSAR: CoMSIA (Comparative Molecular Similarity Indices Analysis) 
(Crammer et al., 1988). 
 

• 4D QSAR: CoMFA (Comparative Molecular Field Analysis) (Devillers, 2013). 
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• COREPA (Common Reactivity Pattern) Conformational distribution of 
chemical across local and global reactivity parameters that are linked to the 
biological activity (Devillers, 2013). 
 

• Pseudo 3D: Eigen values derived from IR and Raman range molecular 
vibrational frequencies. Weighted holistic invariant molecular (WHIM) 
descriptors (Devillers, 2013). 
 

• QSIIR (Quantitative structure in vitro in vivo relationship)  
Chemical and biological descriptors (from high throughput screening in vitro 
data) (Zhu, H., 2013). 
 

167. There are two main steps to develop a QSAR model: generating molecular 
descriptors and then generating models to fit the data.  
 
168. Therefore, feature selection algorithms based on, for example, simulated 
annealing, genetic algorithm, or principal component analysis can be used (Deeb, O. 
and Goodarzi, 2012; Devillers, 2013). If there are a small number of descriptors, 
using two-dimensional scatter plots of each descriptor versus the biological activity 
can help identify significant descriptors (Devillers, 2013) (Figure 5). 

 
169. There are several types of algorithms to generate QSAR models: linear 
models such as those based on linear regression analysis, multiple linear regression 
and partial least squares for continuous endpoints, and linear discriminant analysis 
for categorical endpoints (Deeb and Goodarzi, 2015) (Devillers, 2013); nonlinear 
models such as artificial neural networks or support vector machines (Deeb and 
Goodarzi, 2015; Devillers, 2013); and data-driven models such as those based on 
decision trees, clustering, Naïve Bayes, and K-nearest neighbour (Zhu, H., 2013). 

 
170. Linear models are simpler and, in general, require tuning fewer parameters 
than nonlinear models. However, many relationships between chemicals and toxicity 
are nonlinear. Therefore, nonlinear models are commonly used for developing 
QSARs. The two-dimensional scatter plots can help identify the type of regression 
models as illustrated in Figure 5. 
 

 
Figure 5. 2D scatter plots of molecular descriptors and toxicity levels. (a) no 
correlation between molecular descriptor 1 and the toxicity endpoint. (b) and (c) 
linear and nonlinear relationships between the molecular descriptors 2 and 3, 
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respectively, with the toxicity endpoint. (b) and (c) can be modelled with linear and 
nonlinear algorithms, respectively. (Figure adopted from Rais and Baijic, 2016). 

171. Additionally, SAR landscapes are three-dimensional plots through which one 
can visualize structure-activity relationships. The X-Y plane represents the molecular 
descriptors, and the Z-axis represents response. Figure 6 shows a hypothetical 
example of a SAR landscape. The smooth region corresponds to chemicals that 
have a similar structure and similar activity. However, the ragged region corresponds 
to chemicals that have a similar structure but different activity levels (also called 
activity cliffs). 

 
 

Figure 6. SAR landscapes (Figure adopted from Rais and Baijic, 2016) 

172. The activity cliffs are the most interesting part of the SAR landscape (Guha, 
2013). They encode structural relationships in which small chemical modifications 
lead to large potency variations. Accordingly, if activity cliffs are encountered during 
compound optimization in drug discovery-reveal substitution sites and chemical 
changes that determine structure-activity relationships (SARs) in compound series 
(Bajorath, 2017). 
 
173. Additionally, they affect the performance of machine learning models, either 
because these regions are discarded as outliers, cause over-fitting, complicate the 
prediction models, or increase the prediction error while generating the model. SAR 
landscapes can be visualized using SAR maps. SAR maps are two-dimensional 
plots of activity similarity versus structure similarity that characterize SAR 
landscapes through four regions: 
 

Scaffold hops: Low structural similarity and high activity similarity 
Smooth regions: High structural similarity and high activity similarity 
Nondescript: Low structural similarity and low activity similarity 
Activity cliffs: High structural similarity and low activity similarity  

174. Moreover, a structure activity landscape index (SALI) and a structure activity 
relationship index (SARI) can be used to analyse SAR landscapes. 
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175. Gramatica (2012) elucidated on the development and validation of QSAR 
Models. 

 
176. Examples/case studies of QSARs:  
 

• Dearden (2003) describes the in silico prediction of drug toxicity. 
 

• Ellison et al. (2011) wrote a review related to the use of in silico methods to 
predict the chemistry of molecular initiating events related to drug toxicity. 
 

• Netzeva et al. (2008) paper reviews the quantitative structure activity 
relationships for acute aquatic toxicity, as well as different methods described 
in the literature for calculating the aquatic toxicity of chemical substances. 
 

• Pasha et al. (2009) discussed the in silico quantitative structure toxicity 
relationship of aromatic nitro compounds. 
 

• Carlsen et al. (2008) studied the impact on environmental health by residuals 
of the rocket fuel 1,1-dimethyl hydrazine (heptyl) and its transformation 
products. 
 

• Thakur and Thakur (2009) developed a QSTR model based on cytotoxic 
concentration for the set of 19 (tetrahydromidazo [4,5,1-jk][1, 4] benzodizepin- 
2(1H)-one) (TIBO) derivatives. 
 

• Cronin and Madden (2010) on skin sensitization. 
 

177. There are many tools that provide pre-built QSAR models such as: OECD 
QSAR Toolbox65, TopKat66 and METEOR67. Case studies on combining the results 
of different prediction tools are available in Milan et al. (2011) and Worth et al. 
(2013). 
 
178. However, specialized software tools for generating QSAR models such as 
ADAPT and TOPKAT include databases for toxicity data and can calculate molecular 
descriptors (Venkatapathy, 2013).  
 
Quantitative structure activity relationship (QSAR) in toxicology (QSTR) 
 
179. QSTRs are based on the hypothesis that the structure of a molecule must 
enclose the features responsible for its physical, chemical and biological properties, 
and on the capability to characterize the chemical by one, or more, numerical 
descriptor(s) or properties. The toxicity of substances is governed by their properties, 
which in turn are determined by their chemical structure. As a result, there are 
interrelationships between structure, properties, and toxicity. QSTR is a statistically 

 
65 https://www.oecd.org/chemicalsafety/oecd-qsar-toolbox.htm  
66 https://www.3dsbiovia.com/products/datasheets/ds_topkat.pdf  
67 https://www.lhasalimited.org/products/meteor-nexus.htm  

https://www.oecd.org/chemicalsafety/oecd-qsar-toolbox.htm
https://www.3dsbiovia.com/products/datasheets/ds_topkat.pdf
https://www.lhasalimited.org/products/meteor-nexus.htm
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resulting equation that quantitatively describes a molecular property in terms of 
descriptors of compound structure (Deeb and Goodarzi, 2015). 
 
180. QSTR can be divided into four crucial steps: 

 
1. conversion of structures into descriptors (parameters). 
2. descriptor selection to minimize the risk of chance correlations. 
3. deriving the relationship between the molecular descriptors and the toxicological 
data. 
4. validating the QSTR model and assessing its predictivity. 

 
181.  The QSTR models are developed using a variety of chemometric tools such 
as multiple linear regression (MLR)68, partial least squares (PLS)69, artificial neural 
network (ANN)70, support vector machine (SVM)71 and others. 
 

 
 f (chemical structure or property) 

Figure 7. Scheme summarizing these QSTR steps (Figure adapted from Deeb and 
Goodarzi, 2015). 

182. The advantages of QSAR models include: They are easy to interpret if the 
descriptors are meaningful. They can model categorical and continuous toxicity 
endpoints, molecular descriptors and toxic and non-toxic chemicals. Using different 
types of descriptors allows for modelling complex endpoints (Modi et al., 2012). 
 

 
68 Multiple regression is the statistical procedure to predict the values of a response (dependent) variable from a collection of 
predictor (independent) variable values. For example, if scores on multiple predictors and one criterion are available, multiple 
regression may be used to develop a single equation to predict criterion performance from the set of predictors. 
69 Partial least squares regression (PLS regression) is a statistical method that bears some relation to principal components 
regression; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a 
linear regression model by projecting the predicted variables and the observable variables to a new space.  
70 Artificial neural networks (ANN) or connectionist systems are computing systems that are inspired by, but not identical to, 
biological neural networks that constitute animal brains. Such systems "learn" to perform tasks by considering examples, 
generally without being programmed with task-specific rules.  
71 In machine learning, support-vector machines (SVMs, also support-vector networks are supervised learning models with 
associated learning algorithms that analyse data used for classification and regression analysis.  
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183. However, QSARs may not always be applicable. QSARs require a large 
number of chemicals in model development to achieve statistical significance. 
Additionally, QSARs require using feature selection to identify the most significant 
and independent molecular descriptors, and a large number of descriptors makes 
the multidimensional space complex and fragmented (Weaver and Gleeson, 2008). 

 
184. The disadvantages include: QSARs cannot be used for extrapolation between 
species, routes of exposure, or doses unless biological data is used. Moreover, 
QSARs may not be biologically interpretable, and QSARs do not take dose, duration, 
or metabolites into consideration. 
 
QSAR Applications for Chemical Screening, Prioritization, and Regulatory and 
Corporate Decision-making 
 
185. QSAR predictions are used by regulatory authorities, private corporations, 
and institutions in three major contexts: priority-setting, hazard classification and 
labelling, and screening for health and ecological risks of chemicals (Pittinger and 
Mohapatra, 2009.) 
 
186. Regulatory uses of QSARS include:  
 
(1) supporting priority setting of chemicals 

(2) guiding experimental design of regulatory tests or testing strategies 

(3) providing mechanistic information 

(4) grouping of chemicals into categories based on similarity 

(5) filling a data gap needed for classification and labelling 

(6) filling a data gap needed for risk assessment.  

187. Each application carries unique considerations for QSAR, with the most 
stringent considerations placed upon QSARs used for ‘high regulatory impact,’ for 
example, risk assessments under mandated regulatory programmes. 
 
Special types of substances or toxicity endpoints that require new prediction or 
analysis methods 
 
Nanoparticles 
 
188. Nanotechnology72 is a known field of research since last century. Since 
“nanotechnology” was presented by Nobel laureate Richard P. Feynman during his 
famous 1959 lecture “There’s Plenty of Room at the Bottom”73 (Feynman, 1960), 
there have been made various revolutionary developments in the field of 
nanotechnology (Khan et al., 2019). 
 

 
72 Nanotechnology is manipulation of matter on an atomic, molecular, and supramolecular scale. 
73 https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom  

https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom
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189. Nanotechnology is one of the key emerging technologies identified in the EU 
2020 Strategy74. The heterogeneity of engineered nanoparticles (NPs), with respect 
to physicochemical properties and observed (eco)toxicological effects, makes their 
case-by-case testing for risk assessment unsustainable in terms of costs, time, and 
number of test animals (Basei et al., 2019). 

 
190. The large number of NPs and the high complexity associated with their 
interactions in biological and environmental systems (Mirshafiee, Osborne, Sun and 
Xia, 2018) have raised the call for Amendments of the REACH Annexes (EC, 
201775) to require additional information for the safety assessment of NPs.  

 
191. As stated in the introduction, to address these challenges, it has been widely 
agreed by regulators, industries and scientists that the way forward is to develop 
robust IATA that should be compliant with the 3R principles for reducing animal 
testing (Burden et al., 2017). These IATA would involve both experimental and 
modelling tools (Hristozov et al., 2016) to facilitate intelligent testing, grouping and 
read-across to inform both regulatory risk assessment and safer design of quality 
products. 

 
192. The application of in silico methods for grouping and read-across is subject to 
REACH Annex XI (Rudén and Hansson 2009). A group or category, according to 
REACH, is the arrangement of substances based on similar physicochemical and 
(eco)toxicological, toxicokinetic and/or environmental fate properties (ECHA, 
2017a76).  

