COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER PRODUCTS AND THE ENVIRONMENT (COT)

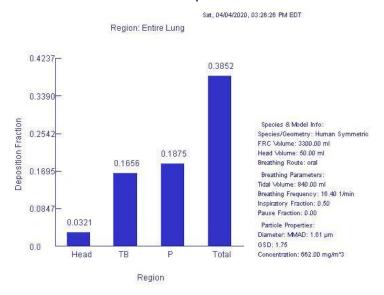
Potential toxicological risks from electronic nicotine (and non-nicotine) delivery systems (E(N)NDS – e-cigarettes). Updated risk assessments for exposure of users to propylene glycol (PG) and glycerol from inhalation of E(N)NDS aerosols.

Updated risk assessment of Propylene Glycol and Glycerol using modelling approaches, provided by Dr. Tharacad Ramanarayanan and Dr. Doug Wolf

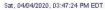
CALCULATING HUMAN EQUIVALENT CONCENTRATION (HEC) AND HUMAN EQUIVALENT DOSE (HED) TO EVALUATE THE POTENTIAL FOR ADVERSE HEALTH EFFECTS ASSOCIATED WITH EXPOSURE OF USERS TO PROPYLENE GLYCOL (PG) AND/OR GLYCEROL FROM USE OF ELECTRONIC NICOTINE (AND NON-NICOTINE) DELIVERY SYSTEMS (E(N)NDS; E-CIGARETTES).

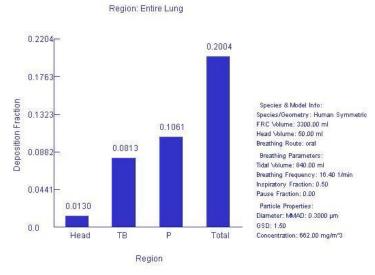
THARACAD RAMANARAYANAN AND DOUG WOLF

ASSUMPTIONS


- Puffs per day = 300 (estimated using data from Dawkins et al. (2018))
- Period of vaping = 16 h (assuming 8 hours of sleep)
- Breathing Rate for Rat, VE-rat = 0.214 L/min (calculated from EPA (1994))
- Breathing rate for Human, VE-human = 13.8 L/min (EPA 1994)
- Tidal volume (L/breath) (EPA, 1994)
 - S-D Rat = 0.0021 L/breath
 - O Human = 0.84 L/breath
- Breathing Frequency (breaths per min) standard values (EPA 1994)
 - o Rat = 102
 - O Human = 16.4
- Surface Area Tracheobronchial + Pulmonary Region (TB + P) (EPA 1994)
 - $^{\circ}$ Human = 54.3 m²
 - \circ Rat = 0.3422 m²

ANALYSIS




MPPD OUTPUTS

MPPD Output for Fraction of Deposition in parts of the respiratory tract of Sprague-Dawley Rat for MMAD = 1.61 μm GSD = 1.75.

MPPD Output for Fraction of Deposition in parts of the respiratory tract of Human model for MMAD = 1.61 μ m GSD = 1.75.

MPPD Output for Fraction of Deposition in parts of the respiratory tract of Human model for E(N)NDS with MMAD = 0.3 μ m GSD = 1.5 (estimated from data in Pratte, Cosandey and Goujon-Ginglinger (2016)).

DEPOSITION FRACTION - OUTPUT FROM MPPD

	Deposition fraction (DF)				
Scenario	Total	Hea	TB	Р	TB+
		d			Р
Rat nasal (MMAD: 1.61 μm; GSD: 1.75)	0.47	0.4	0.01	0.04	0.05
		14	6		6
Human oral (MMAD: 1.61 μm; GSD:	0.3852	0.03	0.16	0.18	0.35
1.75)		21	6	75	31
Human oral (MMAD: 0.3 μm; GSD: 1.5)	0.2	0.0	0.08	0.10	0.18
		13	13	61	74

CALCULATING HEC AND HED

$$NOAEC = NOAEC \times (\frac{H_r}{}) \times (\frac{D_r}{}) \times \underline{f_r}$$

$$adj \qquad study \qquad H_H \qquad D_H \qquad f_H$$

NOAECadj = NOAEC adjusted for study duration and Human Exposure duration (mg/L) NOAECstudy = NOAEC from the rat study (mg/L)

 H_r = Hours per day – rat = 6h

 H_H – Hours per day – human (h) = 16 h

 D_r = Days of exposure per week - Rat

 D_H = Days of exposure per week – human

 f_r = fraction of time exposed to chemical (rat) = 1.0

 f_H = fraction of time exposed to chemical (human)

$$f_{H} = \frac{Number\ of\ puffs\ per\ day}{16\ hrs \times 16\ \frac{breaths}{min} \times \frac{60min}{hr}} = \frac{300}{15360} = 0.019$$

 $HEC = NOAEL_{adj} \times DAF \times PAF$

HEC = Human-Equivalent Concentration (mg/L)

NOAEL_{adj} = duration-adjusted NOAEL (mg/L)

DAF = Dosimetry Adjustment Factor

PAF = Particle-size Adjustment Factor

$$DAF = \left(\frac{V_E \times DF}{SA}\right)_{rat} \div \left(\frac{V_E \times DF}{SA}\right)_{human}$$

