Deriving a health-based guidance value for boron to support development of UK Drinking Water Standards

Previous COT evaluation

In this guide

In this guide

- 1. <u>Introduction and Background Deriving a health-based guidance value for boron to support development of UK Drinking Water Standards</u>
- 2. <u>Properties and Sources of Boron Deriving a health-based guidance value for boron to support development of UK Drinking Water Standards</u>
- 3. <u>Toxicokinetics and Toxicity Deriving a health-based guidance value for boron to support development of UK Drinking Water Standards</u>
- 4. Summary of the Heindel et al. (1992) study
- 5. Summary of the Price et al. (1996) study
- 6. Summary of the Weir and Fisher (1972) paper
- 7. Additional Toxicology Studies Deriving a health-based guidance value for boron to support development of UK Drinking Water Standards
- 8. <u>Previous COT evaluation Deriving a health-based guidance value for boron to support development of UK Drinking Water Standards</u>
- 9. Evaluations by other authoritative bodies Deriving a health-based guidance value for boron to support development of UK Drinking Water Standards
- 10. <u>Summary Deriving a health-based guidance value for boron to support</u> development of UK Drinking Water Standards
- 11. Questions for the Committee Deriving a health-based guidance value for boron to support development of UK Drinking Water Standards
- 12. <u>List of abbreviations Deriving a health-based guidance value for boron to support development of UK Drinking Water Standards</u>
- 13. References: Deriving a health-based guidance value for boron to support development of UK Drinking Water Standards

This is a paper for discussion. This does not represent the views of the Committee and should not be cited.

- 58. Following publication of a new WHO drinking water guideline value in 1993, which was lower than the UK regulatory limit for drinking water at the time, the COT was asked to consider the toxicity data. In 1994, the COT provisionally agreed with the WHO (1993) NOAEL of 8.8 mg/kg bw/day for boron and acknowledged that the testis was a target organ for boron toxicity. However, the COT requested further information before finalising its conclusions. This included considering a review of borates by the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) and a US National Toxicology Program (NTP) developmental toxicity study in rats (that would later be published by Price et al., 1996a) that was a follow up to an earlier Heindel et al., 1992 developmental toxicity study in rats.
- 59. In 1995, the COT considered this additional information. The COT noted reported reduction in relative testis weight (without histological changes) following a dose of 4.4 mg/kg bw/day of boron in a 90-day oral study of boric acid in dogs (Weir and fisher 1972). However, this was not seen in a 2-year study in dogs at higher doses where no convincing evidence of testicular toxicity was observed at boron doses of 8 to 9 mg/kg bw/day (Weir and Fisher 1972). The COT considered that the dog studies reported by Weir and Fisher 1972 were unreliable due to small animal numbers in the experimental groups and inadequacies in the histopathological descriptions. The COT agreed that the follow up developmental study in rats was of good quality and demonstrated a NOAEL of 9.6 mg born/kg bw/day for adverse effects of boron. Overall, the COT concluded that a NOAEL of around 10 mg/kg bw/day could be set based on the rat developmental studies.