 
193. OECD goes beyond identification of toxicological properties to support 
Grouping and identifies also mode of toxicological action as a relevant principle of 
similarity (OECD, 201477). 

 
194. Other possible ways to group NPs are based on commercial importance and 
volume of production, composition/chemistry (e.g. carbon-based; metal and 
metalloid oxides; metals, metal salts and metalloids; semiconductor quantum dots; 
organics and other classes) (RCC, 201378,79), on properties (such as dimension, 
shape, morphology, complexity and surface functionalization), or based on synthetic 
and biological identity (Lynch et al., 2014). 

 
195. Grouping can serve several purposes such as informing targeted testing for 
Risk Assessment, facilitating Safe-by-Design80 practices, and filling data gaps 
(Mirshafiee, Osborne, Sun and Xia, 2018).  

 
196. The physicochemical characteristics such as size (Osborne et al., 2015; Zhu 
et al., 2012), surface area (Monteiller et al., 2007), surface reactivity (Duffin et al., 
2007), surface functionality (Pelaz et al., 2015), charge, aspect ratio (Lin et al, 2014), 

 
74 https://ec.europa.eu/programmes/horizon2020/en/h2020-section/future-and-emerging-technologies  
75 EC, 2017. Amendments of the Annexes to REACH for Registration of Nanomaterials. European Commission.  
76 https://op.europa.eu/en/publication-detail/-/publication/492b96dc-5bde-11e7-954d-01aa75ed71a1/language-en  
77 https://www.oecd.org/env/guidance-document-on-the-validation-of-quantitative-structure-activity-relationship-q-sar-models-
9789264085442-en.htm  
78 https://www.oekopol.de/wp-content/uploads/2014/06/Work-Element-2.pdf  
79 http://science.gc.ca/eic/site/063.nsf/vwapj/nano3_e.pdf/$file/nano3_e.pdf  
80 Safe by design is the concept of applying methods to minimize occupational hazards early in the design process, with an 
emphasis on optimizing employee health and safety throughout the life cycle of materials and processes. 

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/future-and-emerging-technologies
https://op.europa.eu/en/publication-detail/-/publication/492b96dc-5bde-11e7-954d-01aa75ed71a1/language-en
https://www.oecd.org/env/guidance-document-on-the-validation-of-quantitative-structure-activity-relationship-q-sar-models-9789264085442-en.htm
https://www.oecd.org/env/guidance-document-on-the-validation-of-quantitative-structure-activity-relationship-q-sar-models-9789264085442-en.htm
https://www.oekopol.de/wp-content/uploads/2014/06/Work-Element-2.pdf
http://science.gc.ca/eic/site/063.nsf/vwapj/nano3_e.pdf/$file/nano3_e.pdf
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protein corona81 (Gebauer et al., 2012) and hydrophobicity (Li et al., 2008) could 
significantly affect material interactions with biological systems at the nanoscale (Nel 
et al., 2009). The latter is typically achieved through Read-Across, an established 
approach used to predict properties and/or effects for a “target” substance by using 
information from analogous “source” substance(s) (ECHA, 201782).  

 
197. Furthermore, Grouping for Read-Across is not only accepted under REACH, 
but is also applicable under different chemicals regulatory frameworks (Mech et al., 
2019): for instance, for risk assessment of NPs in the food and feed chain, the EFSA 
supports grouping for read-across from (other) NPs or non-NPs (Hardy et al., 2018). 

 
198. As an example, the H2020 GRACIOUS project83 is currently building upon 
these developments to generate a highly innovative science-based framework to 
enable practical application of Grouping, leading to Read-Across and classification of 
NPs.  

 
199. For classical chemical compounds, a number of descriptors (directly derived 
or computed starting from physicochemical properties are available and can be 
modelled, however the greater number of these descriptors are not applicable or not 
useful with respect to nanomaterials (NMs) (Puzyn et al., 2011; Winkler et al., 2013; 
Oksel et al., 2015). 

 
200.  Indeed, recently ECHA provided a guidance on how to identify and 
characterize NMs and nanoforms (NFs) (ECHA, 201784): in addition to “substance 
identity” parameters specified in Section 2 of Annex VI of REACH regulation 
(European Commission, 200685), which include composition of the substance, of 
impurities or additives, as well as information of surface chemistry and crystalline 
structure, other parameters that are relevant to characterize NPs are physical 
parameters such as size, shape and surface area. Other relevant parameters include 
solubility, hydrophobicity, zeta potential, dispersibility, dustiness, as well as biological 
(re)activity and photoreactivity. 

 
201. Examples include: 
 

• Grouping of nano-titanium dioxide (TiO2) to read-across genotoxicity 
according to the ECHA guidance including application of chemoinformatic 
approaches, by using measured physicochemical descriptors and 
nanospecific descriptors (mainly related to size distribution, zeta potential, and 
dispersibility) (Lamon et al., 2018). 
 

• Classification NanoSAR Development for Cytotoxicity of Metal Oxide 
Nanoparticles (Liu et al, 2011). 
 

• Development of SAR for metal oxide nanoparticles (Liu et al., 2013). 

 
81 Protein corona consists of proteins adsorbed from physiological fluids on NPs forming 
82 https://op.europa.eu/en/publication-detail/-/publication/841c5a3a-2981-11e7-ab65-01aa75ed71a1/language-en  
83 https://www.h2020gracious.eu/about  
84 https://op.europa.eu/en/publication-detail/-/publication/492b96dc-5bde-11e7-954d-01aa75ed71a1/language-en  
85 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410  

https://op.europa.eu/en/publication-detail/-/publication/841c5a3a-2981-11e7-ab65-01aa75ed71a1/language-en
https://www.h2020gracious.eu/about
https://op.europa.eu/en/publication-detail/-/publication/492b96dc-5bde-11e7-954d-01aa75ed71a1/language-en
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410
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202. Like other chemical compounds, to be able to predict the adverse 
(eco)toxicological effects of NPs by means of in silico tools, it is indeed fundamental 
to have access to high quality (meta)data86. Curation of the data is essential. Powers 
et al. (2015) proposed a data curation workflow: (i) assessing the quality and 
completeness of the selected data, (ii) extracting and annotating the data, (iii) 
contacting authors for any missing data, (iv) formatting the data for inclusion into the 
databases, (v) reviewing the data, (vi) releasing the curated data to target 
communities, and (vii) updating the curated data as new information is provided by 
the authors. 
 
203. Examples of nano repositories of data: 
 

• eNanoMapper87: Contains primary research data from various nano-EHS 
projects and from literature. 
 

• OCHEM88: Contains experimental data on nano and non-nanomaterials. 
Allows building and validating computational models from the available data 
using ML techniques. 
 

• NanoDatabank89: Includes data on NMs toxicity, characterization, fate and 
transport. 
 

• Nanowerk90: Contains physicochemical information and details on 
manufacturers of 4000 NMs from more than 150 suppliers worldwide. 
 

• SUN91: Includes physicochemical, release, exposure, in vitro and in vivo 
toxicological data. 
 

Nano-QSAR 
 
204. Nano-QSARs are QSAR models that use NPs-specific descriptors such as 
size, shape, surface area, relaxivities, solubility, zeta potential, corona composition, 
biodistribution, bioavailability, and surface charge in addition to structural and 
physicochemical properties (Winkler et al., 2013; Epa et al., 2012, Gajewicz et al., 
2014).  
 
205. Examples of studies include:  
 

• QSAR model for the prediction of the cellular uptake of NMs in pancreatic 
cancer cells using SMILES descriptors (Melagraki and Afantitis, 2014). 
 

 
86 Metadata is "data that provides information about other data". In short, it's data about data.  
87 http://www.enanomapper.net/  
88 https://ochem.eu/home/show.do  
89 http://nanoinfo.org/nanodatabank/  
90 https://www.nanowerk.com/  
91http://sun.iom-world.co.uk/  

http://www.enanomapper.net/
https://ochem.eu/home/show.do
http://nanoinfo.org/nanodatabank/
https://www.nanowerk.com/
http://sun.iom-world.co.uk/
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• Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles 
(Puzyn et al., 2011). 
 

• Nano-QSAR modelling for ecosafe design of heterogeneous TiO2-based 
nano-photocatalysts (Mikolajczyk et al., 2018). 
 

206. PBPK modelling of nanoparticles is an emerging field, PBPK may include 
nanomaterial-related descriptors such as traffic within tissues and cells, interaction 
with blood and tissue cells, tissue/blood partition coefficients, tissue concentration, 
and permeability through membranes (Li et al., 2012). 
 
207. Some examples include a study which used PBPK modelling for dietary risk 
assessment of TiO2 NMs (Bachler et al., 2015) and a PBPK model for ionic silver 
and silver NMs (Bachler et al., 2013). 
 
Mixtures 
 

208. Toxicity of chemicals is affected by interactions with other chemicals 
(Hamelink et al., 1994). Mixtures may exhibit adverse effects at NOAEL doses of 
each chemical separately. Assessing toxicity of chemicals separately may 
underestimate or overlook the adverse effects of mixtures. 
 
209. Therefore, ‘cumulative risk assessment’ was developed to study toxicity of 
mixtures (Løkke et al., 2013). However, there is lack of experimental datasets for 
toxicity of mixtures due to a large number of different combinations of chemicals (Kar 
and Leszczynski, 2019) such as exposure patterns, and complex interactions. It is 
challenging to test all combinations of these factors.  

 
210. Furthermore, predictive models must address concurrent and sequential 
exposure to mixtures. A recently developed database by NoMiracle (Novel Methods 
for Integrated Risk Assessment of Cumulative Stressors in Europe)92 contains 
mixtures’ toxicity datasets for eco-toxicological test species and human cell lines 
(Løkke et al., 2010). 

 
211. Methods for single chemicals may not be applicable for mixtures due to 
difficulty in determining the combined effect (Sarigiannis and Hansen, 2012). For 
example, dose-response models for mixtures vary depending on the dose ratios of 
chemicals in the mixture (Løkke et al., 2013). 

 
212. Additionally, co-administration of chemicals may alter their ADME properties, 
which should be taken into consideration when developing PBPK models for 
mixtures (Sarigiannis and Hansen, 2012). 

 
213. Unlike single chemicals, mixtures have no or very few experimental datasets 
for toxicity. 

 

 
92 https://ec.europa.eu/jrc/en/scientific-tool/novel-methods-integrated-risk-assessment-cumulative-stressors  

https://ec.europa.eu/jrc/en/scientific-tool/novel-methods-integrated-risk-assessment-cumulative-stressors


This is a preliminary background paper for discussion. 
It does not reflect the views of the Committee and should not be cited. 

36 
 

214. The reasons mentioned below make database preparation work difficult and 
multifaceted (Kar and Leszczynski 2019): 
 

a) toxicity data vary with different combinations of the same chemicals in a 
mixture 
 

b) form of exposure 
 

c) identification of each chemical in a specific mixture is also difficult due to the 
presence of very small quantities 
 

d) complex interactions among chemicals 
 

215. The assessment of a mixture’s toxicity is much more complex than toxicity 
evaluation of a single chemical. Interactions of chemicals in a mixture can be the 
reason for complex and significant changes in the apparent properties of its 
components.  
 
216. Bliss (1939) classified the joint action of mixtures into distinctive categories: 
 

• Joint action: Chemicals act independently and have different modes of action. 
The combined effect is calculated using the effects of constituents and their 
interactions. 
 

• Similar joint action: Chemicals act independently and have similar MoA. The 
combined effect is calculated using the dose-mortality curves of constituents. 
This category assumes that an ingredient in the mixture can be substituted for 
any proportion of another ingredient without changing the combined effect. 
 

• Concentration addition (Ca): If chemicals in a mixture showed same 
mechanism of action for a specific response and act on same site of action, 
then there are chances of dilution of the response. 
 

