Annex A and Annex B ## **Annex A** # Discussion papers presented to the COT on the hepatotoxic effects of green tea catechins Table 1 – A table of discussion papers that have been presented to the COT on the hepatotoxic effects of green tea catechins. | Discussion Paper reference and Date | Paper Title | |-------------------------------------|---| | TOX/2021/47 (07/09/2021) | The Safety of Green Tea Catechins (Reserved). | | TOX/2022/51 (06/09/2022) | The safety of green tea catechins - First draft statement. | | TOX/2023/05 (07/02/2023) | The safety of green tea catechins - Second draft statement. | | TOX/2023/26 (16/05/2023) | The safety of green tea catechins - Third draft statement. | Annex A to COT Statement 08/2024 **November 2024** ### **Annex B** # Statement on the Hepatotoxicity of Green Tea Catechins - Summary tables of cited toxicity studies - 1. This Annex is to be read in conjunction with the Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment's (COT) Statement on the Hepatotoxicity of Green Tea Catechins available at https://doi.org/10.46756/sci.fsa.wii944. - 2. The European Food Safety Authority (EFSA) published a scientific opinion in 2018 (EFSA, 2018) concluding that catechins from green tea prepared in the traditional way of infusion, or reconstituted drinks giving the equivalent composition of catechins as green tea infusions were, in general, safe; however, at the time EFSA were unable to determine a dose of epigallocatechin-3-gallate from green tea extracts that would be considered safe. - 3. To determine whether any new data have become available since the publication of the EFSA Opinion that might be relevant to the safety of the use of GTEs and hepatotoxicity, a literature search was conducted spanning the duration of 2018 to September 2022. Databases searched included PubMed, Google Scholar and LIVERTOX. Search terms used included (green tea extract and hepatotoxicity); (green tea extract and liver toxicity); ("green tea" and hepatotoxicity); ("green tea" and liver damage); (epigallocatechin-3-gallate OR EGCG) AND hepatotoxicity). - 4. The purpose of this annex is to provide summary information on the cited toxicological studies within the statement. There are four tables: - i. Table 1 summarises the data obtained from the literature that describes the possible Mode of Action for green tea catechins toxicity. - ii. Table 2 summaries the in vitro toxicity studies that were not previously reported in the EFSA, 2018 Opinion (EFSA, 2018). - iii. Table 3 summarises the in vivo animal data obtained from new reports and studies published in the literature since the publication of the EFSA Opinion (EFSA, 2018). - iv. Tabe 4 summarises the human data on hepatotoxicity reported in the literature since the publication of the EFSA Opinion (EFSA, 2018). #### Annex B to COT Statement 08/2024 #### **November 2024** Table 1 - Table summarising toxicological data obtained from the literature that describes the possible Mode of Action for green tea catechins hepatotoxicity. | Test item | Model | Concentration | Length of exposure | Results | Reference | |--|-------------------|--------------------------------|--------------------|--|-----------| | dGTE 1
(decaffeinated
GTE, 70%
EGCG). | d
HepG2 cells. | 0.001 to 1000
μg/ml dGTE 1. | 24 hours | Protective against hydrogen peroxide- induced apoptosis and cell death by attenuating oxidative stress pathways, similar to EGCG itself. | | | dGTE 2
(decaffeinated
GTE, 45%
EGCG). | HepG2 cells. | 0.001 to 1000
μg/ml dGTE 2. | 24 hours | cellular and mitochondrial oxidative stress and apoptosis in addition to hydrogen peroxide. | Shil et al.,
(2022) | |--|--|--|--|---|---------------------------| | Green tea. | See
Hoofnagle et
al., (2021)
summary on
pp.16. | See Hoofnagle et al., (2021) summary on pp.16. | See
Hoofnagle et
al., (2021)
summary on
pp.16. | Green-tea
related liver
injury was
found to be
strongly
associated with
the HLA-
B*35:01 allele. | Hoofnagle et al., (2021)* | | EGCG (98%
purity). | Female
C57BL/6J
mice
(n=8/group). | **Free diet: on
the 6 th day,
mice were split
into 3 groups:
0, 400, 800 mg
EGCG/kg bw
per day. | exposed to | EGCG enhanced lipid metabolism pathways but did not cause liver injury. | Shi et al.,
(2021) | Increased | EGCG (98%
purity). | Female
C57BL/6J
mice (n=8). | Fixed diet: 50% of the average food intake, limited to 2g each mouse per day. On the 6 th day, mice were randomly divided into three groups: dieting, dieting + 400 mg/EGCG/kg bw per day and, dieting + 800 mg/EGCG/kg bw per day. | 6 days
feeding;
exposed to
EGCG
(intragastric) | EGCG caused dose-dependent hepatotoxicity, associated with overactivation of linoleic and arachidonic acid oxidation pathways, which increased the accumulation of pro-inflammatory lipid metabolites, which thus contributed to liver injury. | Shi et al.,
(2021). | |-----------------------|-----------------------------------|--|--|--|---------------------------| | NA | In silico
docking. | NA | NA | The binding free energy calculations showed that some EGCG metabolites exhibited strong predicted binding affinity to NQO1 and would thus lead to inhibition. | Pandey et al.,
(2020). | | NA EG | erature
view of
GCG
xicity in
ildren. | 'High doses' is
not further
defined.
