

Scoping paper on the potential risks of chemicals (other than caffeine) found in green and black tea in the maternal diet

References

In this guide

In this guide

1. [Background - green and black tea in the maternal diet](#)
2. [Introduction - green and black tea in the maternal diet](#)
3. [Chemical compounds in tea - green and black tea in the maternal diet](#)
4. [Metals - green and black tea in the maternal diet](#)
5. [Naturally occurring toxins - green and black tea in the maternal diet](#)
6. [Plant components - green and black tea in the maternal diet](#)
7. [Process contaminants - green and black tea in the maternal diet](#)
8. [Summary - green and black tea in the maternal diet](#)
9. [Abbreviations - green and black tea in the maternal diet](#)
10. [References - green and black tea in the maternal diet](#)
11. [Annex A TOX/2026/05](#)

This is a paper for discussion. It does not reflect the views of the Committee and should not be cited.

Aaqil, M., Peng, C., Kamal, A., Nawaz, T., Zhang, F. And Gong, J. (2023) Tea Harvesting and Processing Techniques and Its Effect on Phytochemical Profile and Final Quality of Black Tea: A Review. *Foods* 13;12(24):4467. <https://doi.org/10.3390/foods12244467>.

Bakouei, S., Reisian, F., Lamyian, M., Zadeh, E. H., Zamanian, H. And Kharameh, Z. T. (2015) High Intake of Manganese During Second Trimester, Increases the Risk of Preterm Delivery: A Large Scale Cohort Study. *Glob J Health Sci.* 2015 Mar 16;7(5):226-232. <https://doi.org/10.5539/gjhs.v7n5p226>.

Bates, B., Lennox, A., Prentice, A., Bates, C., Page, P., Nicholson, S. and Swan, G. (2014) National Diet and Nutrition Survey (NDNS): results from Years 1 to 4 (combined) of the rolling programme for 2008 and 2009 to 2011 and 2012. [NDNS: results from Years 1 to 4 \(combined\) - GOV.UK](#) Accessed: 05/11/2025.

Bates, B., Cox, L., Nicholson, S., Page, P., Prentice, A., Steer, T. and Swan, G. (2016) National Diet and Nutrition Survey (NDNS): results from Years 5 and 6 (combined) of the Rolling Programme (2012/2013 – 2013/2014). [NDNS: results from Years 5 and 6 \(combined\) - GOV.UK](#) Accessed: 05/11/2025.

Bates, B., Collins, D., Jones, K., Page, P., Roberts, C., Steer, T. and Swan, G. (2020) National Diet and Nutrition Survey Results from years 9, 10 and 11 (combined) of the Rolling Programme (2016/2017 to 2018/2019). [National Diet and Nutrition Survey](#) Accessed: 05/11/2025.

BfR. (2013) Pyrrolizidine alkaloids in herbal teas and teas. BfR Opinion No. 018/2013 of 5 July 2013. [Pyrrolizidine alkaloids in herbal teas and teas](#) Accessed: 07/01/2026.

Chan, L., Mehra, A., Saikat, S. and Lynch, P. (2013) Human exposure assessment of fluoride from tea (*Camellia sinensis* L.): A UK based issue? Food Research International Volume 51, Issue 2, May 2013, pp. 564-570.
<https://doi.org/10.1016/j.foodres.2013.01.025>.

Chen, H., Wang, Q., Jiang, Y., Wang, C., Yin, P., Liu, X., & Lu, C. (2015). Monitoring and risk assessment of 74 pesticide residues in Pu-erh tea produced in Yunnan, China. Food Additives & Contaminants: Part B, 8(1), 56-62.
<https://doi.org/10.1080/19393210.2014.972471>.

Colapinto, C. K., Arbuckle, T. E., Dubois, L. and Fraser, W. (2015) Tea consumption in pregnancy as a predictor of pesticide exposure and adverse birth outcomes: The MIREC Study. Environmental Research Volume 142, October 2015, pp. 77-83. <https://doi.org/10.1016/j.envres.2015.06.020>.