• Independent action (IA): If chemicals in mixtures act on different sites of 
action with dissimilar MoA, this may disclose statistically independent 
responses without interaction. 
 

217. If chemicals are interactive in nature, then they may show synergistic or 
antagonistic effects. Toxicity of synergistic action is greater than that of the 
constituent chemicals, while antagonistic action has lower toxicity than that of the 
constituents. Synergistic effects depend upon the proportion of constituents in 
mixtures unlike the first two categories in which chemicals act independently, and 
therefore, their proportions do not alter their combined effect. 
 
218. IA and Ca models have been criticized for being ineffective for chemicals that 
have high potency (dose to produce a given effect) but low efficacy (maximum effect) 
(Hardup et al., 2013) Therefore, a generalized concentration addition (GCA) model 
was developed to address these shortcomings (Howard and Webster 2009). GCA 
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calculates the combined effect of a mixture using the potency and efficacy of the 
mixture’s constituents (Hardup et al., 2013).  

 
219. Process-based models, however, are mechanistic models that usually use 
dynamic energy budgets theory such that the combined effect is calculated using the 
effects of constituents in addition to exposure time, toxicokinetic, and biological 
parameters, which allow for extrapolation between different species, chemicals, or 
exposure duration (Baas et al., 2010). 

 
220. In ecotoxicology93 there is a growing interest in effects of mixtures as in the 
environment there is a plethora of substances creating a cocktail effect (Relyea, 
2009).  

 
221. When the chemical composition of a mixture is known and constant, effects of 
mixtures can be described in a bottom-up approach, starting from the effects of the 
individual compounds that make up the mixture.  

 
222. An example of a process-based model is a study that performed simulations 
with a known mixture of 14 individual polycyclic aromatic hydrocarbons (PAHs) and 
predicted the no-effect concentration (NEC) for fathead minnow94 (P. promelas) of 
490 nM (Baas et al., 2010).  

 
223. Another mechanistic model is the receptor-oriented model, which is based on 
the premise that the toxicity of mixtures is caused by many chains of reactions that 
converge at the exposed receptor (i.e., an individual or population) (Løkke et al., 
2010). Examples include air contaminants (Astel, 2010) as well as wildlife and 
human exposure modelling (Loos et al., 2010). 

 
224. Other methods to assess toxicity of mixtures include numerical additive 
models such as hazard index, point of departure index, margin of exposure and 
cumulative risk index; chemical interaction models such as the interaction-based 
hazard index and isobole method; and statistical models such as tree-based 
clustering and weighted quartile score regression (Sarigiannis and Hansen, 2012). 

 
225. EuroMix95 has been aiming to establish novel testing and assessment 
strategies for chemical mixtures found in humans, as well as the relevant tests and 
models to go alongside them96. 

 
226. Recently artificial intelligence (AI) has been used in mixture models. Cipullo et 
al. (2019) employed two machine learning (ML) models, including random forest 
(RF) and artificial neural networks (NN) to predict temporal bioavailability followed by 
toxicity prediction employing predicted bioavailability features as the input of complex 
chemical mixtures. 
 

 
93 Ecotoxicology is the study of the effects of toxic chemicals on biological organisms, especially at the population, community, 
ecosystem, and biosphere levels. Ecotoxicology is a multidisciplinary field, which integrates toxicology and ecology.  
94 Fathead minnow (Pimephales promelas) is a species of temperate freshwater fish belonging to the genus Pimephales of the 
cyprinid family.  
95https://www.euromixproject.eu/  
96 https://library.wur.nl/WebQuery/wurpubs/fulltext/409001  

https://www.euromixproject.eu/
https://library.wur.nl/WebQuery/wurpubs/fulltext/409001
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Summary of in silico models  
 
227. As described above, in silico tools can be very effective in assessing 
chemicals’ toxicity. Therefore, to ensure accurate and effective application of in silico 
models, it is necessary to: 
 
(1) understand the methods’ strengths, limitations, scope of application, and 
interpretation 
 
(2) choose the most effective method for the problem at hand 
 
(3) customize these methods for each problem if necessary.  
 
228. In Table 1 a summary of in silico model elucidating approaches, advantages / 
disadvantages, limitations as well as existing software or databases. In Figure 8 a 
flow chart provides a practical guideline for choosing a method for certain types of 
features and toxicity endpoints.  
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Table 1 Table summary of in silico model elucidating approaches, 
advantages/disadvantages, limitations as well as existing software or databases 
(Table 1 taken from Raies and Bajic (2016) 
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Figure 8. Overview of in silico methods. Flow chart practical guideline for choosing a 
method for certain types of features and toxicity endpoints. Figure taken from Raies 
and Bajic (2016). 
 
Adverse Outcome Pathways 
 
229. Adverse outcome pathways (AOPs) are novel tools in toxicology and human 
risk assessment with broad potential. AOPs span multiple levels of biological 
organisation (Delrue et al., 2016). AOPs are designed to provide a clear-cut 
mechanistic representation of critical toxicological effects that span over different 
layers of biological organization. AOPs share a common structure consisting of a 
molecular initiating event, a series of intermediate steps and key events, and an 
adverse outcome. 
 
230. Development of AOPs ideally complies with OECD guidelines. In general, 
AOP development includes 3 consecutive steps, namely the identification of the 
main information blocks, the data summation and the evaluation (OECD, 201297). 

 
231. This also holds true for AOP evaluation, which includes consideration of the 
Bradford Hill criteria for weight of evidence (WoE) assessment and meeting a set of 
key questions defined by the OECD. 

 
232. Elaborate AOP frameworks have been proposed for chemical-induced skin 
sensitization, cholestasis, liver fibrosis and liver steatosis. These newly postulated 
AOPs can serve a number of ubiquitous purposes, including the establishment of 

 
97 http://www.oecd.org/chemicalsafety/testing/49963554.pdf  

http://www.oecd.org/chemicalsafety/testing/49963554.pdf


This is a preliminary background paper for discussion. 
It does not reflect the views of the Committee and should not be cited. 

41 
 

(quantitative) SARs, the development of novel in vitro toxicity screening tests and the 
elaboration of prioritization strategies. 

 
233. AOPs are a conceptual framework that portrays existing knowledge 
concerning the linkage between some molecular initiating event (MIE) and an 
adverse outcome (AO) (Groh et al., 2015) that occurs at a level of biological 
organization considered relevant to regulatory decision-making (Ankley et al., 2010).  

 
234. Individual AOPs are represented as sequences of measurable key event (KE) 
nodes that reflect a causal progression from an initial perturbation of normal biology, 
caused through direct interaction with a chemical, to a series of system failures at 
higher levels of biological organization (Groh et al., 2015). 

 
235. KEs are linked via Key Event Relationships (KERs) that define both the 
structural and functional relationship between a given pair of KEs and compile 
specific empirical evidence that supports the idea that if the upstream KE is altered 
to a sufficient degree, predictable changes (qualitative or quantitative) can be 
expected in the downstream event in the sequence. AOPs are described using 
modular assemblies of KE and KER descriptions.  

 
236. These modular descriptions, properly structured and connected in the AOP 
knowledge base (KB)98, provide the foundation for construction and analysis of AOP 
networks that can provide a more comprehensive, integrated, and biologically 
realistic synthesis of available knowledge concerning the ways chemicals can 
adversely impact organisms.  

 
237. Overall, AOPs and AOP networks provide structure for our knowledge of how 
a molecular initiating event (MIE) (or MIEs) can lead to deviations from normal 
healthy function of a biological system (i.e. adverse outcome (s)) (Wittwehr et al., 
2017). 

 
238. From a modelling perspective, structuring of knowledge is extremely 
informative for model design and development. In particular, AOPs can help reduce 
an initially overwhelmingly complex biology to the essentials necessary for a 
predictive model, avoiding model overload.  

 
239. A summary of an AOP represented in the form of a box and arrow diagram 
that identifies the KEs and KERs (Figure 9) provides an overall conceptual model 
that bounds the modelling challenge within a specific biological domain. It defines, 
for example, the key chemical biological interaction that triggers a toxicologically 
relevant biological perturbation by identifying the MIE. 

 
98 https://aopkb.oecd.org/index.html  

https://aopkb.oecd.org/index.html


This is a preliminary background paper for discussion. 
It does not reflect the views of the Committee and should not be cited. 

42 
 

 
Figure 9. Flow diagram depicting an adverse outcome pathway representing 
common chemicals triggering molecular initiating events leading to a sequential 
series of higher order effects to produce an adverse outcome. 

240. This can immediately inform the development of QSAR models and chemical 
categories useful for defining the chemical space for which the AOP is likely to have 
relevance. It then identifies the key biological pathways, functions and compartments 
(i.e. cell types, tissues, organs) in which the biology to be modelled operates. Each 
KE is defined at a particular level of biological organization, the AOP also provides a 
road map of the biological scales at which a single model, or series of models, must 
operate. In this way, the AOP suggests the heuristic99 domain and biological 
scope/space in which the prediction models should function. A second level of 
information in the AOP description that guides the development of prediction models 
is the description of the KEs (OECD, 2016100). In many cases, those with the 
computational modelling expertise may not be familiar with the biology represented 
in the AOP. 
 
241. The biological description of the KEs presented in the AOP-WIKI101 module 
provides the entry point or gateway that can introduce the modeler to the biology 
encompassed by the AOP and its events. Whereas this description may not be 
sufficient to fully support model design and formulation, it can suggest the 
appropriate biological subject matter experts with which the modeler may want to 
consult and partner.  

 
242. Additionally, it may be helpful in identifying the type of modelling approaches, 
mathematical, formalisms, and parameters that could be employed. For example, a 

 
99 Heuristic: enabling a person to discover or learn something for themselves.  
100 https://one.oecd.org/document/ENV/JM/MONO(2016)12/en/pdf  
101 https://aopwiki.org/  

https://one.oecd.org/document/ENV/JM/MONO(2016)12/en/pdf
https://aopwiki.org/
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KE involving enzyme inhibition may require identification of the type of inhibition (e.g. 
competitive, irreversible) and related kinetic constants. A KE involving cell 
proliferation or selective cell death may indicate the need to employ an agent-based 
modelling approach, whereas one involving an increased risk of disease may require 
a probabilistic approach. KE descriptions associated with an AOP also contain useful 
information regarding how a KE is measured (Wittwehr et al., 2017) 

 
243. This information helps define the kinds of data likely to be available, or which 
could be generated to inform model development. Identification of specific assays 
may, in some cases, provide useful information regarding data sources that the 
modeler(s) could utilize for model development purposes. For example, for KEs 
measured in ToxCast assays (Kavlock et al., 2012), association of the KE with an 
assay identifies a database102 of relevant data that may be useful for model 
development. Depending on the experimental method(s) used, additional information 
might be required to translate the raw output of the method to in vivo relevant data. 

 
244. Future modules of the AOP-KB (i.e. Effectopedia103) aim to provide 
standardized summaries of the data itself along with meta-information describing the 
test methods and transformation functions need to put those data into appropriate in 
vivo context. The identification of specific approaches used to measure a given KE 
can suggest the types of data that may serve as inputs to the model, and parameters 
that may be useful to simulate from an interpretive standpoint. For example, if the 
AOP involves enzyme inhibition that leads to a decrease in a circulating hormone 
followed by a loss of function in a particular cell type, one might want to design a 
model that can take a standardized measure of a chemical’s potency to inhibit the 
enzyme and predict the dose-response and time-course behaviour of the circulating 
hormone concentration, subject to feedback regulation and other modulating factors 
represented in the model (Wittwehr et al., 2017). 

 
245. Finally, identification of the methods used to measure the KEs can provide 
insights into the time-scales over which the variables represented as KEs can be 
measured. This provides information regarding the level of temporal resolution that 
the models should be designed to predict. 

