COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER PRODUCTS AND THE ENVIRONMENT

Review of potential risks from 2-MCPD, 3-MCPD and glycidol and their fatty acid esters in the diet of infants aged 0 to 12 months and children aged 1 to 5 years.

Matter arising

Committee members requested further consideration of the *in vivo* genotoxicity data on 3-MCPD to confirm that it is not genotoxic *in vivo*. Providing this was confirmed, the Committee agreed with EFSA's evaluation of 3-MCPD and its fatty acid esters.

In vivo genotoxicity of 3-MCPD

The genotoxic potential of 3-MCPD has been investigated in *vivo* in mammalians considering various endpoints: gene mutations, chromosomal aberrations, DNA strand breakage and induction of DNA repair (via unscheduled DNA synthesis assay). Several organs were analysed: peripheral blood, bone marrow, liver and also the target organs for cancer: kidney and testis. The genotoxic potential observed in some *in vitro* tests could not be reproduced *in vivo*. These results are summarised in Table 1. Overall, the CONTAM Panel considered that there is no evidence indicating that 3-MCPD is genotoxic *in vivo* (EFSA 2016). In addition, the Committee on Mutagenicity (COM) concluded that 3-MCPD can be regarded as having no significant genotoxic potential *in vivo* (COM 2000).

Type of test	Experimental test system	End point	Substance tested	Experimental conditions	Result	Reference
Micronucleus test	Crl: Han Wist BR rats Bone marrow	Chromosomal aberrations	3-MCPD	2 days oral gavage. 0 (water), 15, 30 and 60 mg/kg bw per day. Sampling: 24 h after last Administration.	Negative	Robjohns et al. 2003
	Male F344 gpt delta rats		3-MCPD	4 weeks, 5 times a week, gavage. Neg. control: olive oil. 40 mg/kg bw per day. Sampling: 24 h after last Administration.	Negative	Onami <i>et al.</i> 2014
	Mouse		3-MCPD	40–120 mg/kg bw.	Negative	Jaccaud &

Table 1: In vivo genotoxicity data on 3-MCPD (reproduced from EFSA 2016)

						Aeschbacher 1989
	Rat		3-MCPD	2 days, gavage. 0, 15, 30 or 60 mg/kg bw per day.	Negative	Marshall 2000
Comet assay (alkaline)	Male Sprague- Dawley rats Blood leucocytes, bone marrow, liver, kidney and testis	Single strand breaks	3-MCPD	2 days, gavage. 0 (water), 25 or 60 mg/kg bw per day. Sacrifice 3 h after 2-day administration.	Negative	El Ramy <i>et</i> al. 2007
	Male F344 rats Blood leucocytes and testis		3-MCPD	2 days gavage. 0 (water) or 60 mg/kg bw per day. Sacrifice 3 h after 2-day administration.	Negative	El Ramy <i>et</i> al. 2007
Pig-a mutation assay	Male F344 gpt delta rats Red blood cells	Gene mutation	3-MCPD	4 weeks, 5 times a week, gavage. Neg. control: olive oil. 40 mg/kg bw per day. Sampling: 24 h after last administration.	Negative	Onami <i>et al.</i> 2014

Secretariat June 2019

References

COM annual report (2000). Available at: https://cot.food.gov.uk/sites/default/files/cot/cotcomcocrep2000.pdf

EFSA (2016) Risks for human health related to the presence of 3- and 2monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. *EFSA Journal* **14:** 4426

El Ramy R., Elhkim M.O., Lezmi S., *et al.* (2007). Evaluation of the genotoxic potential of 3-monochloropropane-1,2-diol (3-MCPD) and its metabolites, glycidol and beta-chlorolactic acid, using the single cell gel/comet assay. *Food and Chemical Toxicology* **45**: 41-48

Jaccaud E. & Aeschbacher H.U. (1989). Evaluation of 3-chloro-1,2-propanediol (3MCPD) in the bone marrow and colonic micronucleus mutagenicity tests in mice. Unpublished report No. 1265 from Nestec Ltd Research Centre, Nestle, Switzerland.

Marshall RM (2000) 3-MCPD: induction of micronuclei in the bone-marrow of treated rats. Unpublished report No. 1863/2-D5140 from Covance Laboratories Ltd.

Robjohns S., Marshall R., Fellows M., *et al.* (2003). *In vivo* genotoxicity studies with 3-monochloropropan-1,2-diol. *Mutagenesis* **18:** 401-404

Onami S., Cho Y.M., Toyoda T., *et al.* (2014). Absence of *in vivo* genotoxicity of 3monochloropropane-1,2-diol and associated fatty acid esters in a 4-week comprehensive toxicity study using F344 gpt delta rats. *Mutagenesis* 29: 295-302

References

COM annual report (2000). Available at: https://cot.food.gov.uk/sites/default/files/cot/cotcomcocrep2000.pdf

EFSA (2016) Risks for human health related to the presence of 3- and 2monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. *EFSA Journal* **14:** 4426

El Ramy R., Elhkim M.O., Lezmi S., *et al.* (2007). Evaluation of the genotoxic potential of 3-monochloropropane-1,2-diol (3-MCPD) and its metabolites, glycidol and beta-chlorolactic acid, using the single cell gel/comet assay. *Food and Chemical Toxicology* **45**: 41-48

Jaccaud E. & Aeschbacher H.U. (1989). Evaluation of 3-chloro-1,2-propanediol (3MCPD) in the bone marrow and colonic micronucleus mutagenicity tests in mice. Unpublished report No. 1265 from Nestec Ltd Research Centre, Nestle, Switzerland.

Marshall RM (2000) 3-MCPD: induction of micronuclei in the bone-marrow of treated rats. Unpublished report No. 1863/2-D5140 from Covance Laboratories Ltd.

Robjohns S., Marshall R., Fellows M., *et al.* (2003). *In vivo* genotoxicity studies with 3-monochloropropan-1,2-diol. *Mutagenesis* **18:** 401-404

Onami S., Cho Y.M., Toyoda T., *et al.* (2014). Absence of *in vivo* genotoxicity of 3monochloropropane-1,2-diol and associated fatty acid esters in a 4-week comprehensive toxicity study using F344 gpt delta rats. *Mutagenesis* 29: 295-302