Colapinto, C. K., Arbuckle, T. E., Dubois, L. and Fraser, W. (2016) Is there a relationship between tea intake and maternal whole blood heavy metal concentrations? Journal of Exposure Science & Environmental Epidemiology volume 26, pages503-509 (2016). <https://doi.org/10.1038/jes.2015.86>.

COT. (2000) Statement on the 1997 Total Diet Study – Fluorine, Bromine and Iodine. COT Statement 2000/05. [\[ARCHIVED CONTENT\] COT: The 1997 Total Diet Study - Fluorine, Bromine, and Iodine \(July 2000\)](#) Accessed: 05/11/2025.

COT. (2001) COT Statement on the reproductive effects of caffeine. COT Statement 2001/06. [\[ARCHIVED CONTENT\] COT: COT statement on the reproductive effects of caffeine](#) Accessed: 05/11/2025.

COT. (2003a) COT Statement on fluorine in the 1997 Total Diet Study. COT Statement 2003/03. [\[ARCHIVED CONTENT\] COT statement on fluorine in the 1997 Total Diet Study | Food Standards Agency](#) Accessed: 05/11/2025.

COT. (2003b) COT Statement on twelve metals and other elements in the 2000 Total Diet Study. COT Statement 2003/07. [COT metals statement.doc](#) Accessed: 04/12/2025.

COT. (2008a) Statement on the reproductive effects of caffeine. COT Statement 2008/04. [\[ARCHIVED CONTENT\] COT statement on the reproductive effects of caffeine | Food Standards Agency](#) Accessed: 05/11/2025.

COT. (2008b) COT Statement on Pyrrolizidine Alkaloids in Food. COT Statement 2008/06 October 2008. [Microsoft Word - 2008-06 Pyrrolizidine Alkaloids.doc](#) Accessed: 01/10/2025.

COT. (2018) COT Statement on the health effects of manganese in the diets of infants aged 0-12 months and children aged 1-5 years. COT Statement 2018/06. [\[ARCHIVED CONTENT\] Statement on the health effects of manganese in the diets of infants aged 0-12 months and children aged 1-5 years | Food Standards Agency](#) Accessed: 19/12/2025.

COT. (2022) Statement on the potential risks from cadmium in the maternal diet. COT November 2022 Statement Number 05/22. [Cadmium in the Maternal Diet - Introduction | Committee on Toxicity](#) Accessed: 07/01/2026.

COT. (2024a) Statement on the potential health effects of raspberry leaf tea in the maternal diet. COT Statement/2024/06. [Raspberry leaf tea statement](#) Accessed: 05/11/2025.

COT. (2024b) Statement on the hepatotoxicity of green tea catechins. COT Statement 2024/08. <https://doi.org/https://doi.org/10.46756/sci.fsa.wii944>.

COT. (2024c) Statement on effects of lead on maternal health. COT Statement Number 03/2024. [Statement on the effects of lead on maternal health | Committee on Toxicity](#) Accessed: 07/01/2026.

COT. (2025) Statement on the effects of mercury on maternal health. COT Statement 2025/03. [Introduction and Background - Statement on the Effects of Mercury on Maternal Health | Committee on Toxicity](#) Accessed: 18/01/2026.

Dania, S. R., Dewi, Y. L. R. and Pamungkasari, E. P. (2022) Meta Analysis of the Relationship between Tea Drinking Habits and the Incidence of Anemia in

Pregnant Women. J Epidemiol Public Health. 07(04): 465-474.

<https://doi.org/10.26911/jepublichealth.2022.07.04.05>.

DEFRA. (2025) Pesticide Residues in Food. Published by: Department for Environment, Food and Rural Affairs Last updated: 17 December 2025. [Pesticide Residues in Food - data.gov.uk](#) Accessed: 08/10/2025.

DHSC. (2025) Guidance Chapter 9: Fluoride. Updated 10 September 2025. [Chapter 9: fluoride - GOV.UK](#) Accessed: 05/11/2025.