 
246. KER descriptions (OECD, 2016104) are similarly useful. The KER description 
gives a summary of the WoE that establishes the causal nature of the relationship 
between 2 measurable biological events (Becker et al., 2015). The structure of the 
KER immediately defines key input and output parameters relevant for model 
simulation. Defining the biological plausibility of the relationship between the pair of 
KEs highlights the important biological context and the processes that need to be 
captured in the relationship model. Furthermore, the empirical evidence summarized 
in the KER description, provides references that can provide data for model 
parameterization, fitting, and/or testing. 
 

 
102 https://comptox.epa.gov/dashboard  
103 https://www.effectopedia.org/  
104 https://www.oecd-ilibrary.org/environment/users-handbook-supplement-to-the-guidance-document-for-developing-and-
assessing-adverse-outcome-pathways_5jlv1m9d1g32-en;jsessionid=ULi86IAy_Zk5_LEWGy_edG8a.ip-10-240-5-4  

https://comptox.epa.gov/dashboard
https://www.effectopedia.org/
https://www.oecd-ilibrary.org/environment/users-handbook-supplement-to-the-guidance-document-for-developing-and-assessing-adverse-outcome-pathways_5jlv1m9d1g32-en;jsessionid=ULi86IAy_Zk5_LEWGy_edG8a.ip-10-240-5-4
https://www.oecd-ilibrary.org/environment/users-handbook-supplement-to-the-guidance-document-for-developing-and-assessing-adverse-outcome-pathways_5jlv1m9d1g32-en;jsessionid=ULi86IAy_Zk5_LEWGy_edG8a.ip-10-240-5-4
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Case Study 1: Skin sensitisation 
 
247. An AOP which involves a MIE of covalent modification of cellular proteins in 
the skin by electrophilic chemicals, which results in an AO of sensitization of the skin 
to allergens105. 
 
248. Intermediate KEs in the AOP capture processes related to the induction of 
inflammatory cytokines by dendritic cells and keratinocytes, and activation and 
proliferation of T-cells that ultimately cause sensitization (Kimber et al., 2012). 

 
249. The scientific support for this AOP is considered to be strong (Patlewicz et al., 
2015; Perkins et al., 2015) so it also offers an excellent basis for development of 
quantitative models relating the MIE to the AO (Maxwell et al., 2014). In particular, 
there is a strong regulatory and scientific interest in applying mechanistic 
understanding captured in the AOP to help reduce and replace the need for animal 
testing associated with the hazard characterization and risk assessment of skin 
sensitizing chemicals for use in cosmetic and other consumer care products (e.g. 
soaps, lotions). 

 
250. The skin sensitization AOP has enabled a clearer dialogue with regulatory 
authorities and risk assessors on the mechanistic relevance of each of the in vitro 
approaches either when applied in isolation or when these datasets are combined 
using integrated testing strategies (ITS)/data integration procedures (DIP). 

 
251. Twelve skin sensitization DIPs have been identified and discussed as case 
studies within the OECD “Skin Sensitization IATA guidance working group” 
(including Bauch et al., 2012; Hirota et al., 2015; MacKay et al., 2013). 
 
Case Study 2: Activation of oestrogen receptor-a leading to diverse adverse 
outcome 
 
252. For some applications, quantitative modelling may only need to capture the 
MIE and/or very early KEs of an AOP. An example of this is illustrated by ongoing 
activities through the US EPA’s EDSP, the objective of which is to identify chemicals 
with potential to cause adverse effects through alteration of pathways associated 
with hypothalamic-pituitary-thyroidal (HPT) and hypothalamic-pituitary-gonadal 
(HPG) function (US EPA, 2014106).  
 
253. One MIE of concern is activation of the oestrogen receptor-alpha (ERα). 
Oestrogenic chemicals have been associated with a large number of different AOs 
involving reproduction and development in vertebrates (WHO/IPCS, 2002107).  

 
254. The development of a network model is to predict the potential for chemicals 
to act as oestrogens in vivo based on a chemical’s ability to elicit responses in high 
throughput in vitro assays that capture multiple aspects of the MIE, including binding 

 
105 https://aopwiki.org/wiki/index.php/Aop:40  
106 https://www.epa.gov/sites/production/files/2015-08/documents/edsp_comprehesive_management_plan_021414_f.pdf  
107 https://www.who.int/ipcs/publications/en/toc.pdf?ua=1  

https://aopwiki.org/wiki/index.php/Aop:40
https://www.epa.gov/sites/production/files/2015-08/documents/edsp_comprehesive_management_plan_021414_f.pdf
https://www.who.int/ipcs/publications/en/toc.pdf?ua=1
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to ERα, receptor dimerization, chromatin binding, transcriptional activation, and ER 
dependent cell proliferation (Browne et al., 2015; Judson et al., 2015).  

 
255. The quantitative model provides potency values for test chemicals relative to 
E2 (the ERα endogenous ligand) and was evaluated/validated by comparing model 
output to results from the uterotrophic assay, an in vivo pathway-based system 
considered to be a “gold standard” for identifying ERα agonists (Browne et al., 2015; 
Kleinstreuer et al., 2015). 

 
256. Whereas this particular quantitative model only reflects early portions of AOPs 
relevant to interaction with the ERα, it nonetheless has substantial utility for 
addressing one of the challenges faced by EDSP. Specifically, it is being utilized by 
the US EPA to prioritize 10,000-plus chemicals for more resource intensive in vivo 
testing necessary to assess potential risks, based on their predicted estrogenic 
potency.  

 
257. A recent “proof of concept” study conducted through the EDSP indicates that 
the quantitative model predictions, in conjunction with a rapid exposure assessment, 
provide a reasonable basis for test chemical prioritization based on agreement 
between the in vitro-based predictions and in vivo results available for a reference 
set of estrogenic compounds (US EPA, 201494).  

 
258. In this hazard-based scenario, the AOP provides a toxicological “anchor” for 
election/use of the high-throughput assays in the context of application of the 
computational model to hazard assessment. 
 
Case example 3: Evaluating pesticide toxicity to pollinators 
 
259. Key pollinator species, such as honeybees, have experienced significant 
worldwide declines, resulting in concerns for possible effects on global food 
production. In the USA, for example, a national strategy has been developed to 
assess the significance and causes of pollinator declines (White House, 2015)108. 
 
260. A number of chemical and nonchemical stressors have been proposed as 
contributing to declines, one of the more prominent of which are neonicotinoid 
pesticides (Godfray et al., 2015; EPA, 2016109). 

 
261. However, significant uncertainties exist as to the biological plausibility of a link 
between the MIE of neonicotinoids-activation of the nicotinic acetylcholine-receptor 
and impacts on honeybee colonies. 

 
262. To help assess the veracity of hypothesized effects of neonicotinoids on 
honeybees, LaLone et al. (2017) assembled an AOP network based on molecular, 
biochemical, physiological, behavioural, and population data from more than 220 
papers in the open literature. This demonstrated a plausible linkage between 
perturbation of nicotinic acetylcholine receptor signalling and adverse effects in 

 
108 https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/Pollinator%20Health%20Strategy%202015.pdf  
109 https://19january2017snapshot.epa.gov/newsreleases/epa-releases-first-four-preliminary-risk-assessments-insecticides-
potentially-harmful_.html  

https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/Pollinator%20Health%20Strategy%202015.pdf
https://19january2017snapshot.epa.gov/newsreleases/epa-releases-first-four-preliminary-risk-assessments-insecticides-potentially-harmful_.html
https://19january2017snapshot.epa.gov/newsreleases/epa-releases-first-four-preliminary-risk-assessments-insecticides-potentially-harmful_.html
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honeybees, but the analysis highlighted areas of uncertainty that would benefit from 
focussed research and/or monitoring (LaLone et al., 2017). 

 
263. In this example, the AOP framework supported integration of a complex, 
biologically-diverse dataset, in the context of evaluating causal relationships among 
endpoints at different levels of organization and served as a basis for generating 
hypotheses to test these interactions. 
 
Toxicity tiered testing 
 
264. Toxicity tiered testing is a set of biologically based toxicity testing decision 
triggers, developed and analysed within a tiered testing and decision-making 
framework for evaluating potential human health hazards and risks associated with 
chemical exposures.  
 
265. The proposed three-tiered toxicity testing approach (Figure 10) starts from a 
base set of toxicity studies (acute toxicity, in vitro genetic toxicity, in vitro 
cytogenetics, repeat dose/sub-chronic toxicity, developmental toxicity, reproductive 
toxicity) and then uses the toxicity triggers to identify which specific additional tests 
are needed to adequately characterize a substance’s hazard potential (Becker et al., 
2007). 
 

 
Figure 10. Example of tiered testing grouped into three tiers. 

266. These tiered and sequential testing approaches have been used to obtain the 
desired hazard information in an organized, efficient, and readily interpretable 
manner. 
 
267. The proposed tiered testing strategy begins with a battery of toxicity tests in 
Tier I, which is comprised of the OECD-Screening Information Data Set (SIDS)110 
base set. 

 
110 A screening information dataset (SIDS) is a study of the hazards associated with a particular chemical substance or group of 
related substances, prepared under the auspices of the Organisation for Economic Co-operation and Development (OECD). 
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268. After arraying the results of this base set, the specific toxicity data are 
evaluated using the toxicity triggers to determine which specific higher tiered tests 
would be warranted, due to the presence of an observed toxicity in accordance with 
the toxicity triggers and their associated decision criteria (Botham, 2004). 

 
269. The Tier I battery consists of the standard OECD-SIDS endpoints for human 
health evaluation for high production volume (HPV) chemicals (Federal Register, 
2000111). These Tier I tests provide both general toxicological information and 
specific information relevant to possible mode of action (MoA) that can be used to 
assess potential effects on human health and to determine when more extensive 
testing is warranted (Becker et al., 2007). 

 
270. Specific toxicity triggers were developed to be used in evaluating the results 
of the specific tests in Tier I and guiding decisions as to which (if any) specific 
additional toxicity tests (Tier II or III tests) may be needed in order to reduce 
uncertainties about the potential hazards of a given chemical (Becker et al., 2007). 

 
271. These toxicity-based decision triggers were developed based on collective 
extensive experience with toxicity testing and evaluation. It is intended that the 
toxicity decision criteria be applied along a designated pathway. In a given pathway, 
toxicity endpoints are linked together in such a way that specific findings from a test, 
such as a Tier I test for prenatal developmental toxicity, are used to trigger more in-
depth investigation of relevant endpoints in a more complex and definitive test, such 
as a Tier II 2-generation reproduction study or a Tier III developmental neurotoxicity 
test (Becker et al., 2007). 

 
272. Examples and case studies: 
 

• A Tiered Approach to Systemic Toxicity Testing for Agricultural Chemical 
Safety Assessment (Doe et al., 2006). 
 
Summary: A proposal has been developed by the Agricultural Chemical 
Safety Assessment (ACSA) Technical Committee of the ILSI Health and 
Environmental Sciences Institute (HESI) for an improved approach to 
assessing the safety of crop protection chemicals. The goal is to ensure that 
studies are scientifically appropriate and necessary, and that tests emphasize 
toxicological endpoints and exposure durations that are relevant for risk 
assessment. The ACSA Systemic Toxicity Task Force proposes an approach 
to systemic toxicity testing as one part of the overall assessment of a 
compound's potential to cause adverse effects on health. The approach is 
designed to provide more relevant data for deriving reference doses for 
shorter time periods of human exposure. This includes fewer studies for 
deriving longer term reference doses-that is, neither a 12-month dog study nor 
a mouse carcinogenicity study is recommended. All available data, including 

 
The substances studied are high production volume (HPV) chemicals, which are manufactured or imported in quantities of 
more than 1000 tonnes per year for any single OECD market. 
111 https://www.federalregister.gov/documents/2000/12/26/00-32498/data-collection-and-development-on-high-production-
volume-hpv-chemicals  

https://www.federalregister.gov/documents/2000/12/26/00-32498/data-collection-and-development-on-high-production-volume-hpv-chemicals
https://www.federalregister.gov/documents/2000/12/26/00-32498/data-collection-and-development-on-high-production-volume-hpv-chemicals
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TK and metabolism data and life stages information, are taken into account. 
The proposed tiered testing approach has the potential to provide new risk 
assessment information for shorter human exposure durations, while reducing 
the number of animals used and without compromising the sensitivity of the 
determination of longer-term reference doses. 
 

