Statement on the risk assessment of cow's milk in children aged 1 to 5 years, in the context of plant-based drinks evaluations ## Conclusions - Statement on the risk assessment of cow's milk in children aged 1 to 5 years, in the context of plant-based drinks evaluations ## In this guide ## In this guide - 1. <u>Background Statement on the risk assessment of cow's milk in children</u> aged 1 to 5 years, in the context of plant-based drinks evaluations - 2. Consumption data - 3. Chemicals assessed - 4. Risk Characterisation Statement on the risk assessment of cow's milk in children aged 1 to 5 years, in the context of plant-based drinks evaluations - 5. <u>Summary Statement on the risk assessment of cow's milk in children aged</u> 1 to 5 years, in the context of plant-based drinks evaluations - 6. <u>Conclusions Statement on the risk assessment of cow's milk in children</u> aged 1 to 5 years, in the context of plant-based drinks evaluations - 7. Abbreviations and Technical Information - 161. The COT reviewed an extensive range of chemical compounds that could be present incidentally or as contaminants in cow's milk to allow comparison with plant-based dairy alternatives. - As can be seen in the summary tables, the vast majority of these potential contaminants present no risk of adverse health effects in children aged 6 months to 5 years of age at the levels observed within cow's milk. 163. The exceptions are iodine, BaP and PAH4, AFM1 specifically and total aflatoxins due to the contribution of AFM1, for which any risk to health in children aged 6 months to 5 years of age is unlikely but cannot be completely excluded. The possible risks to health in these age groups from exposure to isoflavones in cow's milk is unknown, as no HBGVs have been established for these compounds in young children and hence there is a lack of knowledge on the toxicological significance of the levels that might be found in milk. Table 17. Summary of risk assessment conclusions for selected compounds and their occurrence levels within cow's milk based on previous authority opinions. | Compound
(s) | HBGV, (endpoint) | Effect (s) | Authority | COT Conclusion: Health risk from cow's milk | |-----------------|------------------|-------------------|-----------|---| | Nitrite | n/a | Methemoglobinemia | EFSA | No health concern | | Bisphenol A | 4 μg/kg bw (Increase
in mouse kidney
weight. | Kidney weight; endocrine perturbation with potential effects on metabolism, growth, sexual development, stress response, insulin production, gender behaviour, reproduction, and fetal development. | EFSA | Currently, no health concern (However, the COT is currently in the process of producing an interim position paper capturing the COT's views and next steps following EFSA's 2023 updated position on BPA.). | |--|--|---|---------------|---| | DBP, BBP,
DEHP, DINP
(Summed
as DEHP
equivalents | (reproductive effects in rats). | Reproductive effects,
hepatic effects. | EFSA /
COT | No health concern. | | DEP | 5 mg/kg bw
(maternal adrenal
and kidney weight
changes, fetal weight
in mice). | Increased maternal adrenal and kidney weights, decreased fetal weight. | WHO /
COT | No health concern. | | NDL-PCBs | n/a. Minimal effect
dose of 2 mg/kg bw
per day, expressed
as body burden (liver
and thyroid in rat). | Liver and thyroid
effects. | JECFA | No health concern. | |--------------------------------------|--|---|-------------------|--| | Isoflavones
GEN, EQU,
FOR, DAI | 0.07 mg/kg bw (GEN only) (accelerated pubertal development in female mice). | Endocrine effects
(oestrogenic effects)
effecting thyroid and
immune function and
sexual development. | Nordic
Council | Any risk to health is uncertain as HBGVs have not been established for young children. | | Lead | None, BMDL01 of 0.5 µg/kg bw per day ((development of intellectual function). | Multiple toxic effects. | EFSA/COT | Unlikely to
be a health
concern. | | Inorganic
Arsenic | None. BMDL0.5 of 3 µg/kg bw per day JECFA / COT (lung cancer). | Multiple toxic effects including carcinogenicity. | EFSA/COT | No health concern. | | Inorganic
Mercury | TWI – 4 μg/kg
(kidney weight
change in rats). | Multiple toxic effects including renal, haematological, hepatic and gastrointestinal effects. | EFSA /
COT | No health concern. | | Cadmium | TWI – 2.5 μg/kg
(urinary β-2-
microglobulin (B2M)
as a marker for
kidney damage). | Multiple toxic effects including renal toxicity, hepatotoxicity, osteoporosis and osteomalacia. | EFSA /
COT | No health concern. | |---------------------|--|---|---------------|---| | AFM1 | None. Guidance value of 4 µg/kg bw per day derived from a BMDL10 based on liver tumour incidence for AFB1 in rats with a 0.1 potency factor applied. | as immunotoxicity, | EFSA /
COT | Health risk cannot be excluded, but exposure estimate uncertain. | | AFB1 | None. BMDL10 of 0.4 µg/kg bw per day based on liver tumour incidence in rats after AFB1 exposure. | Multiple effects such as immunotoxicity, carcinogenicity and mutagenicity. | EFSA /
COT | Health
concern
unlikely,
rarely
detected. | | Total
aflatoxins | None. BMDL10 of 0.4 µg/kg bw per day based on liver tumour incidence in rats after AFB1 exposure. | Multiple effects such as immunotoxicity, carcinogenicity and mutagenicity. | EFSA /
COT | Health risk cannot be excluded, but exposure estimate uncertain, driven by AFM1 occurrence in milk. | | PFAS
(PFHxS,
PFOS, PFOA