Długaszek, M., Mierczyk, J. and Skrzeczanowski, W. (2025) Assessment of Elements in Black Tea Infusions by Brewing Method in Terms of their Nutritional Value. Biol Trace Elem Res. 2025 Apr 28;203(12):6132-6143.
<https://doi.org/10.1007/s12011-025-04629-7>.

Dong, X., Zhu, B., Zhao, X., Wang, H. and Liu, S. (2023). Transfer rates on nine pesticides from dry tea to infusion by QuEChERS purification followed by LC-MS/MS analysis. International Journal of Environmental Analytical Chemistry, 103(13), 2931-2947. <https://doi.org/10.1080/03067319.2021.1900149>.

DWI. (undated b) Drinking Water Standards and Regulations. [Drinking Water Standards and Regulations - Drinking Water Inspectorate](#) Accessed: 21/11/2025.

EC. (2008) Commission Directive 2008/100/EC amending Council Directive 90/496/EEC on nutrition labelling for foodstuffs as regards recommended daily allowances, energy conversion factors and definitions. Official Journal of the European Union L285: 9-12.

EFSA. (2008) Polycyclic Aromatic Hydrocarbons in Food Scientific Opinion of the Panel on Contaminants in the Food Chain (Question N° EFSA-Q-2007-136) Adopted on 9 June 2008. EFSA Journal (2008) 724, 1-114.
<https://doi.org/10.2903/j.efsa.2008.724>.

EFSA. (2011) Scientific Opinion on Pyrrolizidine alkaloids in food and feed. EFSA Journal Volume 9, Issue 11 November 2011, 2406.
<https://doi.org/10.2903/j.efsa.2011.2406>.

EFSA. (2014) Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA Journal Volume 12, Issue 3 3595. <https://doi.org/10.2903/j.efsa.2014.3595>.

EFSA. (2016) Dietary exposure assessment to pyrrolizidine alkaloids in the European population. EFSA Journal Volume 14, Issue 8 August 2016 e04572.

[https://doi.org/10.2903/j.efsa.2016.4572.](https://doi.org/10.2903/j.efsa.2016.4572)

EFSA. (2017) Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA Journal Volume 15, Issue 7 July 2017 e04908. <https://doi.org/10.2903/j.efsa.2017.4908>.

EFSA. (2018) Scientific opinion on the safety of green tea catechins. EFSA J. 2018 Apr 18;16(4): e05239. <https://doi.org/10.2903/j.efsa.2018.5239>.

EFSA. (2022a) Statement on the short-term (acute) dietary risk assessment for the temporary maximum residue levels for nicotine in rose hips, teas and capers. EFSA Journal Volume 20, Issue 9 e07566. <https://doi.org/10.2903/j.efsa.2022.7566>

EFSA. (2022b) Assessment of the Conclusions of the Joint FAO/WHO Expert Meeting on Tropane Alkaloids. EFSA Journal Volume 20, Issue 4 e07229. <https://doi.org/10.2903/j.efsa.2022.7229>.

EFSA. (2023) Scientific opinion on the tolerable upper intake level for manganese. EFSA Journal Volume 21, Issue 12 e8413. <https://doi.org/10.2903/j.efsa.2023.8413>

Fan, J., Wang, S., Gong, L., Ren, R. and Jin, Q. (2025a) Occurrence, exposure and health risk assessment of heavy metals in green tea samples cultivated in Hangzhou area. Nature Scientific Reports (2025) 15:19405.

<https://doi.org/10.1038/s41598-024-84287-2>.

Fan, Y., Jin, H., Chen, J., Lin, K., Zhu, L., Guo, Y., Ji, J. and Chen, X. (2025b) Neonicotinoid Residues in Tea Products from China: Contamination Patterns and Implications for Human Exposure. Toxics 2025, 13(7), 550.

<https://doi.org/10.3390/toxics13070550>.

FAO and WHO. (2020) Joint FAO/WHO Expert Meeting on Tropane Alkaloids 30 March – 3 April 2020. <https://doi.org/10.4060/cb1857en>.

Fernandes, I. A. A., Maciel, G. M., Bortolini, D. G., Pedro, A. C., Rubio, F. T. V., de Carvalho, K. Q., Windson, C. and Haminiuk, I. (2023).