• Case Study: Incorporating new approach methodologies in toxicity testing and 
exposure assessment for tiered risk assessment using the RISK21 approach: 
Case studies on food contact chemicals (Turtley et al., 2019). 
 
Summary: Two indirect food additive chemicals where ToxCast data were 
compared with in vivo toxicity data using the RISK21 approach. Two food 
contact substances, sodium (2-pyridylthio)-N-oxide and dibutyltin dichloride, 
were selected, and available exposure data, toxicity data, and model 
predictions were compiled and assessed. Oral equivalent doses for the 
ToxCast bioactivity data were determined by in-vitro in-vivo extrapolation 
(IVIVE). For sodium (2-pyridylthio)-Noxide, bioactive concentrations in 
ToxCast assays corresponded to LOAELs and NOAELs in animal studies. For 
dibutyltin dichloride, the ToxCast bioactive concentrations were below the 
dose range that demonstrated toxicity in animals; however, this was 
confounded by the lack of toxicokinetic data, necessitating the use of 
conservative toxicokinetic parameter estimates for IVIVE calculations. This 
study highlights the potential utility of the RISK21 approach for interpretation 
of the ToxCast HTS data, as well as the challenges involved in integrating in 
vitro HTS data into safety assessments. 
 

• Case Study: Use of a Pro-Fibrogenic Mechanisms-Based Predictive 
Toxicological Approach for Tiered Testing and Decision Analysis of 
Carbonaceous Nanomaterials (Wang et al., 2015). 
 
Summary: Engineered carbonaceous nanomaterials (ECNs), including single-
wall carbon nanotubes (SWCNTs), multiwall carbon nanotubes (MWCNTs), 
graphene, and graphene oxide (GO), are potentially hazardous to the lung. 
With incremental experience in the use of predictive toxicological approaches, 
seeking to relate ECN physicochemical properties to adverse outcome 
pathways (AOPs), it is logical to explore the existence of a common AOP that 
allows comparative analysis of broad ECN categories. We established an 
ECN library comprising three different types of SWCNTs, graphene, and 
graphene oxide (two sizes) for comparative analysis according to a cell-based 
AOP that also plays a role in the pathogenesis of pulmonary fibrosis. 
SWCNTs synthesized by Hipco, arc discharge and Co-Mo catalyst 
(CoMoCAT) methods were obtained in their as-prepared (AP) state, following 
which they were further purified (Pd) or coated with Pluronic F108 (PF108) or 
bovine serum albumin (BSA) to improve dispersal and colloidal stability. GO 
was prepared as two sizes, GO-small (S) and GO-large (L), while the 
graphene samples were coated with BSA and PF108 to enable dispersion in 
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aqueous solution. In vitro screening showed that AP- and Pd-SWCNTs, 
irrespective of the method of synthesis, as well as graphene (BSA) and GO (S 
and L) could trigger interleukin-1β (IL-1β) and transforming growth factor-β1 
(TGF-β1) production in myeloid (THP-1) and epithelial (BEAS-2B) cell lines, 
respectively. Oropharyngeal aspiration in mice confirmed that AP-Hipco 
tubes, graphene (BSA-dispersed), GO-S and GO-L could induce IL-1β and 
TGF-β1 production in the lung in parallel with lung fibrosis. Notably, GO-L was 
the most pro-fibrogenic material based on rapid kinetics of pulmonary injury. 
In contrast, PF108-dispersed SWCNTs and graphene failed to exert 
fibrogenic effects. Collectively, these data indicate that the dispersal state and 
surface reactivity of ECNs play key roles in triggering a pro-fibrogenic AOP, 
which could prove helpful for hazard ranking and a proposed tiered testing 
approach for large ECN categories. 

Data 
 
273. In silico modelling requires access to data on the investigated endpoint(s) that 
are sufficient both in terms of quantity and quality. 
 
274. Toxicological data and information are crucial to in silico safety assessment 
not only in terms of availability, but also their abundance and quality. The current 
status is an increasing number of data relating to the adverse effects of chemicals 
which range from the results of high content analyses to historical toxicity data 
across a number of publicly and commercially available databases. 

 
275. There is also a wealth of (potentially high quality) toxicological data in the 
archives of business, and pharmaceutical companies in particular, which would offer 
great opportunities if exploited (Cronin et al., 2019). This has brought forward the 
concept of data sharing to enable access to otherwise untapped resources.  

 
276. One key factor identified from the literature is the requirement for detailed 
recording of the data, model and supporting documentation to enable the validity of 
the model and its applicability for a given purpose to be ascertained. A checklist-style 
reporting format has previously been developed by the European Commission's Joint 
Research Centre (JRC, Ispra), known as the (Q)SAR Model Reporting Format 
(QMRF)112. This provides a template for recording key information about QSAR 
models and associated validation studies. The format was designed with adherence 
to the OECD Principles in mind.  
 
Data Quality 
 
277. The inherent quality of the data upon which a model is built is arguably the 
most important characteristic of any model. Data quality here refers to the accuracy 
and completeness of the information on the chemicals studied as well as the 
adequacy and reliability of the experimental data (Young et al., 2008; Beck and 
Geppert, 2014). 
 

 
112 https://publications.jrc.ec.europa.eu/repository/bitstream/JRC107491/kjna28713enn.pdf  

https://publications.jrc.ec.europa.eu/repository/bitstream/JRC107491/kjna28713enn.pdf
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Data/Model Validation 
 
278. Unlike in vitro alternatives, which have a distinct protocol for validation by 
organisations such as the European Centre for the Validation of Alternative Methods 
(ECVAM)113 in silico models have not yet been verified in such a formalised manner. 
Given the degree of diversity seen in available in silico models (model architecture, 
statistical analyses used, dataset size and composition, etc.) developing a universal 
approach is difficult (Hewitt et al., 2015). 
 
279. Another significant factor that impedes greater acceptance of models is not 
that the model itself lacks validity but the level of detail by which the model is 
recorded is insufficient to allow judgement of model quality; this again means the 
model cannot be used with confidence.  

 
280. Increased acceptance and uptake of in silico modelling approaches will only 
be possible where confidence in the applicability and usefulness of a model to 
provide a given prediction can be assured. In a recent scientific report on modern 
methodologies and tools for human hazard assessment of chemicals, EFSA 
highlighted the need for validation of predictive models as an important step in their 
utilisation for chemical risk assessment114. 

 
281. It has been stated that some factors should be considered when assessing 
the validity of an in silico model, appropriate recording of model details and a 
pragmatic scheme that can be applied for model verification (Hewitt et al., 2015). 

 
282. Several factors were considered to be of key importance in developing the 
assessment scheme to be used for model verification (Figures 11 & 12) (Hewitt et 
al., 2015): 
 

(i) Carrying out an assessment of a model had to be a realistic task both in 
terms of the required expertise of the individual and the time needed to 
conduct such an assessment. 
 

(ii) The assessment criteria had to be presented in a format which would be 
compatible with a wide range of operating systems and software. 
 

(iii) The verification process had to be transparent, scientifically justifiable and 
the results readily accessible to end users. 
 

(iv) The introduction of a peer review i.e. the model builders themselves 
prepare and submit all required documentation and supporting data, such 
that an external verification can be readily carried out. The role of the 
model verifier is then to check the submission for accuracy, completeness 
and reproducibility. 
 

 
113 https://eurl-ecvam.jrc.ec.europa.eu/  
114 https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2014.3638  

https://eurl-ecvam.jrc.ec.europa.eu/
https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2014.3638
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(v) model documentation i.e. a model's identity and its developers, the 
endpoint investigated, training/test set data (including source), model 
algorithm/ summary statistics, external predictivity, mechanistic 
information, applicability domain and interpretation of prediction. 
 

(vi) Data used to build the model and consistency of model output i.e. the 
nature and quality of data used to build a model is a major determining 
factor in model acceptability. It was therefore considered prudent to 
include an assessment of the dataset(s) used to develop a model as part 
of the verification process. 
 

(vii) Implementation of the model i.e. the final component of the assessment 
criteria relates to how a model is implemented. This includes: model 
stability, robustness to input files, consistency of output. 

 
Figure 11. Overall process of model development and verification (Figure taken from 
Hewitt et al., 2015): 
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Figure 12. Specific requirements of the verifier (Figure taken from Hewitt et al., 
2015). 

Databases 
 
283. It has been stated that the nature and quality of data used to build a model is 
a major determining factor in model acceptability. 
 
284. Data sharing projects, such as PubChem115 (Wang et al., 2009) have made 
chemical “big data” publicly available, which advanced modern toxicology studies 
into a big data era (Zhu et al., 2014) and even using them in risk assessment 
(Luechtefeld et al., 2018). 

 
285. The term “big data” refers to data sets, structured or unstructured, that 
multiply quickly and are so large and multifaceted that they are impossible to treat 
using personal computers and traditional computational approaches (Gandomi and 
Haider 2015). 

 
286. Data sets with big data require advanced tools such as heterogeneous and 
cloud computing (Schadt et al, 2011) that have capabilities beyond those of 
conventional data processing and handling techniques as well as dynamic data 
curation and sharing using algorithms such as those used to handle data streams 
(Liu et al., 2007; Charikar et al., 2003). 

 

 
115 https://pubchem.ncbi.nlm.nih.gov/  

https://pubchem.ncbi.nlm.nih.gov/
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287. Publicly available databases store much of the data obtained from the 
toxicology community, including data from HTS programs such as the ToxCast and 
Tox21 programs (Ciallella and Zhu 2019). 

 
288. A selection of significant sources representing publicly available big data in 
the toxicology field (Ciallella and Zhu 2019): 
 

• ACToR116: EPA’s Aggregated Computational Toxicology Online Resource 
(ACToR) aggregates data from thousands of public sources on over 500,000 
chemicals. It is searchable by chemical name and other identifiers. ACToR is 
also the data and web applications warehouse for EPA’s computational 
toxicology information which includes high-throughput screening, chemical 
exposure, sustainable chemistry (chemical structures and physicochemical 
properties) and virtual tissues data.  
 

• CEBS117: Chemical Effects in Biological Systems (CEBS) database. CEBS 
(Chemical Effects in Biological Systems) is an integrated public repository for 
toxicogenomic data, including the study design and timeline, clinical chemistry 
and histopathology findings and microarray and proteomics data. CEBS 
contains data derived from studies of chemicals and of genetic alterations, 
and is compatible with clinical and environmental studies. CEBS is designed 
to permit the user to query the data using the study conditions, the subject 
responses and then, having identified an appropriate set of subjects, to move 
to the microarray module of CEBS to carry out gene signature and pathway 
analysis (Waters et al., 2007). 
 

• RepDose118: A database on repeated dose toxicity studies of commercial 
chemicals (Bitsch et al., 2006) 

Sharing data 
 
289. One of the most well knowns databases is ChemSpider119. It is a free 
chemical structure database owned by the Royal Society of Chemistry providing 
access to over 67 million structures, properties, and associated information. It also 
integrates and links compounds from hundreds of high-quality data sources.  
 
290. Another example is the Kyoto Encyclopaedia of Genes and Genomes (KEGG) 
Pathway database120  which is a valuable collection of metabolic pathway maps for 
metabolism, genetic information processing and other functions. 

