Effect on CYPs and prostaglandin activity

In this guide

In this guide

- 1. Traditional/culinary uses of ginger
- 2. Extracts and concentrates of ginger
- 3. Effect on CYPs and prostaglandin activity
- 4. Effect on Platelet Aggregation
- 5. <u>Herb-drug interactions</u>

Author	Test System	Exposure	Characterisation of test substance	Main outcome measure	Outcome
Dugasar et al., 2010	Mouse leukaemic monocyte (RAW ni 264.7) macrophages and human polymorphonuclea neutrophils (PMN).	uM. r	[6]-gingerol, [8]- gingerol, [10]- gingerol and [6]-shogaol.	compare the antioxidant and antiinflammatory activities of gingerols and their natural analogues to determine their structure-activity relationship and molecular mechanisms.	nhibition (activated PGE2 releadinhibition reached 5

Jolad <i>et</i> <i>al.</i> , 2004	HL-60 cells.	Not specified.	ginger constituents: gingerols, shogaols, 3- dihydroshogaols, gingerdiols.	Effects of ginger components on LPS-induced PGE2 production.	No cytotoxicit demonstra
Jolad <i>et</i> <i>al.</i> , 2005	HL-60 cells.	Not specified.	Ginger constituents containing gingerols, shogaols, 3- dihydroshogaols, gingerdiols.	Effects of ginger components on LPS-induced PGE2 production.	Inhibition of LPS-stimulated PGE2 production (IC50 = 0.0.08 ug/m with Ginge fractions.
Kim <i>et al.</i> , 2012	Human liver microsomes.	0.05–5 ug/ml.	Aqueous ethanolic ginger extract (30% EtOH).	Inhibitory effect on CYP450- mediated drug metabolism.	Concentra dependent inhibitory effects on CYP2C19; IC50 value 3.8 g/ml.
Kimura <i>et</i> <i>al.</i> , 2010;	Human CYP3A4 and CYP2C9 microsomes.	Not specified.	NA	Inhibitory effect on CYP3A4 and CYP2C9 activity.	significant inhibition (CYP3A4 IC 5.1u g/ml CYP2C9 IC (10ug/ml) activity.

Lantz <i>et</i> <i>al.</i> , 2007	U937 cells	0.1 ug/ml for 6 hrs.	Ginger extract and mixtures of 6- , 8- 10-gingerols and 6-, 8-, 10- shogaols.	Effect on inflammatory mediator production.	No effect of COX-2 expression
Mukkavill et al., 2014	Human liver microsomes.	of gingerols assessed at 100 mg/mL (equivalent	Ginger extract: (containing 6- Gingerol, 8- Gingerol, 10- Gingerol, 6- Shogaol). All individual components of gingerols were assessed at 100	effect of ginger extract and major constituents on CYP P450 enzyme activity.	Inhibition of CYP1A2 (IG - 221.5 mg by ginger extract. No effect on CYP2A6; maximum inhibition of CYP2B6: IG - 22 mg/mL against CYP2C8 in the presence of amodiaqui IC50 - 93.5 mg/mL against CYP2C9, in the presence of diclofenace Inhibition of CYP3A in the presence of testostero no effect if the presence of the presen

of midazo