However, the
0.8 g EGCG/day
EFSA TDI was
cited. | Length of exposure not further defined. | observed at high concentrations was related to pro-oxidative properties attributed to catechol structures, which are able to form a superoxide | Sergi (2020). | |-------|---|--|---|--|---------------| | | | | | anion radical. | | EGCG toxicity Categorised cases into three groups: idiosyncratic HILI, intrinsic HILI or liver adaptation. Mechanistic steps leading to liver injury have not been elucidated, although there is evidence that GTE may cause idiosyncratic HILI in susceptible users, as well as intrinsic HILI that is dose dependent. Authors noted that idiosyncratic Teschke and Xuan (2019). Literature review on suspected liver injury associated with GTE from 1999 to June 2019. GTE containing 25-90% EGCG Length of with other exposure constituents (in not further dietary defined. supplements). GTE metabolic (1 week to several months exposure), lacking hypersensitivity issues with delayed response to reexposure to GTE or; b) immunologic type (few weeks exposure), HILI can be: a) | EGCG (93% purity). | C57BL/6J
mice (n=11-
18/group). | Mice were
dosed at up to
750 mg/kg bw
per day via
intragastric
administration. | 3 days. | Hepatic inflammation, necrosis and haemorrhage were observed; associated with increased oxidative stress and decreased superoxide dismutase and glutathione peroxidase levels. | James et al.,
(2018). | |--------------------|--|---|---|--|--------------------------| | EGCG | Literature
review on
the
modulation
of DNA
methylation
by GTCs | In vitro cells (MCF-7 and MDA-MD-23; breast cancer cell lines): 0 – 50 EGCG µmol/L. In vitro cells (KYSE 510; human oesophageal cancer cell line): 5 – 10 EGCG µmol/L. | In vitro cells (MCF-7 and MDA-MD-23; breast cancer cell lines): 3 or 6 days. In vitro cells (KYSE 510; human oesophageal cells): 12-144 hours. | EGCG modulates DNA methylation by attenuating the effect of DNMT1; however, the exact mechanism of DNMT1 inhibition is not fully understood. | Yiannakopoulu
(2015) | ^{*}These results are based on a systematic review by <u>Hu et al., (2018)</u>. Regulatory Toxicology and Pharmacology 95 (2018) 412-433. EGCG μmol/L. Abbreviations: dGTE - Decaffeinated green tea extract; DNA - Deoxyribonucleic acid; DNMT1 - DNA-methyltransferase 1; EGCG - epigallocatechin-3-gallate; GTC - ^{**}Concentrations were assumed to have been expressed per kg body weight, but the methodology did not clarify this in detail. Green tea catechins; GTE – Green tea extract; HepG2 - human liver cancer cell line; HILI – Herb-induced liver injury; NA – Not applicable; NQO1 - NAD(P)H dehydrogenase [quinone] 1. Table SEQ Table $\$ ARABIC 2 - In vitro toxicity studies that were not previously reported in the EFSA, 2018 Opinion. | Test
item | Model | Concentration | Length of exposure | Results | Reference | |--------------------------|----------------------|--|---------------------|--|-------------------------------| | EGCG | Bovine
thymus DNA | Incubated with EGCG (0, 1, 2, 3, 4 and 5 µM) and 20 µM metal ions. | 1 hour at
37ºC. | Oxidative damage under the action of metal ions and H2O2-induced oxidative stress. | Furukawa
et al.,
(2003) | | EGCG | HL-60 | 0, 50, 100, 150,
200 and 250 μM | 1 hour at
37ºC. | Low concentration of EGCG can cause oxidative DNA damage in human cells and H2O2 plays a critical role in EGCG-induced DNA damage. | Furukawa
et al.,
(2003) | | EGCG
(>98%
purity) | Human
lymphocytes | Increasing concentrations: 10-100 µM. | 24-hour incubation. | At the maximum dose, the survival rate decreased by 25%. | Bertram et
al., (2003) | | EGCG
(>98%
purity) | Nalm6 cells | Increasing
concentrations:
10-100 µM. | 24-hour incubation. | At the maximum dose, Survival rate decreased by 50%. | Bertram et al., (2003) | Abbreviations: DNA - Deoxyribonucleic acid; EGCG - (-)- Epigallocatechin-3-gallate; H2O2 - Hydrogen peroxide; HL - Human leukaemia cell. Table SEQ Table * ARABIC 3 – Toxicological table summarising in vivo animal data obtained from new reports and studies published in the literature since the publication of the EFSA Opinion (EFSA, 2018). | Test item | Model | Concentration | Length of exposure | Results | Reference | |------------------------------------|---|--|--------------------|--|-----------------------| | Green tea fat
burner
capsule | Male and
female wild
type mice
(n=3-4 per
dose group) | 150 mg EGCG
per capsule:
250 or 500
mg/kg bw per
day via oral
gavage. | 6-week period | Did not result in
a significant
elevation of ALT
levels over the
treatment
period. | Cho et al.,
(2021) | | Green tea fat
burner
capsule | Male and female PD-1 -/- (C57BL/6J) mice (model for IDILI) (n=3-4 per dose group) | 150 mg EGCG per capsule: 250 or 500 mg/kg bw per day via oral gavage in conjunction with anti-CTLA-4 antibody at a dose of 300 µg on days -3 and -1 prior to treatment and then weekly to sustain CTLA-4 inhibition. | 6-week period | In the high dose female mice, GTE induced a delayed onset increase in serum ALT levels and an increase in CD8+ T cells. Whilst in the high dose male mice, a smaller increase in ALT was observed in day 7. | Cho et al.,
(2021) | Green tea polyphenols in Polyphenon® (29.2% EGCG; total sum of catechins 65.4%) with ebulin f from dwarf elder fruits Green tea 37 Swiss female mid (four treatment groups) Group 1 (n =16) was treated intraperitoneally with 2.5 mg/kg body weight of ebulin f; Group 2 (n = 7)received one oral (p.o.) dose female mice of Pol60; Group 3 (n = 11) wasadministered with both treatments at the same day; Group 4 (n=3)littermates which received no treatment to serve as controls. Combined treatment resulted in a reduction in mouse survival by 70% with darkened areas in the internal 2-week period organs (presumed to be bleeding). Hypothesised the GTEs enhance the apoptotic effect of ebulin f. Rojo et al., (2020)* oe Decaffeinated GTE (180 mg EGCG/capsule; total sum of catechins 225 mg/capsule) Lean male B6C3F1 mice (n=5 per dose group) Doses of either: 1x (equivalent of 1.5 mg total catechins delivered in 300 µL of gavage solution); 3x (4.5 mg total catechins) or 10x (15 mg total catechins) mouse equivalent doses by gavage. Up to two (Monday - weeks Friday) No significant alterations to the liver tissue following administration of decaffeinated GTE. However, there was no group receiving a caffeinated preparation for comparison, the study used historical data from a different study for comparison. Gurley et al (2019) | | Acute oral gavage toxicity in rats: single administration 1,868 EGCG mg/kg bw. | Acute oral
toxicity in rats:
death
observed 72
hours
following | The most | |--|---|---|--| | Literature
review on
the
toxicological
effects of
green tea | Acute oral gavage toxicity in mice: single administration of 1,500 EGCG mg/kg bw. Subacute oral gavage toxicity in rats: 0.5 and 1 g/kg bw. Subacute oral gavage toxicity in mice: 1,500 EGCG mg/kg bw per day. | following administration. Acute oral toxicity in mice: 48 hours. Subacute oral gavage toxicity in rats: Subacute oral gavage toxicity in mice: 5 days. | important side effects reported were hepatotoxicity and gastrointestinal disorders especially when consumed on an empty stomach. Limited data on using green tea | | | Subacute oral gavage toxicity in dogs: 300 EGCG mg/kg bw per day, and 500 EGCG mg/kg bw per day. | Subacute oral toxicity in dogs: low dose for 14 days and higher dose for 28 days. | taken when co-
administrating
with drugs. | EGCG Bedrood et (2018) | Multi-treat
(dietary
supplement),
300 mg GTE
per tablet
(30%
polyphenol) | Male albino
rats (strain
not
specified)