DAF = Dosimetry Adjustment Factor

 V_E = minute ventilation (L/min)

DF = deposition fraction in rat or human pulmonary region

SA = surface area of rat or human pulmonary system

DAF=
$$\left(\frac{0.214 \times 0.056}{0.3422}\right)_{\text{rat}} \div \left(\frac{13.8 \times 0.3531}{54}\right)_{\text{human}} = 0.388$$

$$PAF = \frac{DF_{human; 1.61 \,\mu \,m}}{^{m}} DF_{human; 0.3 \,\mu}$$

DF_{human; 1.61 μ m} = deposition fraction of 1.61 μ m (GSD=1.75) particle in human pulmonary region = 0.3531

DF_{human; $0.3 \mu m$} = deposition fraction of 0.3 μm (GSD=1.5) particle in human pulmonary region = 0.1874

HEC RESULTS

Carrier	NOAEC or LOAEC (mg/L)	NOAECadj or LOAECadj (mg/L)	DAF	PAF	HEC (mg/L)
PG	0.16 (LOAEC)	2.26 (LOAEC _{adj})	0.3	1.8	1.65
			88	84	
Glycer	0.662 (NOAEC)	9.33 (LOAEC _{adj})	0.3	1.8	6.82
ol			88	84	

EXPOSURE AND RISK ASSESSMENT

Dose per puff (from Margham et al. (2016))

PG -> 0.7 mg per puff

Glycerol -> 1.6 mg per puff

MAXIMUM (ONE PUFF) CONCENTRATION

$$PG = \frac{0.7}{0.84} = 0.83 \text{ mg/L}$$

Glycerol =
$$\frac{1.6}{0.84}$$
 = 1.90 mg/L

AVERAGE DAILY CONCENTRATION

Number of breaths per minute = 16

Total number of breaths per day = $16 \times 60 \times 24 = 23,040$

Average tidal volume = 0.84 L

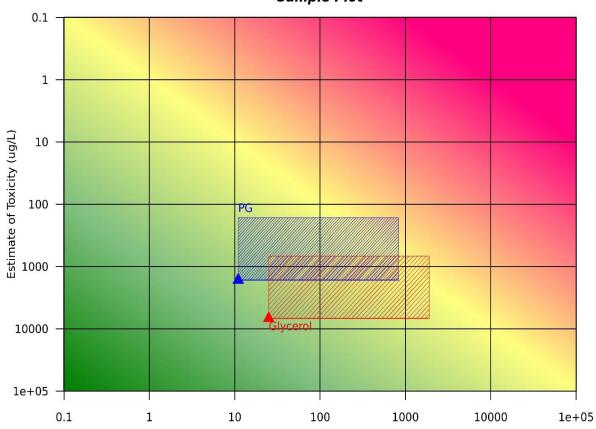
Total volume inhaled per day = $23040 \times 0.84 = 19,353 L$

$$PG = \frac{0.7 \times 300}{19353} = 0.011 \text{ mg/L}$$

Glycerol =
$$\frac{1.6 \times 300}{19353}$$
 = 0.025 mg/L

MARGINS OF EXPOSURE

Carrier and Scenario	MOE calculation (HEC/exposure concentration)	M OE
PG – Max concentration in 1 breath	1.65/0.83	1.9 9
PG – Average daily concentration	1.65/0.011	15 0
Glycerol – Max concentration in 1 breath	6.82/1.90	3.5 9
Glycerol – Average daily concentration	6.82/0.025	27 3


RISK21 PLOT

SAFETY FACTORS ASSUMED

PG: Interspecies – 3X; Intraspecies – 3X; Total = 10X

Glycerol: Interspecies – 3X; Intraspecies – 3X; Total = 10X

Sample Plot

RISK21 PLOT DATA (μ G/L OR MG/M3)

Name	Color	Line Type	Line Width	Density	Text Loc	Min Exp	Max Exp	Exp Point	Exp UF	Min Tox	Max Tox	Tox Pt	Tox UF
Propylene glycol	[automati c]	solid	thin	high	above-left	11	830			1650	165	1650	10
Glycerol	[automati	solid	thin	medium	above-left	25	1900			6820	682	6820	10

References

- Dawkins, L., S. Cox, M. Goniewicz, H. McRobbie, C. Kimber, M. Doig & L. Kosmider (2018) 'Real-world' compensatory behaviour with low nicotine concentration e-liquid: subjective effects and nicotine, acrolein and formaldehyde exposure. Addiction, 113, 1874-1882.
- EPA. 1994. U.S. EPA. 1994. Methods for Derivation of Inhalation Reference Concentrations and Application of Inhalation Dosimetry. Office of Research and Development. EPA/600/8-90/066F.
- Margham, J., K. McAdam, M. Forster, C. Liu, C. Wright, D. Mariner & C. Proctor (2016) Chemical Composition of Aerosol from an E-Cigarette: A Quantitative Comparison with Cigarette Smoke. Chem Res Toxicol, 29, 1662-1678.
- Pratte, P., S. Cosandey & C. Goujon-Ginglinger (2016) A scattering methodology for droplet sizing of e-cigarette aerosols. Inhalation toxicology, 28, 537-545.