The bitter side of teas: Pesticide residues and their impact on human health, Food and Chemical Toxicology, Volume 179, 2023, 113955.

<https://doi.org/10.1016/j.fct.2023.113955>.

FSA. (2000) 1997 Total Diet Study: Fluorine, bromine and iodine. Food Surveillance Sheet No. 5/00.

FSA. (2013) Survey of acrylamide and furan in UK retail products 2011-13. Project code: FS142001. [Survey of acrylamide and furan in UK retail products 2011-13 | Food Standards Agency](#) Accessed: 16/10/2025.

FSA. (2014a) Total diet study: metals and other elements. Project code: FS102081. [Total diet study: metals and other elements | Food Standards Agency](#) Accessed: 26/08/2025.

FSA. (2014b) Analyses of lead levels in tea. Project code: FS102115. [Analyses of lead levels in tea | Food Standards Agency](#) Accessed: 07/01/2026.

FSA. (2014c) Occurrence of Pyrrolizidine Alkaloids in Food. Project code: FS102056. [Occurrence of Pyrrolizidine Alkaloids in Food | Food Standards Agency](#) Accessed: 30/05/2025.

FSA. (2014d) Total diet study of inorganic contaminants, acrylamide & mycotoxins. Project code: FS102081. [Total diet study of inorganic contaminants, acrylamide & mycotoxins | Food Standards Agency](#) Accessed: 15/10/2025.

FSA. (2015) Occurrence of Polycyclic Aromatic Hydrocarbons in Herbs, Spices, Supplements and Tea. Project code: FS102111. [Occurrence of Polycyclic Aromatic Hydrocarbons | Food Standards Agency](#) Accessed: 12/01/2026.

FSA. (2017) Monitoring of tropane alkaloids in foods. Project code: FS102116. [Monitoring of tropane alkaloids in food | Food Standards Agency](#) Accessed: 26/08/2025.

FSA. (2018) Survey of acrylamide and furan in UK retail products. Project code: FS102075. [Survey of acrylamide and furan in UK retail products | Food Standards Agency](#) Accessed: 15/10/2025.

FSA. (2022) Acrylamide. [Acrylamide | Food Standards Agency](#) Accessed: 13/10/2025.

FSA. (2023) Acrylamide and Furans Survey Summary. Project code: FS101229. [Acrylamide and Furans Survey Summary | Food Standards Agency](#) Accessed: 06/01/2026.

FSA. (2024) Acrylamide legislation. [Acrylamide legislation | Food Standards Agency](#) Accessed: 14/10/2025.

Gustin, K., Barman, M., Stråvik, M., Levi, M., Englund-Ögge, L., Murray, F., Jacobsson, B., Sandberg, A-S., Sandin, A., Wold, A. E., Vahter, M. and Kippler, M. (2020) Low-level maternal exposure to cadmium, lead, and mercury and birth outcomes in a Swedish prospective birth-cohort. Environmental Pollution Volume 265, Part B, October 2020, 114986. <https://doi.org/10.1016/j.envpol.2020.114986>.

Han, W-Y., Zhao F-J., Shi, Y-Z., Ma, L-F. and Ruan, J-Y. (2006) Scale and causes of lead contamination in Chinese tea. Environ Pollut. Jan;139(1):125-32. <https://doi.org/10.1016/j.envpol.2005.04.025>.

Heshmati, A., Mehri, F. and Khaneghah, A. M. (2020) Simultaneous multi-determination of pesticide residues in black tea leaves and infusion: a risk assessment study. Environ Sci Pollut Res 28, pp. 13725-13735 (2021). <https://doi.org/10.1007/s11356-020-11658-3>.

Hinojosa-Nogueira, D., Bahamonde, J. R., Aguilera-Nieto, M., Navajas-Porras, González-Vigil, V., Rufán-Henares, J. A. and de la Cueva, S. P. (2025) Dietary exposure to food contaminants of pregnant women in Northern Spain and possible effects on fetal anthropometric parameters. Toxics 16;13(5):399. <https://doi.org/10.3390/toxics13050399>.