(n=9 per
dose group) | paracetamol
followed by
GTE,
paracetamol | with one
month
recovery. | alterations that indicated hepatotoxicity including augmented concentrations of AST and ALT, hepatocellular necrosis and degeneration and degeneration, congestion, haemorrhage, inflammation and fibrosis. | El-Bakry et a | |--|---|---|--------------------------------|---|----------------------------| | EGCG (100% purity) | Swiss albino | Control (0), 217,
67.8, 21.1 and
6.6 EGCG
mg/kg/day. | days followed | EGCG induced hepatotoxic effects, reversible following cessation of 14 days after treatment. | Ramachand
et al., (2016 | Administration | EGCG (100% purity) | Adult female Swiss albino mice (n=5 per group) | Control (0), 108,
67.8, 21.1 and
6.6 EGCG
mg/kg/day. | Either through oral or intraperitoneal route for 14 consecutive days followed by immediate termination after 24 h of the last dose. | Hepatotoxicity. A 14-day tolerable dose of 21.1 and 67.8 EGCG mg/kg for intraperitoneal and oral routes were identified, respectively. | Ramachand
et al., (2016 | |--------------------|--|---|---|--|----------------------------| | EGCG (100% purity) | Adult female Swiss albino mice (n=5 per group) | Control (0), 108,
67.8, 21.1 and
6.6 EGCG
mg/kg/day. | Intraperitoneal route for 14 consecutive days followed by 14 days of observation without treatment. | EGCG induced hepatotoxic effects, reversible following cessation of 14 days after treatment. | Ramachand
et al., (2016 | *The COT were of the opinion that the relevance of these findings to the effects of consumption of green tea or its extracts is questionable. Abbreviations: ALT - Alanine transaminase; ASR - Aspartate aminotransferase; dGTE - Decaffeinated green tea extract; DNA - Deoxyribonucleic acid; DNMT1 - DNA-methyltransferase 1; EGCG - epigallocatechin-3-gallate; GTC - Green tea catechins; GTE - Green tea extract; HepG2 - human liver cancer cell line; HILI - Herb-induced liver injury; IDILI - idiosyncratic drug0induced liver injury; NA - Not applicable; NQO1 - NAD(P)H dehydrogenase [quinone] 1. Table SEQ Table * ARABIC 4 - Human data on hepatotoxicity reported in the literature since the publication of the EFSA Opinion (EFSA, 2018). | Test item | Model | Concentration Length of | Results | Reference | |-----------|-------|-------------------------|---------|-----------| | | | exposure | | | Women of reproductive age (≥18 to ≤40-years old) with or without uterine fibroids (n=39; 13 per dose group) **EGCG** (i) 800 mg of EGCG daily; (ii) 800 mg of EGCG daily 30-35 days with (after the clomiphene onset of their citrate* 100 mg next for 5 days; (iii) menstrual 800 mg EGCG cycle). daily with letrozole* for 5 days. No subject demonstrated signs of druginduced liver injury and no subject showed serum folate level outside the normal range. Authors suggest that a daily dose of 800 mg EGCG Siblini et alone or in al., (2023) combination with clomiphene citrate or letrozole (for 5 days) is welltolerated and is not associated with liver toxicity or folate deficiency in reproductiveaged women. | GTE | Post-
menopausal
women
(n=1,075) | 843 mg EGCG
per day or
placebo
capsules. | 12 months. | Clinically relevant serum AST and ALT elevations were found within 6-9 months of the women in the treatment group with the UGT1A4† heterozygous genotype. | Acosta et
al., (2022) | |---|--|---|---------------------------|---|--------------------------| | Green tea
infusions and
GTE dietary
supplement | Analysed cross-sectional data from 2009-2014 of the USA National Health and Nutrition Examination Survey | 690 - 1,315
GTE mg/day
(supplements). | Six weeks –
12 months. | Investigated the association between green tea infusions and GTE supplement consumption and liver biomarkers. Authors observed green tea consumption was associated with reducing the probability of having one or more abnormal liver biomarkers. GTE supplement consumption had | Fallah et