 
291. Two international initiatives, the eTOX121 and the eTRANSAFE122 projects, 
have shown how sharing data (previously considered to be commercially sensitive) 
could be achieved, on a with cost basis, with the former project showing 

 
116 https://actor.epa.gov/actor/home.xhtml  
117  https://manticore.niehs.nih.gov/cebssearch/  
118 https://repdose.item.fraunhofer.de/  
119 http://www.chemspider.com/  
120 https://www.genome.jp/kegg/  
121 http://www.etoxproject.eu/  
122 https://etransafe.eu/  

https://actor.epa.gov/actor/home.xhtml
https://manticore.niehs.nih.gov/cebssearch/
https://repdose.item.fraunhofer.de/
http://www.chemspider.com/
https://www.genome.jp/kegg/
http://www.etoxproject.eu/
https://etransafe.eu/
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demonstrable success and promise for the future (Sanz et al., 2017; Piñero et al., 
2018).  

 
292. The development of these databases from in-house data complement other 
activities, such as the freely available COSMOS123, which have focussed on sharing 
data for non-pharmaceutical compounds such as cosmetics ingredients and 
fragrances.  

 
293. The DSSTox Database incorporates state-of-the-art cheminformatics 
workflows, provides the chemical infrastructure for EPA’s Safer Chemicals 
Research, including the ToxCast and Tox21 high-throughput toxicology efforts.   

 
294. The DSSTox project has the following major elements (Richard and Williams 
2002): 
 

(1) to adopt and encourage the use of a common standard file format (structure 
data file (SDF)) for public toxicity databases that includes chemical structure, 
text and property information, and that can easily be imported into available 
CRD applications. 
 

(2) to implement a distributed source approach, managed by a DSSTox Central 
Website, that will enable decentralized, free public access to structure–toxicity 
data files, and that will effectively link knowledgeable toxicity data sources 
with potential users of these data from other disciplines (such as chemistry, 
modelling, and computer science). 
 

(3) to engage public/commercial/academic/industry groups in contributing to and 
expanding this community-wide, public data sharing and distribution effort.  
 

295. More recently the distributed structure-searchable toxicity (DSSTox)124 public 
database has been established. DSSTox provides a high-quality public chemistry 
resource for supporting improved predictive toxicology. A distinguishing feature of 
this effort is the accurate mapping of bioassay and physicochemical property data 
associated with chemical substances to their corresponding chemical structures.   
 
296. The DSSTox project’s overall aims are to effect the closer association of 
chemical structure information with existing toxicity data, and to promote and 
facilitate structure-based exploration of these data within a common chemistry-based 
framework that spans toxicological disciplines. 

 
297. These projects have helped identify and resolve a number of problems; for 
instance, integration of data from different sources requires the development and 
implementation of ontologies and other standards eTOX being an example where 
effort was made to create standardised ontologies (Cronin et al., 2019). 

 

 
123 http://www.cosmostox.eu/home/welcome/  
124 https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database  

http://www.cosmostox.eu/home/welcome/
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298. Currently, there is still no universal criterion to select modelling approaches 
for big data sets (Ciallella and Zhu 2019). 
 
Methodologies to obtain data 
 
High throughput screening 
 
299. High throughput screening (HTS) is an automated experimental platform for 
rapidly identifying a small number of molecular entities or conditions with unique 
biological properties from a large number of tests (Figure 13). A screen is generally 
considered high throughput if it can assay > 10,000 assays (wells) per day. HTS 
allows a researcher to quickly conduct millions of tests and to rapidly identify relevant 
modifier genes, proteins, or compounds involved in a specific biological pathway 
(Zhong et al., 2015). 
 
300. Robotic fluid handling and microspotting125 facilitate high-throughput studies 
of different immobilized factors in microarrays, but require time-dependent 
stimulation to be applied simultaneously (Lanza et al., 2011). 

 
301. Many of the technological advances aided HTS advancement, specifically in 
the following areas (Hertzberg and Pope, 2000): 
 

1. Assay methods and detection (bioware). 
 

2. Liquid handling and robotics (hardware). 
 

3.  Process flow and information management (software). 
 

302. The first HTS methods were developed by the pharmaceutical industry 
(Hertzberg and Pope, 2000) and were in vitro assays measuring molecular 
interactions by fluorescence, luminescence, or absorbance readouts (Inglese et al., 
2007; Macarron, 2006; Macarron and Hertzberg, 2009).  
 
303. A smooth transition from hits generated in vitro to efficacious compounds in 
more complex disease models in cells, tissues, and most critically in animal models 
has often been hard to accomplish (Houston and Galetin, 2008; Zhang et al., 2000).  
  

 
125A contact-based method of transferring nucleic acids and peptides, which utilises pins or capillaries to deposit biomolecules 
on a solid surface  
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Figure 13. A fully integrated multifunctional robotic screening system. The system is 
fully enclosed and comprises the following components: (1) Mitsubishi MELFA RV2A 
6-axis robot; (2) Caliper Sciclone ALH3000 with interchangeable 96-or 384-tip 
pipetting head, an independent 8-channel pipettor, two bulk-reagent dispensers, and 
plate gripper (2a). The following accessories are integrated into the Sciclone: 
microtiter plate shaker (2b); positive-pressure filtration system (2c); and ultrasonic 
tip-wash station (2d). (3) PerkinElmer Fusion with 11-mode detection, which includes 
absorbance, fluorescence, fluorescence polarization, timeresolved fluorescence, 
time-resolved fluorescence–resonance energy transfer, AlphaScreenTM, etc. (4) 
Kendro Cytomat6001 with humidity, temperature and CO2 controls, and 189 normal 
microtiter plate storage capacity. (5) Biotek ELX-405 plate washer, which can be 
used for 96-well and 384-well plates. (6) Volecity11 Vspin centrifuge can be used for 
normal and deep well plates. (7) Thermo CRS high-capacity stacker is used to store 
up to 32 stacked tip boxes. (8) PerkinElmer Flexdrop equipped with four individual 
dispensing heads that can dispense four bulk reagents in a broad volume range for 
each head (from 200 nl to 2 ml). (9) Velocity11 Vcode automatic barcode labeler. 
(10) MicroScan MS-3 barcode reader. (11) Caliper plate regrip station that changes 
the plate orientation to facilitate the interaction between the robot arm and individual 
components. (12) Kendro room temperature incubator that stores 189 regular 
microtiter plates. (13) Caliper plate-lid-handling station. (14) Six Variomag shaker 
station that provides an independent plate-shaking operation (behind the monitor, 
not visible). (15) Liberty Industry air purifier provides ultra-dust-free conditions for the 
enclosed system and prevents the introduction of contaminants, from the 
surrounding air, to the work area. The reader table is modular and can be swapped 
for another reader if necessary. (Figure taken from Wu and Doberstein 2006). 
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304. Cell-and animal-based assays have the advantage of identifying compounds 
within the complex environments of cells and tissues but are more costly, difficult to 
miniaturize, and tend to have lower throughput due to their complexity. Diseases that 
affect the brain add another layer of complications. Mature neurons differentiated in 
vivo must be derived from primary sources and are difficult to transfect. Thus, most 
primary large-scale screens use neuroblastoma cell lines.  
 
305. Better culturing and transfection protocols, however, now make HTS with 
primary neurons more feasible, and the increased biological and clinical relevance 
(Daub et al., 2009; Nolan, 2007) is worth the extra effort and expense. 

 
306. HTS data were already proposed as a means by which to prioritize chemicals 
for further testing (U.S. EPA, 2014126). A comparison of HTS data with animal data 
for predictivity assessments of human toxicity is ongoing (Liu et al., 2017).  

 
307. The goal is to use in vitro data to predict in vivo human effects, reducing the 
reliance on animal testing (NCATS, 2016127; NTP, 2016128). The EPA's ToxCast 
programme, which is part of the larger Tox21 interagency collaboration, has provided 
a wealth of HTS data to the toxicology community, generating data on more than 
3000 chemicals across 1000 assay endpoints, with the goal of generating screening 
data that could be used for prioritizing chemicals for further testing (Dix et al., 2007; 
Richard et al., 2016). 

 
308. Nel et al. (2012) stated key ingredients for developing predictive toxicology 
through HTS approaches towards NPs: 
 

• A well-characterized nanoparticle library. 
 

• The second infrastructure requirement for a predictive toxicological approach 
is the development of appropriate HTS approaches to quantitatively assess 
dose- and time-dependent cellular injury responses that are predictive of in 
vivo adverse outcomes through assays. 
 

• Mechanistic injury pathways such as: oxidative stress, dissolution and release 
of toxic metal ions; cationic injury to surface membrane and organelles; pro-
fibrogenic responses to CNT; inflammasome activation by long aspect ratio 
materials; photoactivation and influence of bandgap; zebrafish embryo 
hatching interference; cell membrane lysis by surface reactivity. 
 

• Development of a data analysis framework that includes in silico tools for data 
analysis, data transformation, machine learning and modelling of HTS data. 
 

309. HTS can facilitate collecting data for biological heat maps (Figure 14). Biology 
heat maps are typically used in molecular biology to represent the level of 
expression of many genes across a number of comparable samples (e.g. cells in 

 
126 https://www.epa.gov/chemical-research/rapid-chemical-exposure-and-dose-research  
127 https://ncats.nih.gov/tox21  
128 https://ntp.niehs.nih.gov/whatwestudy/tox21/index.html  

https://www.epa.gov/chemical-research/rapid-chemical-exposure-and-dose-research
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different states, samples from different patients) as they are obtained from DNA 
microarrays. 
 
310. High-density data sets with hundreds to thousands of data points for each 
tested subject. In the field of toxicology, genomics technologies have been used to 
investigate how different stresses alter gene expression. For large data sets, 
including large human clinical/epidemiological studies, it can be problematic to 
effectively evaluate the phenotypic anchor, due to the sheer number of data points to 
consider (Auman et al., 2007).  

 
311. Clinical chemistry data are often viewed in a data table or a bar graph, where 
one can examine the changes that occur for one analyte across the groups of 
interest. For a study involving only one or a few compounds, these types of 
visualizations help investigators determine how subjects in each group react to the 
given stressor. However, for large animal data sets involving multiple compounds, 
dose groups, and time points, it is very difficult to give a meaningful visual 
representation of the data with traditional bar graphs due to the number of data 
points that exist in these types of experiments (Auman et al., 2007). 
 

  
Figure 14. How data from heatmaps is obtained through HTS. Heatmaps help to 
represent the level of expression of many genes across a number of comparable 
samples (e.g. cells in different states, samples from different patients) from large 
data sets obtained through HTS. 

312. Another example of the utility of HTS is gathering data for self-organising 
maps to visualise and analyse the diversity of databases. (Kohonen, 1991; Oja and 
Kaski 1999). 
 
313. Examples of heatmaps and self-organisation: 
 

• Heat map visualization of high-density clinical chemistry data (Auman et al., 
2007). 
 

• Use of an HTS approach coupled with in vivo zebrafish embryo screening to 
develop hazard ranking for engineered nanomaterials (George et al., 2011). 
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Emerging Technologies 
 

Microfluidics 
 
314. Recent advances in microfluidic platforms, which facilitate studies of diffusible 
growth factors with spatial and temporal control, have historically been difficult to 
scale-up into larger, individually manipulated culture chambers (Bhumiratana, 2014). 
However, versatile, fully automated microfluidic cell culture systems that create 
arbitrary media formulations in independent cell culture chambers can help address 
these requirements (Bhumiratana, 2014). 
 
315. Based on cell handling techniques, microfluidics has been widely applied in 
the fields of Polymerase Chain Reaction (PCR), immunoassays, organ-on-chip, stem 
cell research, and analysis and identification of circulating tumour cells. As a major 
step in drug discovery, HTS allows rapid analysis of thousands of chemical, 
biochemical, genetic or pharmacological tests in parallel. 

 
316. Culture conditions can be customized in terms of cell seeding density, 
composition of culture medium, and feeding schedule, and each culture chamber 
can be imaged with time-lapse microscopy. Multiplexers and mixers (controlled by 
actuators and valves) allow generation of broad ranges of medium compositions and 
accurately control the temporal feeding/washing patterns (Bhumiratana, 2014). 