HMRC. (2025) HM Revenue and Customs - Find UK trade data from HM Revenue & Customs. [UK Trade Info from HM Revenue & Customs](#) Accessed: 08/10/2025.

IARC. (2012) Arsenic, Metals, Fibres, and Dusts IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 100C. ISBN-13

978-92-832-1320-8. [IARC Publications Website - Arsenic, Metals, Fibres, and Dusts](#) Accessed. 08/10/2025.

IMFNB. (1997) Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington, DC: National Academies Press; 1997. <https://doi.org/10.17226/5776>.

Iqbal, S., Ali, I., Rust, P., Kundi, M. and Ekmekcioglu, C. (2020) Selenium, Zinc, and Manganese Status in Pregnant Women and Its Relation to Maternal and Child Complications. Nutrients. 2020 Mar 10;12(3):725. <https://doi.org/10.3390/nu12030725>.

Kampouri, M., Gustin, K., Stråvik, M., Barman, M., Levi, M., Daraki, V., Jacobsson, B., Sandin, A., Sandberg, A-S., Wold, A. E., Vahter, M. and Kippler, M. (2022) Association of maternal urinary fluoride concentrations during pregnancy with

size at birth and the potential mediation effect by maternal thyroid hormones: The Swedish NICE birth cohort. <https://doi.org/10.1016/j.envres.2022.114129>.

Karak, T. and Bhagat, R. M. (2010) Trace elements in tea leaves, made tea and tea infusion: A review. Food Research International

Volume 43, Issue 9, November 2010, Pages 2234-2252.
<https://doi.org/10.1016/j.foodres.2010.08.010>.

Khan, N., Mukhtar, H. (2007) Tea polyphenols for health promotion. Life Sciences 81;7 pp.519-533. <https://doi.org/10.1016/j.lfs.2007.06.011>.

Kohnen-Johannsen, K. and Kayser, O. (2019) Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production. Molecules. 2019 Feb 22;24(4):796. <https://doi.org/10.3390/molecules24040796>.

Krishnankutty, N., Storgaard Jensen, T., Kjær, J., Jørgensen, J. S., Nielsen, F. and Grandjean, P. (2022) Public-health risks from tea drinking: Fluoride exposure. Scand J Public Health. 2022 May;50(3):355-361.
<https://doi.org/10.1177/1403494821990284>.

Kyei, N. N. A., Cramer, B., Humpf, H-U., Degen, G. H., Ali, N. And Gabrysch, S. (2022) Assessment of multiple mycotoxin exposure and its association with food consumption: a human biomonitoring study in a pregnant cohort in rural Bangladesh. Arch Toxicol 96, 2123-2138 (2022). <https://doi.org/10.1007/s00204-022-03288-0>.

Liu, T., Hivert, M-F., Rifas-Shiman, S. L., Rahman, M. L., Oken, E., Cardenas, A. and Mueller, N. T. (2020) Prospective Association Between Manganese in Early Pregnancy and the Risk of Preeclampsia. Epidemiology. 2020 Sep;31(5):677-680. <https://doi.org/10.1097/EDE.0000000000001227>.

Ma, J., Zhu, Z., Du, S., Zhang, D., Li, X., Zheng, A., Shen, J., Xiao, L., Wu, X., Chen, Y., Ji, J. and Lu, S. (2023) Polycyclic aromatic hydrocarbons in commercial tea from China and implications for human exposure. Journal of Food Composition and Analysis Volume 116, March 2023, 105075.
<https://doi.org/10.1016/j.jfca.2022.105075>.

NCCIH. (2025) National Center for Complementary and Integrative Health – Green Tea. [Green Tea: Usefulness and Safety | NCCIH](#) Accessed: 20/11/2025.

NHS. (2020) Others - Vitamins and Minerals. [Vitamins and minerals - Others - NHS](#) Accessed: 20/11/2025.

NHS. (2023) Foods to avoid in pregnancy. [Foods to avoid in pregnancy - NHS](#) Accessed: 27/01/2025.