al., (2022) | no significant effect. | Green tea
(drink) and
royal jelly
with
magnesisum | 48-year-old-
woman | Green tea
(unknown),
royal jelly with
magnesium
twice a day. | years, royal
jelly with
magnesium | Presenting with symptoms suggestive of gastroenteritis, her AST and ALT levels were 8x the ULN. Condition rapidly worsened and underwent liver transplant for fulminant hepatitis. | Percevault
et al.,
(2022) | |---|-----------------------|--|---|--|---------------------------------| | ANACA3+® dietary supplement (containing green tea leaf powder at 160 mg/dose) | WOIIIaii | 160 mg green
tea leaf
powder/dose
from four
capsules/day. | Consumed dietary supplement for 1 year. | Abdominal pain associated with elevated AST >100x the ULN and ALT >200x the ULN. Patient discontinued supplementation; liver function normalised over 1 month after onset of | Percevault
et al.,
(2022) | symptoms. | Dietary
supplements
containing
green tea | "Middle-
aged
women and
adults" | Either unavailable or does not provide detailed granularity on the % of EGCG for each dietary supplement. | 4-52 weeks. | Hepatocellular
lesions. | Assis et al.,
(2022 | |--|--|--|------------------------|--|----------------------------| | GTE and a dietary supplement that also contained GTE | 47-year-old
woman | Unknown; dietary supplements containing varying amounts of GTEs. Levels undisclosed as part of proprietary blends. | "Years" | Drug-induced
liver injury. | AZ Big
Media,
(2021) | | GTE | 90 patients
(mean age
44, m = 22,
f = 68) | Not further described. | Not further described. | Main symptoms were jaundice, fatigue, nausea, and abdominal pain. The HILI patterns were mainly hepatocellular, cholestatic and mixed. | Ballotin et
al., (2021) | | GTE
containing
supplements | 8/29 reports
of DILI | Composition of supplements were not detailed in this review; however, consumption of supplements was concomitant with use of medicine. | Varied;
ranged
between 15
and 175
days, with a
latency
period of
between 7
and 175
days. | herbal | Bessone et
al., (2021) | |----------------------------------|---|--|---|--|--------------------------------| | GTE
containing
supplements | 40/1,414
cases; aged
17 to 69
years of age | Catechin per
serving ranged
from 6.6 - 384
mg; EGCG per
serving ranged
from 1.6 - 219
mg. Total
estimated daily
doses ranged
from 50 to
2,000 mg GTE
(median = 800
mg) | Symptoms
developed
between 15
to 448 days
(median =
72 days). | 40 cases of liver injury were directly attributed to green tea consumption of which 16 products were linked to GTE induced liver injury. Liver injury was typically hepatocellular, with marked increases in serum ALT and AST | Hoofnagle
et al.,
(2021) | concentrations. | containing | Not further
described. | Median intake
if 720 mg
EGCG/day | At least 2
weeks. | The reported GTE-related hepatotoxicity in the majority of cases were acute hepatitis with a hepatocellular injury pattern. | Woo et al.,
(2021) | |--|---------------------------|--|---------------------------------|--|---------------------------| | Hydroxycut® 2
brand dietary o
supplement 1 | - | Specific product used by the patient was unknown. Previous formulations have been listed to contain 91 mg per 2 capsules serving of GTE. | 2 capsules daily for ~3 months. | Presented with chest-pain fatigue and shortness of breath and was diagnosed with drug-induced liver injury. Cessation of Hydroxycut intake reduced ALT and AST levels. | Khetpal et