and PFNA) | TWI of 4.4 ng/kg bw (reduced antibody levels against diptheria vaccine in 1-year old children). | increased relative
liver weight, effects
on the immune
system. | EFSA | No health concern. | |--|---|--|------|-----------------------| | HBCDDs | None. Human equivalent body burden of 2.35 µg/kg corresponding to LOAEL in mice (neurodevelopmental effects). | system effects, liver effects and effects on | | No health
concern. | | PBBs | None. NOEL of 0.15 mg/kg bw per day (hepatic carcinogenicity). | Multiple effects (dioxin like) such as altered vitamin A homeostasis, chloracne and body weight changes, carcinogenicity. | EFSA | No health concern. | | PBDEs | None. Range of
BMDL10 s between
12 and 1,700 µg/kg
bw per day
(neurodevelopmental
effects). | Neurodevelopmental,
immune system
effects, reproductive
system effects, liver
effects and thyroid
hormone
homeostasis. | EFSA | No health concern. | | ТВВРА | None. BMDL10 of 16 mg/kg bw per day (thyroid hormone homeostasis). | Thyroid hormone regulation. | EFSA | No health concern. | Table 18. Summary of risk assessment conclusions on potential chemical contaminants of cow's milk, a comparing the highest estimated mean exposures (occurrence and consumption) to their health-based guidance values, from exposure assessments presented in this paper and its annex. | Compound (s) | HBGV,
(endpoint) | Authority | Highest Exposure (mean consumption), kg bw per day | | Highest exposure age range (months) | Effect | |--|--|-----------|--|------------------|-------------------------------------|--| | Nitrate | 3.7 mg/kg bw
per day (growth
retardation in
dogs and rats). | EFSA | 0.00416 mg | 0.112 | 12 - <18 | Methemo | | Dioxins plus
DL-PCBs | 2 pg/kg WHO-
TEQ,
(reproductive
effects in rats). | EFSA | 1.024 pg | 51.2 | 12 - <18 | Range of
effects ir
chloracn
reproduc
effects. | | Benzo[a]pyrene
(BaP) | None, BMDL10
of 70 µg/kg bw
per day (total
tumour-bearing
animals) | EFSA | 0.00128 μg | 54,688
(MOE) | 12 - <18 | Carcinog | | Sum of BaP,
BbF,ChR and
BaA (PAH4) | None, BMDL10
of 340 μg/kg bw
per day (total
tumour-bearing
animals). | EFSA | 0.0032 μg | 106,250
(MOE) | 12 - <18 | Carcinog | | | EVM: Guidance
level of 15
µg/kg bw per
day | | | | | | |-------------|--|-----------|----------|-----------------------------|----------|--------------------------------------| | | EFSA: TUL of
200-250 μg/day. | COT / EVM | | 102 | | Varied et | | lodine | JECFA: PMTDI 17
μg/kg bw per
day | | 15.2 μg | (EVM
guidance
value). | 12 - <18 | depende
previous
to iodine | | | (Alterations in serum thyroid hormone levels from human studies). | | | | | | | Perchlorate | 0.3 µg/kg
(inhibition of
radiolabelled
iodine uptake
by the thyroid). | EFSA | 0.179 μg | 59.6 | 12 - <18 | Inhibition
uptake, o
thyroid h | | | TDI of 3 μg/kg
bw per day. | | | | | | | Chlorate | (Read across from perchlorate with a 0.1 potency factor, inhibition of radiolabelled | | 0.544 μg | 18.1% | 12 - <18 | Inhibition
uptake, o
thyroid h | iodine uptake by the thyroid). | Naturally
occurring | ADI - 0.05 μg/kg
bw per day for
17β-oestradiol
(NOEL based on
multiple
hormone
dependent
parameters in | | | | |-------------------------------------|---|-----------|-------|----------| | oestrogens
within cow's
milk. | postmenopausal JECFA women. To protect sensitive population subgroups an uncertainty factor of 10 was | 0.0875 μg | 17.5% | 12 - <18 | Suggeste in childred developmeffects in urogenit hormona central may systems mammar The COT any geno 17β-oest indirect i Table 19. A summary of information for compounds within cow's milk where a formal risk assessment could not be performed. applied.). | Compound
(s) | Literature evaluation | Effect | Conclusion:
Health risk
from cow's
milk | |-------------------------|--|-----------------|--| | Veterinary
Medicines | Between 2015 and the end of 2020, only 24 of 21,574 samples of cow's milk analysed returned a positive result (above the maximum residue level). Only 2 of these were considered to pose a potential health risk but this was without taking any dilution effect e.g. from bulk tanks, into account. | Various effects | No health
concern. | | Pesticides | Between 2015 and the end of 2020 only 1 of 1,723 samples of cow's milk returned a positive result (above the maximum residue level). The risk from residues of pesticides from drinking cow's milk is negligible. | Various effects | No health concern. | |---------------------|---|---|--| | IGF-1 | IGF-1 supplementation is unlikely to generate a risk to consumer health. In addition milk from IGF-1 treated cow's is unlikely to enter the UK as fresh milk in significant quantities. | No substantiated carcinogenic effects | No health concern. | | Other
mycotoxins | Milk is considered unlikely to contain significant amounts of other mycotoxins. Specific information was not available for the transfer of 3-Ac-DON, 15-Ac-DON and DON-3-glucoside to cow's milk, but transfer of these seems unlikely, given their hydrophilicity. | Effects including immunotoxicity, carcinogenicity and mutagenicity. | Health concern
considered
unlikely, though
specific
information on
some
metabolites is
lacking. | | Microplastics | A lack of toxicokinetic and toxicity data in general, the paucity of currently available data for microplastics in different food types and difficulties in performing an accurate exposure assessment, however levels of microplastics in milk are lower | | No known health concern. | than in other areas of the diet.