Özdemir, Y. and Güçer, S. (1998) Speciation of manganese in tea leaves and tea infusions. Food Chemistry Volume 61, Issue 3, 31 March 1998, pp. 313-317. [https://doi.org/10.1016/S0308-8146\(97\)00071-X](https://doi.org/10.1016/S0308-8146(97)00071-X).

Pattaravitsate, n., Phetrak, A., Denpetkul, T., Kittipongvises, S. and Kuroda, K. (2021) Effects of brewing conditions on infusible fluoride levels in tea and herbal products and probabilistic health risk assessment. Scientific Reports volume 11, Article number: 14115 (2021). <https://doi.org/10.1038/s41598-021-93548-3>.

Podwika, W., Kleszcz, K., Krośniak, M. and Zagrodzki, P. (2017) Copper, Manganese, Zinc, and Cadmium in Tea Leaves of Different Types and Origin. Biol Trace Elem Res 183, 389–395 (2018). <https://doi.org/10.1007/s12011-017-1140-x>.

PRiF. (2016a) The Expert Committee on Pesticide Residues in Food. Report on the Pesticide Residues Monitoring Programme for Quarter 2 2015. [Pesticide Residues Monitoring Programme: Quarter 2 2015](#) Accessed: 08/01/2026.

PRiF. (2016b) The Expert Committee on Pesticide Residues in Food. Report on the Pesticide Residues Monitoring Programme for Quarter 4 2015. [PRiF Results Quarter 4 2015](#) Accessed: 08/01/2026.

Rai, G. (2025) Multi-elemental Profiling of Temi Tea (*Camellia sinensis*) from Sikkim by ICPMS. Indian Journal of Ecology (2025) 52(3): 535-539. <https://doi.org/10.55362/IJE/2025/4532>.

Roberts, C., Steer, T., Maplethorpe, N., Cox, L., Meadows, S., Nicholson, S., Page, P. and Swan, G. (2018) National Diet and Nutrition Survey (NDNS): results from years 7 and 8 (combined) for 2014 to 2015 and 2015 to 2016. Available at: <https://www.gov.uk/government/statistics/ndns-results-from-years-7-and-8-combined>. Accessed: 05/11/2025.

Ruxton, C. H. S. and Bond, T. J. (2015) Fluoride content of UK retail tea: comparisons between tea bags and infusions. Proceedings of the Nutrition Society. 2015;74(OCE1):E84. <https://doi.org/10.1017/S0029665115000993>.

SACN. (2011) The influence of maternal, foetal and child nutrition on the development of chronic disease in later life. ISBN: 9780108510649. [SACN Early Life Nutrition Report.pdf](#) Accessed: 08/10/2025.

SACN. (2018) Feeding in the First Year of Life.

[SACN_report_on_Feeding_in_the_First_Year_of_Life.pdf](#) Accessed: 08/10/2025.

Sedova, I., Kiseleva, M. and Tutelyan, V. (2018) Mycotoxins in Tea: Occurrence, Methods of Determination and Risk Evaluation. *Toxins (Basel)*. 2018 Oct 30;10(11):444. <https://doi.org/10.3390/toxins10110444>.

Shah, T., Shaikh, F., Ansari, S., Shaikh, S., Mehar, B. and Zareen, R. (2022) Heavy Metals in Tea and Their Adverse Effects on Mother and Fetal Outcome. *Journal of Hunan University (Natural Sciences)* 49, 10 pp. 105-112.

<https://doi.org/10.55463/issn.1674-2974.49.10.12>.

Sonnenburg, A., Batke, M., Damm, G., Foth, H., Freyberger, A., Hengstler, J. G., Mangerich, A., Partosch, F., Schupp, Th., Wollin, K-M, Brocke, J. V. and Gundert-Remy, U. (2025) Fluoride intake during pregnancy: calculation of realistic exposure scenarios for individual risk assessment. *Arch Toxicol.* 2025 Dec;99(12):4931-4940. <https://doi.org/10.1007/s00204-025-04143-8>.