al., (2020) | Review showed a correlation between the occurrence of severe hepatotoxicity and the consumption of GTEs. Typically, liver injury due to GTE exposure > manifests within Oketch-3 months, but the latency to Rabah et al., (2020) the onset of symptoms ranges from 10 days to 7 months. Most cases present with symptoms of acute hepatitis accompanied by marked hepatocellular enzyme elevations. GTE 75 500 to 3,000 mg GTE per individual day (equating cases Varied. to ~250 associated the GTE 1,800 EGCG intake mg/day) | Green tea
infusions | 2-year-old
child | 2-3 cups of green tea infusions; each cup provided 80-106 mg of polyphenols (equivalent to 36 -47.7 g of polyphenols in 5 months). | 5 months | rash and diarrhoea for 5 days and a fever that persisted for 10 days. Final presumptive diagnosis was severe acute hepatitis secondary to green tea infusion toxicity. | D'Agostino
et al.,
(2019) | |--------------------------------------|----------------------|--|--|--|---------------------------------| | Vital Stem™
dietary
supplement | 50-year-old
woman | Unknown; contained GTE, L-leucine, blueberry powder, L- carnosine and Vitamin D3. Levels undisclosed as part of proprietary blend. | 3.9 g
dissolved in
pomegranate
juice daily
for one
month. | Presented with constriction around the common bile duct, elevated ASR and ALT levels. | Surapaneni
et al.,
(2018) | Presented with | Concurrent consumption of Evlution Nutrition Lean Mode Stimulant-Free Weight Loss Supplement™ and Evlution Nutrition Trans4orm Thermogenic Fat Burner™ | 21-year-old
man | 3 capsules twice per day of the weight loss supplement containing 250 mg GTE (EGCG content unknown) and, 2 capsules twice per day of the fat burner containing 500 mg GTE (standard minimum of 50% EGCG). | 8-weeks. | Acute hepatitis. It was found that the weight loss supplement also contained Garcinia cambogia, which has been reported to cause hepatotoxicity, which according to authors may have had a synergistic effect. | Popovic et
al., (2018) | |--|--|---|---|--|---------------------------| | Commercially
available fat
burner
containing
GTE | ,
52-year-old
woman | Product contained GTE with unknown concentration of EGCG. | | Presented with hepatitis and cholestatic idiosyncratic liver injury. | Gavrić et
al., (2018) | | Chili Burn™ | 57-year-old
woman | 972 mg GTE
(standardised
to ECCG 30%)
per 2 tablets. | 10 weeks;
consumed
85 pills in
total. | Presented with hepatitis idiosyncratic liver injury. | Gavrić et
al., (2018) | | SlimCut | The same
woman (as
above) now
62-year-old | GTE
supplement
containing 45%
EGCG. | One month;
consumed
60 pills in
total. | Presented with
the same type of
liver injury as at
the previous
admission. | Gavrić et
al., (2018) | | EGCG | >30 years
old (n=92;
n=47 in
EGCG
treatment
group and
n=45 in | 400 mg EGCG
per capsule in
treated group;
400 mg
mannitol in
placebo group. | Orally once daily for 4-weeks, then one capsule twice daily for 4-weeks, and then one capsule three times daily for 40 weeks. | EGCG was overall well tolerated but was associated with hepatotoxic effects in some patients (n=8/47). | Levin et
al., (2018) | |------|---|--|---|--|-------------------------| | | placebo
group) | piacebo group. | After 48 weeks, all patients underwent a 4-week wash-out period. | The authors
state that doses
of more than
1,200 mg should
not be used. | | *Clomiphene citrate and letrozole are ovarian stimulation medication which was started between cycle days 2-5 for subjects randomised into these treatment groups. † UGT1A4 – uridine 5'-diphospho-glucuronosyltransferase 1A4 is an enzyme of the glucuronidation pathway that transforms small lipophilic molecules such as steroids, bilirubin, hormones and drugs, into water-soluble, excretable metabolites. Abbreviations: ALT - Alanine transaminase; ASR - Aspartate aminotransferase; dGTE - Decaffeinated green tea extract; DNA - Deoxyribonucleic acid; EGCG - epigallocatechin-3-gallate; GTC - Green tea catechins; GTE - Green tea extract; HILI - Herb-induced liver injury.