 
317. Recently, microfluidic devices have been proposed as a potential platform for 
HTS technology because of their properties of low sample consumption, low analysis 
cost, easy handling of nanoliter-volumes of liquids and being suitable for cell-based 
assays (Dittrich and Manz, A 2006; Neužil et al., 2012; Hong et al., 2009). 

 
318. There are many applications making use of these properties of microfluidics, 
with a plethora in drug discovery. Some representative examples include: 

 
319. Ye et al. (2007) presented a high content multiparametric screening method 
(plasma membrane permeability, nuclear size, mitochondrial transmembrane 
potential and intracellular redox states) for human liver carcinoma (HepG2) 
responding to multiple anti-cancer drugs with different concentrations by integrating 
8 such gradient generators with parallel cell culture chamber (Qin, et al., 2005) 
(Figure 15). 
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Figure 15. Schematic of the integrated microfluidic device for cell-based high content 
screening (HCS). (a) The device consists of eight uniform structure units and each 
unit is connected by a common reservoir in the centre of the device. (b) Magnified 
section of the single structure unit containing an upstream concentration gradient 
generator (CGG) and downstream parallel cell culture chambers (Figure taken from 
Yen et al., 2007). 

320. Chen et al. (2012) reported a platform based on stable isotope labelling 
carried out in a microfluidic chip with electrospray ionization mass spectrometry for 
qualitative and quantitative analysis of the metabolism of cells treated by drugs. This 
platform has integrated cell culture chambers, on-chip sample preparation (i.e. a 
solid phase extraction (SPE) module) and ESI-MS (Figure 16). This platform has the 
potential to be used as an on-line multiparameter cell metabolism analysis platform 
for high throughput drug screening. 

 
Figure 16. Schematic diagram of the chip ESI-MS platform for qualitative and 
quantitative analysis of the metabolic activity of cells exposed to drugs (Figure taken 
from Chen et al., 2012). 

321. The use of hanging drops on the underside of culture plate lids is a typical 
method to generate 3D cellular spheroids. 3D cell spheroid culture allows for cellular 
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self-organization and enables straightforward monitoring. As a result, the method 
can provide valuable information that is physiologically more relevant than 2D cell 
culture. 
 
322. Tsung et al. (2011) achieved a hanging droplet microarray system for drug 
testing in cellular spheroid formation (Figure 17). This platform significantly simplified 
the experimental process for cell culture and cellular formation in hanging droplets.  
 

 
 

Figure 17. (a) Illustration of the designed 384 hanging drop spheroid culture array 
plate, and its cross-sectional view. (b) Photo and key dimensions of the array plate. 
(c) Cartoon of the hanging drop formation process in the array plate. The pipette tip 
is first inserted through the access hole to the bottom surface of the plate, and cell 
suspension is subsequently dispensed. Cell suspension is quickly attracted to the 
hydrophilic plate surface and a hanging drop is quickly formed and confined within 
the plateau. Within hours, individual cells start to aggregate and eventually form into 
a single spheroid around 1 day. (d) Photo of the 384 hanging drop array plate 
operated with liquid handling robot capable of simultaneously pipetting 96 cell culture 
sites. (e) Cartoon of the final humidification chamber used to culture 3D spheroids in 
the hanging drop array plate. The 384 hanging drop array plate is sandwiched 
between a 96-well plate filled with distilled water and a standard-sized plate lid. 
Distilled water from the bottom 96-well plate and the peripheral water reservoir 
prevent serious evaporation of the small volume hanging drops (Figure taken from 
Tsung et al. (2011)). 
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Organ on a chip  
 
323. Organs on chips are microengineered biomimetic systems that represent key 
functional units of living human organs. They often consist of transparent 3D 
polymeric microchannels lined by living human cells and replicate three important 
aspects of intact organs: the 3D microarchitecture defined by the spatial distribution 
of multiple tissue types; functional tissue-tissue interfaces; and complex organ-
specific mechanical and biochemical microenvironments (Huh et al., 2011, 2010). 
 
324. These systems could be used as specialized in vitro models that permit 
simulation, mechanistic investigation and pharmacological modulation of complex 
biological processes. 
 
325. In recent years, this biomimetic microsystem approach has been used to 
establish microengineered models that recapitulate the structural and functional 
complexity of human organs such as the liver, heart, lung, intestine, kidney, brain 
and bone (Huh et al., 2012) 

 
326. A representative example is the lung on-a-chip microdevice that reconstitutes 
the mechanically active alveolar-capillary barrier in the human lung (Figure 18). This 
model is created in a compartmentalized 3D microfluidic system in which human 
alveolar epithelial cells are cultured in close apposition with human pulmonary 
microvascular endothelial cells on a thin porous elastomeric membrane to form a 
barrier tissue that resembles the in vivo alveolar-capillary interface. This microfluidic 
cell culture system is integrated with a biologically inspired mechanical actuation 
system that uses computer-controlled negative pressure to cyclically stretch the 
alveolar-capillary barrier to mimic physiological breathing motions (Huh et al., 2012). 
 

 
Figure 18. a) A human breathing lung-on-a-chip was created by co-culturing human 
alveolar epithelial cells and pulmonary microvascular endothelial cells on opposite 
sides of a stretchable porous membrane to replicate the alveolar-capillary boundary 
of the breathing human lung. A vacuum was applied to mimic the tissue stretch that 
occurs during normal breathing. b) this system was used to reconstitute integrated 
organ-level functions such as inflammatory responses to intra-alveolar pathogenic 
bacteria such as Escherichia coli that are mediated by endothelial recruitment of 
circulating neutrophils, transmigration through the alveolar-capillary interface and 
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subsequent bacterial phagocytosis. c) The lung-on-a-chip was used to model human 
lung diseases such as pulmonary oedema. Administration of interleukin-2 into the 
microvascular channel resulted in fluid leakage into the alveolar compartment, 
recapitulating the pulmonary oedema induced by acute toxicity of interleukin-2 that is 
observed in patients with cancer (Figure taken from Huh et al., 2012)). 

327. Bioprinting is a revolutionary technology to assemble scaffolds for growing 
tissue. It has been applied to fabricate organ-on-a-chip models owing to its ability to 
print multiple materials and cell types simultaneously with good spatial resolution and 
reproducibility. This enables the creation of a biomimetic microenvironment with 
heterogeneous 3D structures. Functional vascularized tissue structure can be printed 
directly enabling fluid flow for transport of nutrition, gaseous exchange and removal 
of waste (Yu and Choudhury, 2019). 
 
328. Bioprinting allows automated fabrication of reproducible tissue constructs with 
precise control over spatial parameters. Organ-on-a-chip platforms offer the ability to 
mimic physiological, mechanical and chemical cues in vitro. Integration of the two 
technologies presents a promising direction for high-throughput drug validation and 
testing as an alternative to animal and human models. Bioprinted cell models on 
microfluidic chips that mimic the microenvironment, spatial distribution and 
vasculature represent a promising strategy for future 4-D bioprinting, where smart 
materials are printed (Yu and Choudhury, 2019). 
 
Plant scaffolds 
 
329. A recent study (Gershlal et al., 2017) discussed using plant tissues as 
scaffolds for regenerating large volume vascularized tissue. By taking advantage of 
the similarities in the vascular structure of plant and animal tissues, they developed 
decellularized plant tissue as a pre-vascularized scaffold for tissue engineering. 
Perfusion-based decellularization was modified for different plant species, providing 
different geometries of scaffolding. After decellularization, plant scaffolds remained 
patent and able to transport microparticles. Plant scaffolds were recellularized with 
human endothelial cells that colonized the inner surfaces of plant vasculature. 
Human mesenchymal stem cells and human pluripotent stem cell derived 
cardiomyocytes129 adhered to the outer surfaces of plant scaffolds. Cardiomyocytes 
demonstrated contractile function and calcium handling capabilities over the course 
of 21 days.  
 
Artificial Intelligence 
 
330. Experts from environmental health sciences had a workshop (NIEHS-funded 
workshop was sponsored by the National Academies of Science, Engineering, and 
Medicine (NASEM)) earlier this year on “Leveraging Artificial Intelligence and 
Machine Learning to Advance Environmental Health Research and Decisions”130. It 
was stated that artificial intelligence (AI) may revolutionize environmental 

 
129 Cardiac muscle cells or cardiomyocytes (also known as myocardiocytes or cardiac myocytes are the muscle cells 
(myocytes) that make up the cardiac muscle (heart muscle).  
130 http://nas-sites.org/emergingscience/meetings/ai/  

http://nas-sites.org/emergingscience/meetings/ai/
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epidemiology, exposure and toxicity assessment, and other studies, with careful 
attention to data quality. 
 
331. AI is the simulation of the human intelligence process by computers. The 
process includes acquiring information, developing rules for using the information, 
drawing approximate or definite conclusions and self-correction (Mak and Pichika 
2018). 

 
332. The use of Machine Learning (ML) methods trained on empirical data could 
be advantageous to make predictions on the potential degradation and reduction in 
toxicity occurring during remediation. ML models are able to learn the relationships 
between input variables (e.g. soil amendment, soil type) and output variables (e.g. 
long-term changes in contaminants ’bioavailability) from a training dataset, these 
relationships can then be generalised to make informed decisions in new cases (Wu 
et al., 2013). 

 
333. ML is categorised into supervised, unsupervised and reinforcement learning 
(Mak and Pichika 2018). 

 
334. Supervised learning comprises classification and regression methods where 
the predictive model is developed based upon the data from input and output 
sources. Output from supervised ML entails disease diagnosis under the subgroup 
classification; and drug efficacy and ADME Tox131 prediction under the subgroup 
regression (Gunčar et al., 2018). 

 
335. Unsupervised learning comprises clustering and feature-finding methods by 
grouping and interpreting data based solely on input data (Koohy, 2017). Through 
unsupervised ML, outputs such as disease subtype discovery from clustering and 
disease target discovery from feature-finding methods can be attained (Young et al., 
2017). 

 
336. Reinforcement learning is largely driven by decision making in a given 
environment and its execution to maximise its performance. The outputs from this 
type of ML include de novo drug design under decision making and experimental 
designs under execution-where both can be achieved via modelling and quantum 
chemistry (Chen et al., 2018). 

 
337. A further subfield of ML called deep learning (DL) uses artificial neural 
networks that adapt and learn from the vast amount of experimental data (Lee et al., 
2017; Grys et al., 2017). 

 
338. Some examples include: 
 

• Xu et al. 2017, reported three neural network models developed to predict 
acute oral toxicity end points based on a training set of 8080 compounds. All 
three models (i.e., a regression model for LD50 values, a multiclassification 
model for US EPA hazard categories, and a multitask model to 

 
131 ADME-Tox: absorption, distribution, metabolism, and excretion - toxicity in pharmacokinetics 
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simultaneously predict both of these end points) simultaneously outperformed 
previously. 
 

• Wen et al. 2017 also reported a deep learning model developed to predict 
interactions between drugs and their biological targets based on 15 524 drug-
target pairs obtained from the DrugBank database132. This model employed a 
pretraining feature extraction step to predict whether specific drug-target pairs 
will interact and overall outperformed classic QSAR approaches.  
 

• Pu et al., 2019 elucidated on eToxPred133, which employs machine learning 
algorithms trained on molecular fingerprints to evaluate drug candidates 
products, and synthetic bioactive compounds. 

Moving from research to risk assessment to regulatory testing and beyond 
 
339. Biological models of metabolism, pharmacokinetics, and risk estimation have 
been prominent in toxicology for a few decades; however, new graphical and 
analytical tools and methods are needed in order to “decode the toxicological 
blueprint of active substances that interact with living systems” (Sturla et al. 2014). 
 