Tagne-Fotso, R., Leroyer, A., Howsam, M., Dehon, B., Richeval, C. and Nisse, C. (2016) Current sources of lead exposure and their relative contributions to the blood lead levels in the general adult population of Northern France: The IMEPOGE Study, 2008–2010. *Journal of Toxicology and Environmental Health, Part A*, 79(6), 245–265. <https://doi.org/10.1080/15287394.2016.1149131>.

Tao, N. Y. and Mai, T. T. (2017) Determination of metal content in tea leaves grown in Yen Bai and Tuyen Quang Province, Vietnam. *Vietnam Journal of Science and Technology* 55 (5A):143.

UKHSA. (2022) Guidance Chromium: general information. Updated 24 May 2022. [Chromium: general information - GOV.UK](#) Accessed: 09/01/2026.

UKHSA. (2024) Guidance Manganese: general information. Updated 4 December 2025. [Manganese: general information - GOV.UK](#). Accessed: 20/11/2025.

US NIH ODS. (2025) Fluoride Fact Sheet for Health Professionals. Updated: April 11, 2025. [Fluoride - Health Professional Fact Sheet](#) Accessed: 05/11/2025.

US NTP. (2003) Toxicology and carcinogenesis studies of riddelliine (CAS No. 23246-96-0) in F344/N rats and B6C3F1 mice (gavage studies). May 2003. NTP Technical Report 508. NIH Publication No. 03-4442. [TR-508: Riddelliine \(CASRN 23246-96-0\) in F344/N Rats and B6C3F1 Mice \(Gavage Studies\)](#) Accessed: 15/10/2025.

Walters, C. B., Sherlock, J. C., Evans, W. H. and Read, J. I. (1983) Dietary Intake of Fluoride in the United Kingdom and Fluoride Content of Some Foodstuffs. Journal of the Science of Food and Agriculture 34;5 May 1983 pp. 523-528.
<https://doi.org/10.1002/jsfa.2740340514>.

Wennberg, M., Lundh, T., Sommar, J. N. And Bergdahl, I. A. (2017) Time trends and exposure determinants of lead and cadmium in the adult population of northern Sweden 1990-2014. Environmental Research 159 (2017) 111-117. <https://doi.org/10.1016/j.envres.2017.07.029>.

WHO. (2021) Manganese in drinking-water. WHO/HEP/ECH/WSH/2021.5. [Manganese in drinking-water](#) Accessed: 12/01/2025.

WHO, (2022) Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. pp. 420-423. ISBN: 978-92-4-004506-4. [Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda](#) Accessed: 21/01/2026.

WHO. (2023) Mycotoxins. [Mycotoxins](#) Accessed: 08/01/2026.

Yazdy, M., Tinker, S. C., Mitchell, A. A., Demmer, L. A. and Werler, M. M. (2015) Maternal Tea Consumption during Early Pregnancy and the Risk of Spina Bifida. Birth Defects Res A Clin Mol Teratol. 2012 May 29;94(10):756-761.
<https://doi.org/10.1002/bdra.23025>.

Ye, R., Ren, A., Zhang, L., Li, Z., Liu, J., Pei, L. and Zheng, X. (2011) Tea Drinking as a Risk Factor for Neural Tube Defects in Northern China. Epidemiology 22(4):p 491-496, July 2011. <https://doi.org/10.1097/ede.0b013e31821b4526>.

Zhang, X., Zhang, L., Zhou, T. and Zhou, Y. (2022) Fungal flora and mycotoxin contamination in tea: Current status, detection methods and dietary risk assessment - A comprehensive review. Trends in Food Science & Technology 127, pp. 207-220. <https://doi.org/10.1016/j.tifs.2022.05.019>.

Zhou, H., Liu, Y., Wu, Q., Zhang, X., Wang, H. And Lei, P. (2024) The manufacturing process provides green teas with differentiated nonvolatile profiles and influences the deterioration of flavor during storage at room temperature. Food Chemistry: X Volume 22, 30 June 2024, 101371.
<https://doi.org/10.1016/j.fochx.2024.101371>.