340. The needs of risk assessment are context-dependent and can vary from 
simple classification of a substance for hazard (e.g. is it genotoxic or not) to 
prioritization by the nature and severity of hazard for further investigation to 
quantitative estimates of risk to determine the urgency and nature of any risk-
management action (Sturla et al. 2014). 
 
341. It was suggested that systems toxicology134 can provide a deep mechanistic 
understanding of toxicological effects, permitting prediction of responses to 
chemicals. If adequately described, a systems description should enable prediction 
of responses for which experimental data were not available (i.e. the system will 
exhibit emergent properties entailing novel patterns and properties arising from the 
inherent structure of the system) (Sturla et al. 2014). 
 
342. Systems toxicology has an ultimate potential for extrapolating from early and 
highly sensitive quantifiable molecular and cellular events to medium and long term 
outcomes at the organism level, and its application could be part of a new paradigm 
for risk assessment (Figure 19). 

 
132 https://www.drugbank.ca/  
133 https://github.com/pulimeng/etoxpred  
134 Systems Toxicology is the integration of classical toxicology with quantitative analysis of large networks of molecular and 
functional changes occurring across multiple levels of biological organization.  

https://www.drugbank.ca/
https://github.com/pulimeng/etoxpred
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Figure 19. What is Systems Toxicology? Systems Toxicology is aimed at decoding 
the toxicological blueprint of active substances that interact with living systems. It 
resides at the intersection of Systems Biology with Toxicology and Chemistry. It 
integrates classic toxicology approaches with network models and quantitative 
measurements of molecular and functional changes occurring across multiple levels 
of biological organization. The multidisciplinary Systems Toxicology approach 
combines principles of chemistry, computer science, engineering, mathematics, and 
physics with high content experimental data obtained at the molecular, cellular, 
organ, organism, and population levels to characterize and evaluate interactions 
between potential hazards and the components of a biological system. It is aimed at 
developing a detailed mechanistic as well as quantitative and dynamic 
understanding of toxicological processes, permitting prediction and accurate 
simulation of complex (emergent) adverse outcomes. Thereby, the approach 
provides a basis for translation between model systems (in vivo and in vitro) and 
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study systems (e.g. human, ecosystem). Systems Toxicology, therefore, has an 
ultimate potential for extrapolating from early and highly sensitive quantifiable 
molecular and cellular events to medium and long term outcomes at the organism 
level, and its application could be part of a new paradigm for risk assessment (Figure 
taken from Sturla et al., 2014). 

Regulatory setting 
 
343. With the goal of faster, less expensive and more predictive assessment 
approaches, many new technologies have been proposed. Although some of these 
new assessment approaches have gained considerable attention, few if any have 
been universally accepted as available to replace existing testing paradigms (Sikkler 
et al., 2018). 
 
344. In order to build confidence in new methods their value needs to be proven, 
and this is best accomplished by applying them in a “fit-for-purpose” manner to 
address areas of uncertainty that are difficult to address using conventional 
toxicology methods.  

 
345. For example, the assessment of mixtures, read-across based on mechanism 
of action, and the role of human genetic variability are all areas for which new 
methods offer unique contributions toward reducing uncertainty. Acceptance of test 
methods by regulatory authorities is difficult to achieve and usually occurs gradually 
(Knudsen et al., 2017). 

 
346. Three major opportunities exist for improving the current human risk 
assessment paradigm (Zeis et al., 2012):  
 

(1) Derivation of probabilistically based human-specific toxicity estimates to 
replace deterministic estimates based on rodent models. 
 

(2) Genetically diverse experimental animal systems to assess phenotypic 
variation for adverse outcomes. 
 

(3) Integrated quantitative analysis of human variability and susceptibility.  
 

347. Opportunities exist to incorporate modelling and more quantitative estimates 
of data values and variability into all areas of risk assessment, from in vitro to PK to 
animal data to human estimates. 
 
348. Ultimately, probabilistic toxicology will be able to break down artificial 
dichotomies, moving the scientific community toward a broader conception of 
population health, where toxicological responses are modelled using a continuum 
from ‘no effect’ to ‘effect’ (i.e. non-toxic to toxic), based on probabilistic measures, 
such as the chemical potency confidence interval and the benchmark dose 
confidence interval in reference to a genetically diverse population with a 
characteristic distribution of susceptible subpopulations (Knudsen et al., 2017). 
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Limitations of the predictive toxicological approach 
 
349. New approaches, new types of data, and new technologies for human risk 
assessment have been sometimes perceived with reluctance (Knudsen et al., 2017). 
 
350. This is due to well-recognized limitations of in vitro systems such as: limited 
metabolic capacity; inability to account for ADME and pharmacokinetics; uncertainty 
in cell-cell network interactions; life stage considerations; reductionism in the 
biological complexity of systems being tested and biological diversity in general 
(Chiu et al., 2013; Kavlock et al., 2012; Osborne et al., 2017; Sturla et al., 2014). 

 
351. Extrapolating in vitro effects to in vivo prediction faces the general problem of 
false-positive (in vitro positive, in vivo negative) and false-negative (in vitro negative, 
in vivo positive) results that may arise for many reasons: pharmacokinetic issues that 
impact biotransformation and/or clearance in vivo; incomplete assay coverage of 
molecular pathways and biological processes; physical limitations of complex multi-
cellular networks and interactions between diverse cell types; statistical power in 
analysing diverse, multidimensional data sets; and the potential for in vivo adaptation 
through homeostatic mechanisms (Knudsen et al., 2017). 

 
352. In vitro to in vivo modelling does hold promise in predictive toxicology when in 
vitro assays can plausibly be used to link specific molecular endpoint perturbations 
to an AOP in humans or ecological populations. Before this vision becomes a reality, 
AOPs themselves must be established with enough precision and detail to enable an 
understanding of false positive and negative predictions (Knudsen et al., 2017). 

 
353. A lot would depend on real world scenarios and fate, transport and life cycle 
analysis would be beneficial in the assessment. 
 
Wider implementations of a predictive toxicological approach  
 
354. Predictive toxicological approach can speed up hazard ranking and decision 
making (Nel et al., 2011).  Furthermore, it can be included in a chemical life cycle 
analysis (Fanke et al., 2018). 

 
355. An example of this of life cycle impact assessment: toxicity estimate by 
USETox135 (Schupp et al, 2017) USEtox is a scientific consensus model endorsed 
by the United Nations Environment Programme (UNEP)/ Society of Environmental 
Toxicology and Chemistry (SETAC) Life Cycle Initiative for characterizing human 
and ecotoxicological impacts of chemicals. Main output is a database of 
recommended and interim characterization factors including fate, exposure, and 
effect parameters. 

 
356. Fanke et al 2018 elucidated on the advancements in life cycle human 
exposure and toxicity characterization (Figure 20). 

 
135 https://usetox.org/  

https://usetox.org/
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Figure 20. Generalized illustrative representation of the existing life cycle human 
toxicity source-to-damage characterization framework. Units of metrics and impact 
pathways considered may differ between methods (Figure taken from Franke et al., 
2018). 

Collaboration 
 
357. The focus of the 7th annual Global Summit on Regulatory Science (GSRS17) 
was Emerging Technologies for Food and Drug Safety136. GSRS17 is an 
international conference held under the auspices of the Global Coalition for 
Regulatory Science Research (GCRSR), with the goal of discussing innovative 
technologies and developing partnerships to enhance translation of basic science 
into regulatory applications within the global context. The conference provided an 
interactive platform for scientists from government, industry, and academic-research 
communities to objectively assess the utility of emerging technologies (such as 
nanotechnology, imaging, omics for translational science, precision medicine, 
bioinformatic approaches, medical product safety, and food safety) for addressing 
regulatory research questions and to discuss the best way to translate these 
technologies into real-world applications. GSRS17 also allowed the opportunity to 
exchange views and practices that can assist the regulatory research community in 
harmonizing educational and training opportunities world-wide (Sikkler et al., 2018). 
 
358. Food authorities should strive to incorporate the best scientific methods 
available. These include activities such as source attribution, risk assessment 

 
136 https://www.fda.gov/about-fda/science-research-nctr/global-summit-regulatory-science-brasilia-brazil-09182017-09202017  

https://www.fda.gov/about-fda/science-research-nctr/global-summit-regulatory-science-brasilia-brazil-09182017-09202017
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(identification in gene tests), and a focus on developing rapid diagnosis testing. Next 
generation sequencing methods are replacing traditional molecular tests used to 
inform on these activities, but this process presents several significant challenges 
that must be addressed before these new methods can be approved for application 
in a food regulatory environment. It is important to invite all the stakeholders to 
facilitate an improved probability of standardization to organize metadata. In support, 
a consortium was formed with a focus on three ontologies137, such as FoodOns138 
(Sikkler et al., 2018). 

 
359. The Chemical and Food Ingredient Safety Program works actively with 
international regulatory and research agencies around the world to address key 
current gaps in chemical safety assessment and regulation. There are ongoing 
collaborations with the US EPA, Health Canada, ECHA, and EFSA, including an 
EPA-led international case study to examine the utility of in vitro bioactivity data as a 
conservative estimate of point-of-departure (POD) for chemical risk assessments, as 
well as collaborative projects with the EPA focused on the development of in vitro 
assays for organ-specific and developmental toxicity. 

 
360. In the GSRS17 meeting, it was said that moving forward toward greater 
integration of emerging data and novel methodologies for chemicals risk assessment 
in Canada will need continuous efforts on capacity building. This will be 
accomplished through increased data accessibility and sharing, the maintenance 
and establishment of key partnerships, technical workshops and training sessions 
with international experts, and ongoing focus on data analysis tools development to 
address regulatory questions. It is also important to demonstrate proof of concept 
through various case studies and work collaboratively on the interpretation and 
application of new data for use in regulatory applications. This is currently being 
done at an international level under the OECD and as the focus of the Accelerating 
the Pace for Chemical Risk Assessment initiative co-lead by the US EPA, the ECHA 
and Health Canada (Kavlock et al., 2018). 

 
361. The future direction of safety assessment science will depend heavily on the 
evolution of the regulatory landscape. A key challenge, though, is whether the 
regulatory framework can keep pace with the increasing speed of scientific and 
technological developments (Worth et al., 2019). 

 
362. This implies close collaboration between chemists, toxicologists, 
informaticians and risk assessors to develop, maintain and utilise appropriate 
models. Not only must the different disciplines come together, but also those 
scientists from industry, academia and regulatory agencies must recognise the 
commonalities (Cronin et al., 2018). The challenge is to respond to the growing need 
for adaptable, flexible and even bespoke computational workflows that meet the 
demands of industry and regulators, by exploiting the emerging methodologies of 
Tox21 and risk assessment. 
 

 
137 In computer science and information science, an ontology encompasses a representation, formal naming and definition of 
the categories, properties and relations between the concepts, data and entities that substantiate one, many or all domains of 
discourse.  
138 https://foodon.org/  

https://foodon.org/
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Conclusions 
 
363. The combined advances in discovery and clinical sciences, data science and 
technology has resulted in toxicity testing reaching a pivotal transformation point 
taking advantage of the 4IR. 
 
364. Many different types of in silico methods have been developed to characterize 
and predict toxic outcomes in humans and environment.  

 
365. These in silico methods include databases, different kinds of QSAR methods, 
AOPs, HTS, pharmacophores, homology models and other molecular modelling 
approaches, machine learning, data mining, network analysis tools, and data 
analysis tools using AI.  

 
366. The improved in silico technologies presents an opportunity in toxicology to 
bridge the communication gap and collaboration with scientists from industry, 
academia and regulatory agencies to develop, maintain and utilise appropriate 
models. 
 
Questions for the COT 
 

i) Are there any models the Members think would be applicable to risk 
assessment for chemicals in food? 
 

ii) Are there any specific areas that Members think should be/would like covered 
in the workshop next year? 
 

iii) Any other possible experts/speakers that we may want to consider inviting to 
the workshop? 
 

iv) Any other comments? 

 

Secretariat November 2019 
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